Repository logo
  • Log In
Repository logo
  • Communities & Collections
  • All of DORA
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Zheng, Jun"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A coevolutionary algorithm with detection and supervision strategy for constrained multiobjective optimization
    (IEEE, 2024-06-19) Feng, Jian; Liu, Shaoning; Yang, Shengxiang; Zheng, Jun; Xiao, Qi
    Balancing objectives and constraints is challenging in addressing constrained multiobjective optimization problems (CMOPs). Existing methods may have limitations in handling various CMOPs due to the complex geometries of the Pareto front (PF). And the complexity arises from the constraints that narrow the feasible region. Categorizing problems based on their geometric characteristics facilitates facing this challenge. For this purpose, this article proposes a novel constrained multiobjective optimization framework with detection and supervision phases, called COEA-DAS. The framework categorizes the problems into four types based on the overlap between the obtained approximate unconstrained PF and constrained PF to guide the coevolution of the two populations. In the detection phase, the detection population approaches the unconstrained PF ignoring the constraints. The main population is guided by the detection population to cross infeasible barriers and approximate the constrained PF. In the supervision phase, specialized evolutionary mechanisms are designed for each possible problem type. The detection population maintains evolution to assist the main population in spreading along the constrained PF. Meanwhile, the supervision strategy is conducted to reevaluate the problem types based on the evolutionary state of the populations. This idea of balancing constraints and objectives based on the type of problem provides a novel approach for more effectively addressing the CMOPs. Experimental results indicate that the proposed algorithm performs better or more competitively on 57 benchmark problems and 12 real-world CMOPs compared with eight state-of-the-art algorithms.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An adaptive trade-off evolutionary algorithm with composite differential evolution for constrained multi-objective optimization
    (Elsevier, 2023-08-19) Feng, Jian; Liu, Shaoning; Yang, Shengxiang; Zheng, Jun; Liu, Jinze
    Convergence, diversity, and feasibility are crucial factors in solving constrained multi-objective optimization problems (CMOPs). Their imbalance can result in the algorithm failing to converge well to the Pareto front, especially when dealing with complex CMOPs. To address this issue, we propose an adaptive tradeoff evolutionary algorithm (ATEA), which can adjust the environment selection strategy based on the characteristics of problem, aiming to achieve a balance between convergence and diversity while ensuring feasibility of the population. The ATEA divides the search process into three phases: In the extended exploration phase, a global search is conducted using a guided constraint relaxation technique to enable the population to quickly traverse the infeasible region and approach the feasible region. In the tradeoff exploration phase, constraints are further detected and estimated to retain more feasible individuals and competing infeasible individuals, allowing the population to accurately identify all possible feasible regions and gradually expand towards the feasible boundary. The exploitation phase explores under-explored regions in the earlier phases with the aim of accelerating the convergence of the population and escaping from the local optima. Extensive experiments conducted on four benchmark test suites demonstrate that ATEA exhibits superior performance in three benchmark test suites compared with six other state-of-the-art algorithms.
Quick Links
  • De Montfort University Home
  • Library Learning Services
  • DMU Figshare (DMU's Data Repository)
Useful Links
  • Submission Guide
  • DMU Open Access Libguide
  • Take Down Policy
  • Connect with DORA

Kimberlin Library

De Montfort University
The Gateway
Leicester, LE1 9BH
0116 257 7042
justask@dmu.ac.uk

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback