Browsing by Author "Yang, Ming"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access An adaptive multi-population evolutionary algorithm for contamination source identification in water distribution systems(American Society of Civil Engineers, 2021-02) Li, Changhe; Yang, Rui; Zhou, Li; Zeng, Sanyou; Mavrovouniotis, Michalis; Yang, Ming; Yang, Shengxiang; Wu, MinReal-time monitoring of drinking water in a water distribution system (WDS) can effectively warn and reduce safety risks. One of the challenges is to identify the contamination source through these observed data due to the real-time, non-uniqueness, and large scale characteristics. To address the real-time and non-uniqueness challenges, we propose an adaptive multi-population evolutionary optimization algorithm to determine the real-time characteristics of contamination sources, where each population aims to locate and track a different global optimum. The algorithm adaptively adjusts the number of populations using a feed-back learning mechanism. To effectively locate an optimal solution for a population, a co-evolutionary strategy is used to identify the location and the injection profile separately. Experimental results on three WDS networks show that the proposed algorithm is competitive in comparison with three other state-of-the-art evolutionary algorithms.Item Open Access An adaptive multi-swarm optimizer for dynamic optimization problems(The MIT Press, 2014-01-17) Li, Changhe; Yang, Shengxiang; Yang, MingThe multi-population method has been widely used to solve dynamic optimization problems (DOPs) with the aim of maintaining multiple populations on different peaks to locate and track multiple changing optima simultaneously. However, to make this approach effective for solving DOPs, two challenging issues need to be addressed. They are how to adapt the number of populations to changes and how to adaptively maintain the population diversity in a situation where changes are complicated or hard to detect or predict. Tracking the changing global optimum in dynamic environments is difficult because we cannot know when and where changes occur and what the characteristics of changes would be. Therefore, it is necessary to take the challenging issues into account to design such adaptive algorithms. To address the issues when multi-population methods are applied for solving DOPs, this paper proposes an adaptive multi-swarm algorithm, where the populations are enabled to be adaptive in dynamic environments without change detection. An experimental study is conducted based on the moving peaks problem to investigate the behavior of the proposed method. The performance of the proposed algorithm is also compared with a set of algorithms that are based on multi-population methods from different research areas in the literature of evolutionary computation.Item Metadata only Maintaining diversity by clustering in dynamic environments.(IEEE, 2012) Li, Changhe; Yang, Shengxiang; Yang, MingMaintaining population diversity is a crucial issue for the performance of evolutionary algorithms (EAs) in dynamic environments. In the literature of EAs for dynamic optimization problems (DOPs), many studies have been done to address this issue based on change detection techniques. However, many changes are hard or impractical to be detected in real-world applications. Although, some research has been done by means of maintaining diversity without change detection. These methods are not effective because the continuous focus on diversity slows down the optimization process. This paper presents a maintaining diversity method without change detection based on a clustering technique. The method was implemented through particle swarm optimization (PSO), which was named CPSOR. The performance of the CPSOR algorithm was evaluated on the GDBG benchmark. A comparison study with another algorithm based on change detection has shown the effectiveness of the CPSOR algorithm for tracking and locating the global optimum in dynamic environments.Item Metadata only Multi-population methods in unconstrained continuous dynamic environments: the challenges(Elsevier, 2015-03) Li, Changhe; Nguyen, T. T.; Yang, Ming; Yang, Shengxiang; Zeng, SanyouThe multi-population method has been widely used to solve unconstrained continuous dynamic optimization problems with the aim of maintaining multiple populations on different peaks to locate and track multiple changing peaks simultaneously. However, to make this approach efficient, several crucial challenging issues need to be addressed, e.g., how to determine the moment to react to changes, how to adapt the number of populations to changing environments, and how to determine the search area of each population. In addition, several other issues, e.g., communication between populations, overlapping search, the way to create populations, detection of changes, and local search operators, should be also addressed. The lack of attention on these challenging issues within multi-population methods hinders the development of multi-population based algorithms in dynamic environments. In this paper, these challenging issues are comprehensively analyzed by a set of experimental studies from the algorithm design point of view. Experimental studies based on a set of popular algorithms show that the performance of algorithms is significantly affected by these challenging issues on the moving peaks benchmark.