An adaptive framework to tune the coordinate systems in evolutionary algorithms

Date

2018-03-12

Advisors

Journal Title

Journal ISSN

ISSN

2168-2267
2168-2275

Volume Title

Publisher

IEEE Press

Type

Article

Peer reviewed

Yes

Abstract

The performance of many nature-inspired optimization algorithms depends strongly on their implemented coordinate system. However, the commonly used coordinate system is fixed and not well suited for different function landscapes, nature-inspired optimization algorithms thus might not search efficiently. To overcome this shortcoming, in this paper we propose a framework, named ACoS, to adaptively tune the coordinate systems in nature-inspired optimization algorithms. In ACoS, an Eigen coordinate system is established by making use of the cumulative population distribution information, which can be obtained based on a covariance matrix adaptation strategy and an additional archiving mechanism. Since the population distribution information can reflect the features of the function landscape to some extent, nature-inspired optimization algorithms in the Eigen coordinate system have the capability to identify the modality of the function landscape. In addition, the Eigen coordinate system is coupled with the original coordinate system, and they are selected according to a probability vector. The probability vector aims to determine the selection ratio of each coordinate system for each individual, and is adaptively updated based on the collected information from the offspring. ACoS has been applied to two of the most popular paradigms of nature-inspired optimization algorithms, i.e., particle swarm optimization and differential evolution, for solving 30 test functions with 30 and 50 dimensions at the 2014 IEEE Congress on Evolutionary Computation. The experimental studies demonstrate its effectiveness.

Description

The file attached to this record is the author's final peer reviewed version. This article is available open access via the DOI

Keywords

Nature-inspired optimization algorithms, particle swarm optimization, differential evolution, coordinate system, adaptive framework

Citation

Liu, Z. et al. (2018) An adaptive framework to tune the coordinate systems in evolutionary algorithms. IEEE Transactions on Cybernetics, 49 (4), pp. 1403-1416

Rights

Research Institute

Institute of Artificial Intelligence (IAI)