• Login
    View Item 
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    •   DORA Home
    • Faculty of Computing, Engineering and Media
    • School of Computer Science and Informatics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Handling constrained many-objective optimization problems via problem transformation

    Thumbnail
    View/Open
    Main article and supplementary file (12.86Mb)
    Date
    2020-10
    Author
    Jiao, Ruwang;
    Zeng, Sanyou;
    Li, Changhe;
    Yang, Shengxiang;
    Ong, Yew-Soon
    Metadata
    Show attachments and full item record
    Abstract
    Objectives optimization and constraints satisfaction are two equally important goals to solve constrained many-objective optimization problems (CMaOPs). However, most existing studies for CMaOPs can be classified as feasibility-driven constrained many-objective evolutionary algorithms (C-MaOEAs), they always give priority to satisfy constraints, while ignoring the maintenance of the population diversity for dealing with conflicting objectives. Consequently, the population may be pushed towards some locally feasible optimal or locally infeasible areas in the high-dimensional objective space. To alleviate this issue, this paper presents a problem transformation technique, which transforms a CMaOP into a dynamic CMaOP (DCMaOP) for handling constraints and optimizing objectives simultaneously, to help the population cross the large and discrete infeasible regions. The well-known reference-point-based NSGA-III is tailored under the problem transformation model to solve CMaOPs, namely DCNSGA-III. In this paper, ε -feasible solutions play an important role in the proposed algorithm. To this end, in DCNSGA-III, a mating selection mechanism and an environmental selection operator are designed to generate and choose high-quality ε-feasible offspring solutions, respectively. The proposed algorithm is evaluated on a series of benchmark CMaOPs with 3, 5, 8, 10, and 15 objectives and compared against six state-of-the-art CMaOEAs. The experimental results indicate that the proposed algorithm is highly competitive for solving CMaOPs.
    Description
    The file attached to this record is the author's final peer reviewed version.
    Citation : Wang, R., Zeng, S., Li, C., Yang, S. and . Ong, Y-S. (2020) Handling constrained many-objective optimization problems via problem transformation. IEEE Transactions on Cybernetics, in press,
    URI
    https://dora.dmu.ac.uk/handle/2086/20268
    DOI
    https://doi.org/10.1109/tcyb.2020.3031642
    ISSN : 1083-4419
    Research Institute : Institute of Artificial Intelligence (IAI)
    Peer Reviewed : Yes
    Collections
    • School of Computer Science and Informatics [2970]

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary
     

     

    Browse

    All of DORACommunities & CollectionsAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission DateThis CollectionAuthorsTitlesSubjects/KeywordsResearch InstituteBy Publication DateBy Submission Date

    My Account

    Login

    Submission Guide | Reporting Guide | Reporting Tool | DMU Open Access Libguide | Take Down Policy | Connect with DORA
    DMU LIbrary