Browsing by Author "Gray, Alison"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: the combined effects of operation size, migration and queen replacement(Taylor and Francis, 2022-09-06) Gray, Alison; Brodschneider, Robert; Williams, AnthonyThis article presents managed honey bee colony loss rates over winter 2019/20 resulting from using the standardised COLOSS questionnaire in 37 countries. Six countries were from outside Europe, including, for the first time in this series of articles, New Zealand. The 30,491 beekeepers outside New Zealand reported 4.5% of colonies with unsolvable queen problems, 11.1% of colonies dead after winter and 2.6% lost through natural disaster. This gave an overall colony winter loss rate of 18.1%, higher than in the previous year. The winter loss rates varied greatly between countries, from 7.4% to 36.5%. 3216 beekeepers from New Zealand managing 297,345 colonies reported 10.5% losses for their 2019 winter (six months earlier than for other, Northern Hemisphere, countries). We modelled the risk of loss as a dead/empty colony or from unresolvable queen problems, for all countries except New Zealand. Overall, larger beekeeping operations with more than 50 colonies experienced significantly lower losses (p < 0.001). Migration was also highly significant (p < 0.001), with lower loss rates for operations migrating their colonies in the previous season. A higher proportion of new queens reduced the risk of colony winter loss (p < 0.001), suggesting that more queen replacement is better. All three factors, operation size, migration and proportion of young queens, were also included in a multivariable main effects quasi-binomial GLM and all three remained highly significant (p < 0.001). Detailed results for each country and overall are given in a table, and a map shows relative risks of winter loss at the regional level.Item Metadata only Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss(Taylor and Francis, 2020-08-20) Gray, Alison; Brodschneider, Robert; Williams, AnthonyThis article presents managed honey bee colony loss rates over winter 2018/19 resulting from using the standardised COLOSS questionnaire in 35 countries (31 in Europe). In total, 28,629 beekeepers supplying valid loss data wintered 738,233 colonies, and reported 29,912 (4.1%, 95% confidence interval (CI) 4.0–4.1%) colonies with unsolvable queen problems, 79,146 (10.7%, 95% CI 10.5–10.9%) dead colonies after winter and 13,895 colonies (1.9%, 95% CI 1.8–2.0%) lost through natural disaster. This gave an overall colony winter loss rate of 16.7% (95% CI 16.4–16.9%), varying greatly between countries, from 5.8% to 32.0%. We modelled the risk of loss as a dead/empty colony or from unresolvable queen problems, and found that, overall, larger beekeeping operations with more than 150 colonies experienced significantly lower losses (p < 0.001), consistent with earlier studies. Additionally, beekeepers included in this survey who did not migrate their colonies at least once in 2018 had significantly lower losses than those migrating (p < 0.001). The percentage of new queens from 2018 in wintered colonies was also examined as a potential risk factor. The percentage of colonies going into winter with a new queen was estimated as 55.0% over all countries. Higher percentages of young queens corresponded to lower overall losses (excluding losses from natural disaster), but also lower losses from unresolvable queen problems, and lower losses from winter mortality (p < 0.001). Detailed results for each country and overall are given in a table, and a map shows relative risks of winter loss at regional level.Item Open Access Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources(Taylor and Francis, 2019-05-30) Gray, Alison; Brodschneider, Robert; Adjane, Noureddine; Ballis, Alexis; Brusbardis, Valters; Chlebo, Robert; Coffey, Mary; Cornelissen, Bram; Da Costa, Cristina; Csaki, Tamas; Dahle, Bjorn; Danihlik, Jiri; Drazic, Marcia; Evans, Garth; Fedoriak, Mariia; Forsythe, Ivan; de Graaf, Dirk; Gregoric, Ales; Johannessen, Jes; Kauko, Lassi; Kristiansen, Preben; Martikkala, Maritta; Medina-Flores, Carlos; Mutinelli, Franco; Patalano, Solenn; Petrov, Plamen; Raudmets, Aivar; Ryzhikov, Vladimir; Simon -Delso, Noa; Stevanovic, Jevrosima; Topolska, Grazyna; Uzunov, Aleksandar; Vejsnaes, Flemming; Williams, Anthony; Zammit-Mangion, Marion; Soroker, Victoria; Martin-Hernandez, Raquel; Charriere, Jean-DanielThis short article presents loss rates of honey bee colonies over winter 2017/18 from 36 countries, including 33 in Europe, from data collected using the standardized COLOSS questionnaire. The 25,363 beekeepers supplying data passing consistency checks in total wintered 544,879 colonies, and reported 26,379 (4.8%, 95% CI 4.7–5.0%) colonies with unsolvable queen problems, 54,525 (10.0%, 95% CI 9.8–10.2%) dead colonies after winter and another 8,220 colonies (1.5%, 95% CI 1.4–1.6%) lost through natural disaster. This gave an overall loss rate of 16.4% (95% CI 16.1–16.6%) of honey bee colonies during winter 2017/18, but this varied greatly from 2.0 to 32.8% between countries. The included map shows relative risks of winter loss at regional level. The analysis using the total data-set confirmed findings from earlier surveys that smaller beekeeping operations with at most 50 colonies suffer significantly higher losses than larger operations (p < .001). Beekeepers migrating their colonies had significantly lower losses than those not migrating (p < .001), a different finding from previous research. Evaluation of six different forage sources as potential risk factors for colony loss indicated that intensive foraging on any of five of these plant sources (Orchards, Oilseed Rape, Maize, Heather and Autumn Forage Crops) was associated with significantly higher winter losses. This finding requires further study and explanation. A table is included giving detailed results of loss rates and the impact of the tested forage sources for each country and overall.Item Open Access Spatial clusters of Varroa destructor control strategies in Europe(Springer, 2022-06-29) Gray, Alison; Brodschneider, Robert; Williams, AnthonyBeekeepers have various options to control the parasitic mite Varroa destructor in honey bee colonies, but no empirical data are available on the methods they apply in practice. We surveyed 28,409 beekeepers maintaining 507,641 colonies in 30 European countries concerning Varroa control methods. The set of 19 diferent Varroa diagnosis and control measures was taken from the annual COLOSS questionnaire on honey bee colony losses. The most frequent activities were monitoring of Varroa infestations, drone brood removal, various oxalic acid applications and formic acid applications. Correspondence analysis and hierarchical clustering on principal components showed that six Varroa control options (not necessarily the most used ones) signifcantly contribute to defning three distinctive clusters of countries in terms of Varroa control in Europe. Cluster I (eight Western European countries) is characterized by use of amitraz strips. Cluster II comprises 15 countries from Scandinavia, the Baltics, and Central-Southern Europe. This cluster is characterized by long-term formic acid treatments. Cluster III is characterized by dominant usage of amitraz fumigation and formed by seven Eastern European countries. The median number of diferent treatments applied per beekeeper was lowest in cluster III. Based on estimation of colony numbers in included countries, we extrapolated the proportions of colonies treated with diferent methods in Europe. This suggests that circa 62% of colonies in Europe are treated with amitraz, followed by oxalic acid for the next largest percentage of colonies. We discuss possible factors determining the choice of Varroa control measures in the diferent clusters,