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Abstract

In order to cope with the challenges in industry today, such as changes in product
diversity and production volume, manufacturing companies are forced to react more
flexibly and swiftly. Furthermore, in order for them s$orvive in an evechanging
market, they also need to be highly competitive by achieveagoptimal efficiency in

their operations. Production scheduling is vital to the success of manufacturing systems
in industry today, because theear optimal allocéion of resources is essential in
remaining highly competitive.

The overall aim of this study ishe advancemenbf research in manufacturing
scheduling through the exploration of more effective approaches to address complex,
realworld manufacturing flar shop problemsThe methodology used in the thesis is in
essence a combination of systems engineering, algorithmic design and empirical
experiments using reaforld scenarios and data. Particularly, it proposes a new, web
servicesbased, industrial schelihig system framework, called OPTIMISE Scheduling
System (OSS), for solving realorld complex scheduling problems. OSS, as
implementedon top of a generic web serviebased simulatiovased optimisation
(SBO) platform called OPTIMISE, can supposaroptimal and reatime production
scheduling in a distributed and parallel computing environment. Disevetrs
simulation (DES) is used to represent and flexibly cope with complex scheduling
problems without making unrealistic assumptions which are therrigjdations of
existing scheduling methods proposed in the literature. At the same time, the research
has gone beyond existing studies of simulabesed scheduling applications, because
the OSS has been implemented in a-vealld industrial environma at an automotive
manufacturer, so that qualitative evaluations and quantitative comparisons of scheduling

methods and algorithms can be made with the same framework.

Furthermore, in order to be able to adapt to and handle many different types- of real
world scheduling problems, a new hybrid mb&ristic scheduling algorithm that
combines priority dispatching rules and genetic encoding is proposed. This combination

is demonstratedio be able to handle a wider range of problems or a current scheduling



problem that may change over time, due to the flexibility requirements in the real
world. The novel hybrid genetic representation has bd@monstratedeffective
through the evaluation in the reabrld scheduling problem using reabrld data.
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Chapter 1

1 Introduction

The introductory chapter presents tlesaarch background (Section 1.1) that motivated
this research study and thereby the aim and objectives (SectionThe?)esearch
methodology(Section 1.3)sedis explained,lie scope of the work (SectiorlLis then
defined and followed by the organisem of the whole thesis (Sectiorb).

1.1 Research background
1.1.1 Challenges of manufacturing industry

Manufacturing organisations are experiencing shortened product life cycles,
unpredictable customer demands, and fluctuating production volumes. At the same
time, the level of global competition is becoming much stronger. All these changes are
forcing manufacturing companies to react more flexibly and swiftly to changes in both
product diversity and production volume. In order to meet these challenges, the shop
floor control system of a manufacturing system has to be designed to incorporate a high
degree of flexibility. Groover (2001) defines different types of flexibility in
manufacturing systems as follows:

1 Machine flexibilitymeans the ability to adapt maclsre different production
operations and parts.
1 Production flexibilitymeans the range of different parts that can be produced by

the system.

1 Mix Flexibiitymeans t he systemds ability to
despite a change of product mix.

1 Productflexibiitymeans t he systembés ability to
introduction of new products.

1 Routing flexibilityme ans t he systemdés ability to
alternative workstations if machines are subject to interruptions.

1 Volume féxibiitymeans t he systemds ability to

high and low volumes.
1 Expansion flexibilitymeans the ability for a system to expand for a higher
production volume.

m
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In terms of the challenges faced by any manufacturing company,isheoeexception
for high quantity productionnfass productionsuch as that of car manufacturers. In
order for them to survive in an evehanging market, they need to be highly
competitive by achievingearoptimal efficiency in their operations. Howeveiith the
demand for much more flexibility to cope with greater product varietyflaatuating
production volumes, as mentioned abhowelustrial manufacturing systems, in general,
and car manufacturers, in particular, are becoming much more complerdviemn

both a technological and management perspective.

I n general, s ctheeatlogdtian rofgresauicas owver time to perform a
collection of tasks ( Baker and Trietsch, 197 4hp . I n
determination of a set ajrders, which will be processed by the resources during a
shortterm period (day, week, et6.) ( Ki r a Ror a rha@dufa8tiring company to
remain highly competitivea near optimal allocation of their resources is essential.
Furthermorescheduling maylsocontribute tothe flexibility of a firm (De Snoo et al.
2011).1t is therefore not difficult to recognise that efficient scheduling is vital to the
success of manufacturing systems in industry today. This makes scheduling an
interesting area that harawn much attention from both academic researchers and
industrial practitioners. Nevertheless, with the demand for higher flexibility, the
efficient scheduling of a production line has become an extremely difficult task,
especially when dato-day challeges, such as product or order changes, have to be
handled efficiently. On a modern manufacturing shop floor, scheduling tasks are
undertaken by the Enterprise Resource Planning (ERP) system. Unfortunately, the
existing scheduling modules developed forERRP system are based on deterministic
algorithms which are only suitable for operations in a predictable and stable
environment. This implies that ERP systems in general do not have the capability to
generate detailed schedules for a complex manufactusysiem. Therefore, a
scheduling decision support that can cope with-wneald industrial production systems

