Browsing by Author "Porter, Forbes D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Metadata only NMR analysis reveals significant differences in the plasma metabolic profiles of Niemann Pick C1 patients, heterozygous carriers, and healthy controls(Macmillan Publishers, 2017-07-24) Probert, Fay; Ruiz-Rodado, Victor; te Vruchte, Danielle; Nicoli, Elena-Raluca; Claridge, Tim D.W.; Wasif, Christopher; Farhat, Nicole; Porter, Forbes D.; Platt, Frances M.; Grootveld, M.Niemann-Pick type C1 (NPC1) disease is a rare autosomal recessive, neurodegenerative lysosomal storage disorder, which presents with a range of clinical phenotypes and hence diagnosis remains a challenge. In view of these difficulties, the search for a novel, NPC1-specific biomarker (or set of biomarkers) is a topic of much interest. Here we employed high-resolution 1H nuclear magnetic resonance spectroscopy coupled with advanced multivariate analysis techniques in order to explore and seek differences between blood plasma samples acquired from NPC1 (untreated and miglustat treated), heterozygote, and healthy control subjects. Using this approach, we were able to identify NPC1 disease with 91% accuracy confirming that there are significant differences in the NMR plasma metabolic profiles of NPC1 patients when compared to healthy controls. The discrimination between NPC1 (both miglustat treated and untreated) and healthy controls was dominated by lipoprotein triacylglycerol 1H NMR resonances and isoleucine. Heterozygote plasma samples displayed also increases in the intensities of selected lipoprotein triacylglycerol 1H NMR signals over those of healthy controls. The metabolites identified could represent useful biomarkers in the future and provide valuable insight in to the underlying pathology of NPC1 disease.Item Open Access Relative acidic compartment volume as a lysosomal storage disorder–associated biomarker(2014-03-03) te Vruchte, Danielle; Speak, Anneliese O.; Wallom, Kerri L.; Al Eisa, Nada; Smith, David A.; Hendriksz, Christian J.; Simmons, Louise; Lachmann, R. H.; Cousins, Alison; Hartang, Ralf; Mengel, Eugen; Runz, Heiko; Beck, Micheal; Amraoui, Yasmina; Imrie, Jackie; Jacklin, Elizabeth; Riddick, Kate; Yanjanin, Nicole M.; Wassif, Christopher A.; Rolfs, Arndt; Rimmele, Florian; Wright, Naomi; Taylor, Clare; Ramaswami, Uma; Cox, Timothy M.; Hastings, Caroline; Jiang, Xuntian; Sidhu, Rohini; Ory, Daniel S.; Arias, Begona; Jeyakumar, Mylvaganam; Sillence, Daniel J.; Wraith, James E.; Porter, Forbes D.; Cortina-Borja, Mario; Platt, Frances M.Lysosomal storage disorders (LSDs) occur at a frequency of 1 in every 5,000 live births and are a common cause of pediatric neurodegenerative disease. The relatively small number of patients with LSDs and lack of validated biomarkers are substantial challenges for clinical trial design. Here, we evaluated the use of a commercially available fluorescent probe, Lysotracker, that can be used to measure the relative acidic compartment volume of circulating B cells as a potentially universal biomarker for LSDs. We validated this metric in a mouse model of the LSD Niemann-Pick type C1 disease (NPC1) and in a prospective 5-year international study of NPC patients. Pediatric NPC subjects had elevated acidic compartment volume that correlated with age-adjusted clinical severity and was reduced in response to therapy with miglustat, a European Medicines Agency–approved drug that has been shown to reduce NPC1-associated neuropathology. Measurement of relative acidic compartment volume was also useful for monitoring therapeutic responses of an NPC2 patient after bone marrow transplantation. Furthermore, this metric identified a potential adverse event in NPC1 patients receiving i.v. cyclodextrin therapy. Our data indicate that relative acidic compartment volume may be a useful biomarker to aid diagnosis, clinical monitoring, and evaluation of therapeutic responses in patients with lysosomal disorders.