Browsing by Author "Caponio, A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Metadata only A Differential Evolution for Optimisation in Noisy Environment(Inderscience, 2010-05) Neri, Ferrante; Caponio, A.This paper proposes a novel variant of differential evolution (DE) tailored to the optimisation of noisy fitness functions. The proposed algorithm, namely noise analysis differential evolution (NADE), combines the stochastic properties of a randomised scale factor and a statistically rigorous test which supports one-to-one spawning survivor selection that automatically selects a proper sample size and then selects, among parent and offspring, the most promising solution. The actions of these components are separately analysed and their combined effect on the algorithmic performance is studied by means of a set of numerous and various test functions perturbed by Gaussian noise. Various noise amplitudes are considered in the result section. The performance of the NADE has been extensively compared with a classical algorithm and two modern metaheuristics designed for optimisation in the presence of noise. Numerical results show that the proposed NADE has very good performance with most of the problems considered in the benchmark set. The NADE seems to be able to detect high quality solutions despite the noise and display high performance in terms of robustness.Item Metadata only Differential Evolution with Scale Factor Local Search for Large Scale Problems(SpringerLink, 2010) Caponio, A.; Kononova, A.V.; Neri, FerranteThis chapter proposes the integration of fitness diversity adaptation techniques within the parameter setting of Differential Evolution (DE). The scale factor and crossover rate are encoded within each genotype and self-adaptively updated during the evolution by means of a probabilistic criterion which takes into account the diversity properties of the entire population. The population size is also adaptively controlled by means of a novel technique based on a measurement of the fitness diversity. An extensive experimental setup has been implemented by including multivariate problems and hard to solve fitness landscapes. A comparison of the performance has been conducted by considering a standard DE as well as modern DE based algorithms, recently proposed in literature. Numerical results available show that the proposed approach seems to be very promising for some fitness landscapes and still competitive with modern algorithms in other cases. In most cases analyzed the proposed self-adaptation is beneficial in terms of algorithmic performance and can be considered a useful tool for enhancing the performance of a DE scheme.Item Metadata only Integrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms(Springer, 2009-01) Caponio, A.; Neri, FerranteItem Metadata only Optimization of Delayed-State Kalman-Filter-based Algorithm via Differential Evolution for Sensorless Control of Induction Motors(2010-01) Neri, Ferrante; Salvatore, N.; Caponio, A.; Neri, Ferrante; Stasi, S.; Cascella, G. L.This paper proposes the employment of the differential evolution (DE) to offline optimize the covariance matrices of a new reduced delayed-state Kalman-filter (DSKF)-based algorithm which estimates the stator-flux linkage components, in the stationary reference frame, to realize sensorless control of induction motors (IMs). The DSKF-based algorithm uses the derivatives of the stator-flux components as mathematical model and the stator-voltage equations as observation model so that only a vector of four variables has to be offline optimized. Numerical results, carried out using a low-speed training test, show that the proposed DE-based approach is very promising and clearly outperforms a classical local search and three popular metaheuristics in terms of quality of the final solution for the problem considered in this paper. A novel simple stator-flux-oriented sliding-mode (SFO-SM) control scheme is online used in conjunction with the optimized DSKF-based algorithm to improve the robustness of the sensorless IM drive at low speed. The SFO-SM control scheme has closed loops of torque and stator-flux linkage without proportional plus- integral controllers so that a minimum number of gains has to be tuned.Item Metadata only Super-fit control adaptation in memetic differential evolution frameworks(Springer, 2009-07) Caponio, A.; Neri, Ferrante; Tirronen, VilleThis paper proposes the super-fit memetic differential evolution (SFMDE). This algorithm employs a differential evolution (DE) framework hybridized with three meta-heuristics, each having different roles and features. Particle Swarm Optimization assists the DE in the beginning of the optimization process by helping to generate a super-fit individual. The two other meta-heuristics are local searchers adaptively coordinated by means of an index measuring quality of the super-fit individual with respect to the rest of the population. The choice of the local searcher and its application is then executed by means of a probabilistic scheme which makes use of the generalized beta distribution. These two local searchers are the Nelder mead algorithm and the Rosenbrock Algorithm. The SFMDE has been tested on two engineering problems; the first application is the optimal control drive design for a direct current (DC) motor, the second is the design of a digital filter for image processing purposes. Numerical results show that the SFMDE is a flexible and promising approach which has a high performance standard in terms of both final solutions detected and convergence speed.