Browsing by Author "Shokouhi, A. H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Metadata only Consistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of data(Springer, 2014-01) Shokouhi, A. H.; Shahriari, H.; Agrell, P. J.; Hatami-Marbini, A.Data envelopment analysis (DEA) is a non-parametric method for measuring the relative efficiency of a set of decision making units using multiple precise inputs to produce multiple precise outputs. Several extensions to DEA have been made for the case of imprecise data, as well as to improve the robustness of the assessment for these cases. Prevailing robust DEA (RDEA) models are based on mirrored interval DEA models, including two distinct production possibility sets (PPS). However, this approach renders the distance measures incommensurate and violates the standard assumptions for the interpretation of distance measures as efficiency scores. We propose a modified RDEA (MRDEA) model with a unified PPS to overcome the present problem in RDEA. Based on a flexible formulation for the number of variables perturbed, MRDEA calculates the empirical distribution for the interval efficiency for the case of a random number of variables affected. The MRDEA approach also decreases the computational complexity of the RDEA model, as well as significantly increases the discriminatory power of the model without additional information requirements. The properties of the method are demonstrated for four different numerical instances.Item Metadata only A robust optimization approach for imprecise data envelopment analysis(Elsevier, 2010) Shokouhi, A. H.; Hatami-Marbini, A.; Tavana, M.; Saati, S.Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the input and output data in real-world problems are often imprecise or ambiguous. Some researchers have proposed interval DEA (IDEA) and fuzzy DEA (FDEA) to deal with imprecise and ambiguous data in DEA. Nevertheless, many real-life problems use linguistic data that cannot be used as interval data and a large number of input variables in fuzzy logic could result in a significant number of rules that are needed to specify a dynamic model. In this paper, we propose an adaptation of the standard DEA under conditions of uncertainty. The proposed approach is based on a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set. Our robust DEA (RDEA) model seeks to maximize efficiency (similar to standard DEA) but under the assumption of a worst case efficiency defied by the uncertainty set and it’s supporting constraint. A Monte-Carlo simulation is used to compute the conformity of the rankings in the RDEA model. The contribution of this paper is fourfold: (1) we consider ambiguous, uncertain and imprecise input and output data in DEA; (2) we address the gap in the imprecise DEA literature for problems not suitable or difficult to model with interval or fuzzy representations; (3) we propose a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set; and (4) we use Monte-Carlo simulation to specify a range of Gamma in which the rankings of the DMUs occur with high probability.