is needed. Consequently, it is necessary for the research community to explore some
new approaches that can make shop floor scheduling tasks eagabandling the

complexity and flexibility demands faci ni



Chapterl Introduction

1.1.2 State of the art: a brief overview

The scheduling of a realorld production line may be highly complex; sequence
dependent setup times, constraints, and lonigrés could affect the possibility of
reaching the production targd¥lany realworld scheduling problems belong to the
class of NPcomplete problems, for which finding the optimal solution within an
acceptable time period is impossible, due to the sizéh® problems (Garey and
Johnson, 1979). To prove that an optimisation problem is as difficult as-aoriNjplete
problem, the term NHRard is useful, because it describes that it is not possible to find
the optimal solution with available techniques (Baked Trietsch, 2009). The same
could be said about scheduling problems with increasing complexity. Trying to compare
all scheduling problems would not be feasible, simply because the combinations of
scheduling problems arbuge There are too many diffare sizes, constraints and
objectives in order to solve them optimally, which on the other hand can be done for
smaller scheduling problems. At the same time, trying to simplify complex scheduling
problems by reducing the number of constraints and chasdctgrwould simply
transform them into unrealistic textbook problems that may not be acceptable in a real
world scheduling situation. This claim can be supported by many other researchers. For
example,Pinedo (2008) states that advances in schedulingyheave only had a
limited impact on scheduling in practice, although the theoretical research has not been
a complete waste of time, because it has given insights into the scheduling problem in
general. Gupta and Stafford (2006) also claim that theordtma shop scheduling
problems remain largely unsolved, when the 50 years of research is considered. They
state that research within flow shop scheduling seems to have been motivated by what
the researchers can achieve rather than what is importantexetyt also suffers from

too much abstraction and too little application. Future research in flow shop scheduling
should address realorld problems (Jahangirian et al.,, 2010), in order to avoid
spending decades only trying to solve textbook problemsn Bvaugh most redife
situations are better represented by models with uniform or unrelated machines, most
research has been done on flow shops with identical machines, which is probably due to
the fact that identical machines are easier to handle (Ribals, 2010). According to
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Ribas et al., (2010), most research has been carried out with at most one constraint (e.qg.,
setups, failures, blocking) at a time being studied and only a few researchers have
studied all or most of them at the same time. Cguaaetly, in order to diminish the gap
between theory and rewalorld scheduling problems, several constraints need to be

considered.

Simulation modelling, i.e., discrete event simulation (DES), has the capability to
represent complex realorld systems ahtheir constraints in detail. Simulatitvased
scheduling approaches are derived from dispatching-baged methods. In a
simulationbased approach, several dispatching rules might be used at different stages,
in order to make a decision (Kiran, 1998)yadially, a dispatching rule is a rule of
thumb that gives priority to a job among other ones at a specific stage, i.e., at a machine.
This is why dispatching rules can also be called priority dispatching rules (PDRS).
Generally, a PDmbased approach dosst try to find an optimal schedule, but relies on
knowing that one scheduling rule statistically performs better than another one, which is
sufficient. In comparison, using a métauristic optimiser, such as a Genetic Algorithm
(GA), to generate theearoptimal schedules directly, may be advantageous if searching
for Aoptimal 6 solutions is desired. The
approaches and some of them provide results showing that the use of GAs to generate
detailed schedules can olstabetter solutions (Sankar et al., 2003; Kim et. al., 2007)
than those obtained by using PDRs. On the other hand, using a GA to select PDRs has
shown promising results (Tanev et. al., 2004; Ochoa et al.,, 2009) compared to
conventional GA approaches. Fumtm®re, hybrids that have a combined representation

of these two approaches have shown good results, when uncertainty is considered
(Roundy et.al., 1991; Barua et.al., 2005). Robust scheduling (e.g., Leon et al., 1994),
reactive scheduling, or reschedulii@hurch and Uzsoy, 1992) are also some
methodologies that have been successfully used to address scheduling problems with

regard to uncertainty.

Regarding uncertainty, McKay and Wiers (1999) claim that researchers aivbrhl
schedulers do not discudse same problem. While researchers are solving deterministic

sequencing problems, reabrld schedulers are faced with dimyday challenges in
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which uncertainty is believed to be the key characteristic. McKay and Wiers (1999)
define a scheduling task aSa dynamic and adaptive process of iterative decision
making and problem solving, involving information acquisition from a number of
sources, and with the decisions affecting a number of production facets in reaction to
immediate or anticipated problemmsaWViers (1997) defines production scheduling as a
task and the following four types of control are used to further characterise the task:
Detailed control, Direct control, Restricted control, and Sustained control. These
controls generally mean that the edhling task deals with shetgrm decisions
regarding what to do next and the situation at hand, answering questions and giving
directions. Furthermore, the scheduler monitors schedule execution and carries out
necessary changes when needed, in ordetfibdcheduling targets. It is also important

