Browsing by Author "Stark, Matthias"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Approaches for dispatchable biomass plants with particular focus on steam storage devices(Wiley, 2016-12-21) Stark, Matthias; Sonnleitner, Matthias; Zörner, Wilfried; Greenough, R. M.The increasing share of fluctuating energy generation causes new challenges in the power grids. The demand for flexible power plants is increasing. Solid biomass fueled combined heat and power (CHP) plants are able to get modified into dispatchable power plants. In this paper, boundaries for this operation mode are summarized and several measures to achieve a flexible power generation in biomass CHP plants are concluded. The integration of high temperature storage system for buffering the plants steam seems to be the most promising, however the least investigated option. The tasks and necessary features of such storage systems were investigated and a review of available technologies and systems for the storage of steam made.Item Open Access Methodological Evaluation of Storage Systems for Flexible Power Generation from Solid Biomass(Wiley, 2018-08-24) Stark, Matthias; Trinkl, Christoph; Zörner, Wilfried; Greenough, R. M.The increasing number of fluctuating renewable power producers in the electricity grid leads to several challenges in the grid's infrastructure and its operation. Biomass combustion plants, however, can be modified to increase the flexibility of power production by integrating steam storage devices. In this paper, the available storage systems are evaluated, considering the boundaries of the plants and the requirements of power grids and markets. An objective result is generated by conducting a Delphi study using energy experts. The Utility-Value-Analysis method is used to identify the most promising storage concept. Using this methodology, the resulting storage concept is found to be a combination of a steam accumulator and a solid storage.Item Open Access Steam Storage for Flexible Biomass Power Generation(De Montfort University, 2021) Stark, MatthiasDue to the widespread installation of renewable energy plants, with the aim of a decarbonised electricity supply, the proportion of this generation has increased significantly in recent years. However, these plants increase the variability of electricity generation. This variable power generation leads to challenges in the operation of the power grid, e.g. to local grid bottlenecks and grid overloads. To counteract this variable, and to a certain extent, unpredictable power generation, storage devices or flexible power plants are necessary. Several biogas plants have already been modified in such a way that demand-driven and flexible power plant operation is possible. In response to the need for flexibility, the presented research aims at flexible power generation for solid biomass-fuelled CHP plants. By integrating a steam storage device into the biomass CHP plant, the steam turbines should be enabled to operate with a flexible, demand-dependent steam mass flow in order to adapt their power output to the grid demand. The main research questions are, which storage system is most suitable, what the key parameters of the flexible plant are and what impact it has on the grid and markets. The storage system as well as utilization in biomass CHP plants are novel concepts. Especially the operation parameter for the specific boundaries of these plant technologies have not been investigated before. A combination of two or more technologies to separately store the latent and sensible energy of superheated steam was identified as necessary. A utility analysis, supported by a Delphi study with experts, was carried out. In this case, a steam accumulator (SA) combined with a solid thermal store (STS) has proven to be the most suitable storage device for the given requirements. A MATLAB/SIMULINK model for the flexible biomass CHP plant was developed and validated to investigate the proposed system. Parameter studies were conducted to determine the key values of the flexible plant, such as energy capacity, charge/discharge time and efficiency. A storage configuration consisting of a 100 m³ SA and 12.3 m³ STS is capable of reducing the electricity production by 3.5–3.7 MWh during charging. During discharge, an additional amount of 1.8–1.9 MWh is generated. A system efficiency of 76–92 % was achieved. Flexible operation depending on prices in the short-term electricity markets causes a reduction of between 0.5% and 2% of the total revenue of the plant of due to process losses related to the operating the storage facility. The feed-in tariff structure has had a significant impact on this revenue shortfall. The flexible operation allows a temporary peak reduction of 28% (from 19.2 MW to 13.7 MW). Compared to competing technologies such as pumped hydro, batteries or hydrogen storage systems, the proposed flexible biomass CHP plant system is competitive. It was shown that an operation similar to flexible biogas plants is possible. The operation of already existing flexible biogas plants can also be improved by using the proposed solution.Item Open Access Steam storage systems for flexible biomass CHP plants - Evaluation and initial model based calculation(Elsevier, 2019-08-15) Greenough, R. M.; Stark, Matthias; Conti, F.; Abdessamad, S.; Zörner, W.Within the present study a novel concept for the demand-oriented power generation of a solid-biomass fueled combined heat and power (CHP) plant is investigated. The integration of a steam storage system into the plants process enables a decoupling of the steam (boiler) and the power generation (steam turbine). By buffering the steam, the power output of the turbine can be adjusted without changing the rated thermal capacity of the plant. Various available storage systems are selected and comparatively evaluated applying the adapted analytic hierarchy process (AHP). The technology assessment revealed that the combination of a steam accumulator and solid concrete storage represents the best suiting option. An initial model based simulation study is performed to identify the fundamental behaviour of this system, integrated in a biomass CHP plant. The operation principle is has proved their technical feasibility and seems to be applicable at a commercial scale. According to the modelling results flexible short term power generation in a time range of up to fifteen minutes is applicable. A load-range of almost the plants rated capacity can be achieved.