Show simple item record

dc.contributor.authorAngelino, Matteo
dc.contributor.authorGoldstein, Richard J.
dc.contributor.authorGori, Fabio
dc.date.accessioned2019-11-06T12:32:45Z
dc.date.available2019-11-06T12:32:45Z
dc.date.issued2019-04-12
dc.identifier.citationAngelino, M., Goldstein, R.J., and Gori, F. (2019) Lateral edge effects on heat/mass transfer on a finite width surface within a turbulent boundary layer. International Journal of Heat and Mass Transfer, 138, pp.32–40.en
dc.identifier.urihttps://repository.lboro.ac.uk/articles/Lateral_edge_effects_on_heat_mass_transfer_on_a_finite_width_surface_within_a_turbulent_boundary_layer/9229112
dc.identifier.urihttps://dora.dmu.ac.uk/handle/2086/18727
dc.descriptionThe author's final peer reviewed version can be found by following the URI link. The Publisher's final version can be found by following the DOI link.en
dc.description.abstractNumerical simulations of the local heat/mass transfer on a finite width surface within a turbulent boundary layer are presented. Different approaches to the RANS modelling of the turbulent heat/mass flux are compared to Large Eddy Simulations (LES). Mass transfer experiments conducted with the naphthalene sublimation technique are used as validation. The isotropic eddy viscosity model, Simple Gradient Diffusion Hypothesis (SGDH), is shown to underestimate the span-wise effects. Its anisotropic extension, Generalized Gradient Diffusion Hypothesis (GGDH), improves the prediction, but still does not account for near-wall contribution in strongly dissimilar velocity and temperature/concentration fields, even in combination with a wall-sensitive second-moment closure model such as the Elliptic Blending Reynolds Stress Model (EB-RSM). A more complete turbulent heat flux model based on the elliptic blending approach, the Elliptic Blending GGDH (EB-GGDH) presents very good agreement with LES and with the experiments, confirming the need for more advanced turbulent heat flux modelling in applications with strong three-dimensional effects.en
dc.language.isoenen
dc.publisherElsevieren
dc.titleLateral edge effects on heat/mass transfer on a finite width surface within a turbulent boundary layeren
dc.typeArticleen
dc.identifier.doihttps://doi.org/10.1016/j.ijheatmasstransfer.2019.04.016
dc.peerreviewedYesen
dc.funderNo external funderen
dc.cclicenceCC-BY-NCen
dc.date.acceptance2019-04-03
dc.exception.reasonavailable on L'boro uni repositoryen
dc.exception.ref2021codes254aen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record