Browsing by Author "Li, Xiangtao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Evolutionary multiobjective clustering algorithms with ensemble for patient stratification(IEEE Press, 2021-05-07) Wang, Yunhe; Li, Xiangtao; Wong, Ka-Chun; Chang, Yi; Yang, ShengxiangPatient stratification has been studied widely to tackle subtype diagnosis problems for effective treatment. Due to the dimensionality curse and poor interpretability of data, there is always a long-lasting challenge in constructing a stratification model with high diagnostic ability and good generalization. To address these problems, this paper proposes two novel evolutionary multiobjective clustering algorithms with ensemble (NSGA-II-ECFE and MOEA/D-ECFE) with four cluster validity indices used as the objective functions. First, an effective ensemble construction method is developed to enrich the ensemble diversity. After that, an ensemble clustering fitness evaluation (ECFE) method is proposed to evaluate the ensembles by measuring the consensus clustering under those four objective functions. To generate the consensus clustering, ECFE exploits the hybrid co-association matrix from the ensembles and then dynamically selects the suitable clustering algorithm on that matrix. Multiple experiments have been conducted to demonstrate the effectiveness of the proposed algorithm in comparison with seven clustering algorithms, twelve ensemble clustering approaches, and two multiobjective clustering algorithms on 55 synthetic datasets and 35 real patient stratification datasets. The experimental results demonstrate the competitive edges of the proposed algorithms over those compared methods. Furthermore, the proposed algorithm is applied to extend its advantages by identifying cancer subtypes from five cancer-related single-cell RNA-seq datasets.Item Open Access Multiobjective deep clustering and its applications in single-cell RNA-seq data(IEEE Press, 2021-09-21) Wang, Yunhe; Biao, Chuang; Wong, Ka-Chun; Li, Xiangtao; Yang, ShengxiangSingle-cell RNA sequencing is a transformative technology that enables us to study the heterogeneity of the tissue at the cellular level. Clustering is used as the key computational approach to group cells under the transcriptome profiles from single-cell RNA-seq data. However, accurate identification of distinct cell types is facing the challenge of high dimensionality, and it could cause uninformative clusters when clustering is directly applied on the original transcriptome. To address such challenge, an evolutionary multiobjective deep clustering (EMDC) algorithm is proposed to identify single-cell RNA-seq data in this study. First, EMDC removes redundant and irrelevant genes by applying the differential gene expression analysis to identify differentially expressed genes across biological conditions. After that, a deep autoencoder is proposed to project the high-dimensional data into different low-dimensional nonlinear embedding subspaces under different bottleneck layers. Then, the basic clustering algorithm is applied in those nonlinear embedding subspaces to generate some basic clustering results to produce the cluster ensemble. To lessen the unnecessary cost produced by those clusterings in the ensemble, the multiobjective evolutionary optimization is designed to prune the basic clustering results in the ensemble, unleashing its cell type discovery performance under three objective functions. Multiple experiments have been conducted on 30 synthetic single-cell RNA-seq datasets and six real single-cell RNA-seq datasets, which reveal that EMDC outperforms eight other clustering methods and three multiobjective optimization algorithms in cell type identification. In addition, we have conducted extensive comparisons to effectively demonstrate the impact of each component in our proposed EMDC.