Browsing by Author "Qiao, Junfei"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection(Elsevier, 2019-08-12) Qiao, Junfei; Li, Fei; Yang, Shengxiang; Yang, Cuili; Li, Wenjing; Gu, KeIn general, for the iteration process of an evolutionary algorithm (EA), there exists the problem of uneven distribution of individuals in the target space for both multi-objective and single-objective optimization problems. This uneven distribution significantly degrades the population diversity and convergence speed. This paper proposes an adaptive hybrid evolutionary immune algorithm based on a uniform distribution selection mechanism (AUDHEIA) for solving MOPs efficiently. In AUDHEIA, the individuals in the population are mapped to a hyperplane, which is correlated with the objective space and are clustered to increase the diversity of solutions. To improve the distribution of the solutions, the mapped hyperplane is evenly sectioned. With the constantly changing distribution during the iteration, a threshold as a standard for judging the distribution level is adjusted adaptively. When the threshold is not satisfied in the corresponding interval, the distribution enhancement module is activated. Then, the same number of individuals should be selected in each interval. However, sometimes, there are insufficient or no individuals in the interval during the iterative process. To obtain sufficient individuals, the limit optimization variation strategy of the best individual is adopted. Experiments show that this algorithm can escape from local optima and has a high convergence speed. Moreover, the distribution and convergence of this algorithm are superior to the peer algorithms tested in this paper.Item Open Access A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty(Elsevier, 2018-10-23) Qiao, Junfei; Zhou, Hongbiao; Yang, Cuili; Yang, ShengxiangA multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and optimizes them in a collaborative manner. In MOEA/D, decomposition mechanisms are used to push the population to approach the Pareto optimal front (POF), while a set of uniformly distributed weight vectors are applied to maintain the diversity of the population. Penalty-based boundary intersection (PBI) is one of the approaches used frequently in decomposition. In PBI, the penalty factor plays a crucial role in balancing convergence and diversity. However, the traditional PBI approach adopts a fixed penalty value, which will significantly degrade the performance of MOEA/D on some MOPs with complicated POFs. This paper proposes an angle-based adaptive penalty (AAP) scheme for MOEA/D, called MOEA/D-AAP, which can dynamically adjust the penalty value for each weight vector during the evolutionary process. Six newly designed benchmark MOPs and an MOP in the wastewater treatment process are used to test the effectiveness of the proposed MOEA/D-AAP. Comparison experiments demonstrate that the AAP scheme can significantly improve the performance of MOEA/D.Item Open Access Dynamic transfer reference point oriented MOEA/D involving local objective-space knowledge(IEEE, 2022-01) Xie, Yingbo; Yang, Shengxiang; Wang, Ding; Qiao, Junfei; Yin, BaocaiThe decomposition-based multi-objective evolutionary algorithm (MOEA/D) has attained excellent performance in solving optimization problems involving multiple conflicting objectives. However, the Pareto optimal front (POF) of many multi-objective optimization problems (MOPs) has irregular properties, which weakens the performance of MOEA/D. To address this issue, we devise a dynamic transfer reference point oriented MOEA/D with local objective-space knowledge (DTR-MOEA/D). The design principle is based on three original and rigorous mechanisms. First, the individuals are projected onto a line segment (two-objective case) or a three-dimensional plane (three-objective case) after being normalized in the objective space. The line segment or the plane is divided into three different regions: the central region, the middle region, and the edge region. Second, a dynamic transfer criterion of reference point is developed based on population density relationships in different regions. Third, a strategy of population diversity enhancement guided by local objective-space knowledge is adopted to improve the diversity of the population. Finally, the experimental results conducted on sixteen benchmark MOPs and eight modified MOPs with irregular POF shapes verify that the proposed DTR-MOEA/D has attained a strong competitiveness compared with other representative algorithms.Item Open Access A modular neural network-based population prediction strategy for evolutionary dynamic multi-objective optimization(Elsevier, 2021-01-14) Li, Sanyi; Yang, Shengxiang; Wang, Yanfeng; Yue, Weichao; Qiao, JunfeiThis paper presents a novel population prediction algorithm based on modular neural network (PA-MNN) for handling dynamic multi-objective optimization. The proposed algorithm consists of three mechanisms. First, we set up a modular neural network (MNN) and train it with historical population information. Some of the initial solutions are generated by the MNN when an environmental change is detected. Second, some solutions are predicted based on forward-looking center points. Finally, some solutions are generated randomly to maintain the diversity. With these mechanisms, when the new environment has been encountered before, initial solutions generated by MNN will have the same distribution characteristics as the final solutions that were obtained in the same environment last time. Because the initialization mechanism based on the MNN does not need the solutions in recent time, the proposed algorithm can also solve dynamic multi-objective optimization problems with a dramatically and irregularly changing Pareto set. The proposed algorithm is tested on a variety of test instances with different dynamic characteristics and difficulties. The comparisons of experimental results with other state-of-the-art algorithms demonstrate that the proposed algorithm is promising for dealing with dynamic multi-objective optimization.