Browsing by Author "Mignet, Nathalie"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Metadata only Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR.(Oxford University Press., 2001-05) Gourlain, Thierry; Sidorov, Alexander; Mignet, Nathalie; Thorpe, Simon J.; Lee, Sarah E.; Grasby, Jane A.; Williams, David M.The incorporation of potentially catalytic groups into DNA is of interest for the in vitro selection of novel deoxyribozymes. We have devised synthetic routes to a series of three C7 modified 7-deaza-dATP derivatives with pendant aminopropyl, Z-aminopropenyl and aminopropynyl side chains. These modified triphosphates have been tested as substrates for Taq polymerase during PCR. All the modifications are tolerated by this enzyme, with the aminopropynyl side chain giving the best result. Most protein enzymes have more than one type of catalytic group located in their active site. By using C5-imidazolyl-modified dUTPs together with 3-(aminopropynyl)-7-deaza-dATP in place of the natural nucleotides dTTP and dATP, we have demonstrated the simultaneous incorporation of both amino and imidazolyl moieties into a DNA molecule during PCR. The PCR product containing the four natural bases was fully digested by XbaI, while PCR products containing the modified 7-deaza-dATP analogues were not cleaved. Direct evidence for the simultaneous incorporation during PCR of an imidazole-modified dUTP and an amino-modified 7-deaza-dATP has been obtained using mass spectrometry.Item Metadata only Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity.(Oxford University Press., 2001-04) Lee, Sarah E.; Sidorov, Alexander; Gourlain, Thierry; Mignet, Nathalie; Thorpe, Simon J.; Brazier, John A.; Dickman, Mark J.; Hornby, David P.; Grasby, Jane A.; Williams, David M.The incorporation of potentially catalytic groups in DNA is of interest for the in vitro selection of novel deoxyribozymes. A series of 10 C5-modified analogues of 2′-deoxyuridine triphosphate have been synthesised that possess side chains of differing flexibility and bearing a primary amino or imidazole functionality. For each series of nucleotide analogues differing degrees of flexibility of the C5 side chain was achieved through the use of alkynyl, alkenyl and alkyl moieties. The imidazole function was conjugated to these C5-amino-modified nucleotides using either imidazole 4-acetic acid or imidazole 4-acrylic acid (urocanic acid). The substrate properties of the nucleotides (fully replacing dTTP) with Taq polymerase during PCR have been investigated in order to evaluate their potential applications for in vitro selection experiments. 5-(3-Aminopropynyl)dUTP and 5-(E-3-aminopropenyl)dUTP and their imidazole 4-acetic acid- and urocanic acid-modified conjugates were found to be substrates. In contrast, C5-amino-modified dUTPs with alkane or Z-alkene linkers and their corresponding conjugates were not substrates. The incorporation of these analogues during PCR has been confirmed by inhibition of restriction enzyme digestion using XbaI and by mass spectrometry of the PCR products.Item Metadata only The synthesis of modified 5-(Aminoalkyl)- and 5-(Aminoalkenyl)- Uridine 5'-Triphosphates.(1999) Lee, Sarah E.; Mignet, Nathalie; Vyle, Joseph S.; Whetton, L.; Grasby, Jane A.; Williams, David M.