Show simple item record

dc.contributor.authorWilliams, G. T.en
dc.contributor.authorWeaver, J.en
dc.contributor.authorAtre, M.en
dc.contributor.authorHendler, Jamesen
dc.date.accessioned2012-08-14T09:05:04Z
dc.date.available2012-08-14T09:05:04Z
dc.date.issued2010-11
dc.identifier.citationWilliams, G.T., Weaver, J., Atre, M. and Hendler, J.A. (2010) Scalable reduction of large datasets to interesting subsets. Web Semantics: Science, Services and Agents on the World Wide Web, 8 (4), pp. 365-373en
dc.identifier.issn1570-8268
dc.identifier.urihttp://hdl.handle.net/2086/6816
dc.description.abstractWith a huge amount of RDF data available on the web, the ability to find and access relevant information is crucial. Traditional approaches to storing, querying, and reasoning fall short when faced with web-scale data. We present a system that combines the computational power of large clusters for enabling large-scale reasoning and data access with an efficient data structure for storing and querying the accessed data on a traditional personal computer or other resource-constrained device. We present results of using this system to load the 2009 Billion Triples Challenge dataset, materialize RDFS inferences, extract an “interesting” subset of the data using a large cluster, and further analyze the extracted data using a personal computer, all in the order of tens of minutes.en
dc.language.isoenen
dc.publisherElsevieren
dc.subjectBillion Triples Challengeen
dc.subjectscalabilityen
dc.subjectParallelen
dc.subjectinferencingen
dc.subjectqueryen
dc.subjectTriplestoreen
dc.titleScalable reduction of large datasets to interesting subsetsen
dc.typeArticleen
dc.identifier.doihttp://dx.doi.org/10.1016/j.websem.2010.08.002
dc.researchgroupSoftware Technology Research Laboratory (STRL)en
dc.peerreviewedYesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record