Browsing by Author "Zeng, Bo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Embargo A novel grey prediction model with four-parameter and its application to forecast natural gas production in China(Elsevier, 2024-04-25) Song, Nannan; Li, Shuliang; Zeng, Bo; Duan, Rui; Yang, YingjieDue to the non-homology problem and the simple structural characteristics, a grey prediction model will have defects in modeling. In this paper, the structure of the model is deformed, and additional parameters are added. A novel four-parameter grey prediction model NFGM(1,1) is established to avoid the non-homology problem. The accumulation order of the NFGM(1,1) model is optimized to enhance its performance. This paper first introduces a nonlinear term and a linear term into the to compensate for its structural defects, which can enhance the accuracy of the model in modeling complex modeling sequences. Secondly, a simplified basic formula of the model is proposed to estimate its parameters and iteratively establish the model, which can avoid the problem of non-homologous errors during modeling. Then a novel four-parameter grey prediction model NFGM(1,1) is constructed. Thirdly, the unbiasedness of NFGM(1,1) is proved and verified by matrix theory. Fourthly, by optimizing the order of the NFGM(1,1) model, the model is more flexible and adjustable, and a novel fractional-order four-parameter grey prediction model FNFGM(1,1) can be obtained. Finally, the FNFGM(1,1) model is applied to the prediction of natural gas production in China. The model results show that the FNFGM(1,1) model exhibits superior performance compared to the NFGM(1,1), TWGM(1,1), TDGM(1,1), DGM(1,1), and GM(1,1) models, with the mean relative simulation/prediction/comprehensive percentage errors of 0.92%/1.42%/1.07%, respectively. According to the predicted results, China's natural gas production will reach 3542.9 × 108 m3 in 2027 and some relevant policy recommendations are put forwarded.Item Embargo Forecasting the amount of domestic waste clearance in Shenzhen with an optimized grey model(Springer, 2024-04-03) Zeng, Bo; Xia, Chao; Yang, YingjieAs a leading economic center in China and an international metropolis, Shenzhen has great significance in promoting sustainable urban development. To predict its amount of domestic waste clearance, a new multivariable grey prediction model with combinatorial optimization of parameters is established in this paper. Firstly, the new model expands the value range of the order r of a grey accumulation generation operator from positive real numbers (R+) to all real numbers (R), which enlarges the optimization space of parameter and has positive significance for improving model performance. Secondly, the dynamic background-value coefficient λ is introduced into the new model to improve the smoothing effect of the nearest neighbor generated sequences. Thirdly, with the objective function of minimizing the mean absolute percentage error(MAPE), the particle swarm optimization (PSO) is employed to optimize parameters r and λ to improve the overall performance of the new model. The new model is used to simulate and predict the amount of domestic waste clearance in Shenzhen, and the MAPE of the new model is only 0.27%, which is far superior to several other similar models. Lastly, the new model is applied to predict the amount of domestic waste clearance in Shenzhen. The results indicate the amount of domestic waste clearance in 2028 could be 9.96 million tons, an increase of 20.58% compared to 2021.This highlights the significant challenge that Shenzhen faces in terms of urban domestic waste treatment. Therefore, some targeted countermeasures and suggestions have been proposed to ensure the sustainable development of Shenzhen's economy and society.