to generate a valid schedule, since there is no intermediate control before launching the
schedule and there is a risk that the schedules will be adjusted manually (Stoop and
Wiers, 1996). Pinedo (2005) alsd d r e s s Amalyzindiaaplanniimg or scheduling
problem and developing a procedure for dealing with it on a regular basis is, in the real
world, only part of the story. The procedure has to be embedded in a system that
enables the decisiemaker to actuby use it. The system has to be integrated into the
information system of the organization, which can be a formidablétask J ahangi r i
al., (2010) show that even though scheduling applications have been the most common
ones among simulation appliaatis in manufacturing and business between 1997 and
2006, only a small portion of them use both real problems and real data. They also point
out that papers addressing readrld problems are important to future research.
According to the review of hybriddw shops by Ribas et al., (2010), only two papers
use online algorithms for reatime scheduling, when simulation with dispatching rules

or realistic decision support systems is considered, and indicate this as an interesting

area for future research.

It is not only the scheduling problem that needs to be considered, but also the
scheduling task and its integration in the organisation. Atma& scheduling system is

not only needed to support the work of the production scheduler, but also the gperator
on the shop floor, by rgenerating feasible schedules when required. With aireal

rescheduling capability, the proposed scheduling system not only solves the sequencing
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problems, but also provides decisimraking support on a dagp-day basis when
disturbances, such as machine breakdowns, happen. Based on this research background,
the need of a redime shop floor scheduling system capable of handling the complexity
and uncertainty found in realorld problems, when generatimgaroptimal schedules

as well as interacting with users, such as productonedules and shop floor

operators, is identified as the target of this study.

1.2 Aim and objectives

The overall aim of this study ishe advancemenof research inmanufacturing
schedulingthrough tke exploration ofmore effectiveapproache¢o address complex,
reatworld manufacturing flow shoproblems.The research hypothesis behind this aim

is that existing scheduling approaches and algorithms are believed to be inadequate to
address @mplex reatworld manufacturing flow shoproblems because they lack the
reattime and reactivesupport to tackle uncertainty. Therefore, in order to advance the
research of manufacturing schedulir, combination of systems engineeriagd
algorithmic designs nee@d to tackle the uncertainty issues in +@afld environment.
Theaim of this thesisan be further refined into the following specific objectives:

1 Appraise the existing research knowledge and industrial practice to establish the
understanding of manufturing systemsand explore the requirements of the
scheduling in realvorld complex hybrid flow shops.

1 Based on the comprehensive literature reviewestigate how simulation tools
and scheduling techniques can eehancedto cope with uncertainty, and
flexibly cope with different scheduling approaches in order to enhdreie
performance.

1 To designa system framework with reime and reactivesupportand then
evaluatethis frameworkgualitatively usinga reatworld industrial case study

1 Design and ppose a hybrid metheuristic scheduling algorithm for simulation
based optimisation thaian flexibly cope with different scheduling approaches
in order to be more adaptive to tacklemplex hybrid flow shop scheduling

problems.
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1 Validate the performanacaf the algorithm using empirical experimeb&ssed on
realworld shopfloor datacollected through the system framewarkplemented

in earlier stages

1.3 Research methodology

Realworld research generaliefers toapplied researclwhich typically uses projects

that are small in scope and scale. Compared to academic research, where the focus is on
advancing an academic discipline, realrld research foceson problems with direct
relevance to people or the environment, such as child care and climate drreengeal

world researcher needs wekkveloped social skills and almost always works in the
field, e.g, industry, compared to the academic researcher that mainly uses laboratories
of some kind. Robson, 2011)

1.3.1 Qualitative, quantitative, and multi-method research

According toRobson (201} research can be divided into two main groups: qualitative
or quantitative. Whilst quantitative research makes use of numerical data, qualitative
datais typically nonnumerical (e.g.in the form of words).Myers (1997 defines
qualitative research as research that nvol ves the wuse of gua
interviews, documents, and participant observation, to understand and explain social
p heno méabaa et al., (2009argue that qualitative research is significafor
information systems research because of its ability to explain what is going on in a real
organisation. Quantitative research wan the other handirst developed to study
natural phenomena in natural sciencdabér et al., 2009 Quantitativeresearch
involves the collection of quantitative datae designof which typically used is to
exactlydetermine at an early staew tocarry out the research project before the data

is accumulate@Robson 201]). According toReswick (1994 the reseaher can isolate

a problem, e.gusing a laboratory, and can therefore with precision and accuracy define
and measure input and output parameters of the study. Howeverstratkgy designs
have received increased interest becdheg producea substatial collection of both

qualitative and quantitative data in different parts of a research préjetisgn 2017
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1.3.2 Different research strategies

Depending on the formand contextof the research questioas well ascontrol over
behaviouraleventsand foaws on contemporargnes the research strategy used will
differ. Yin (2003) defines different types of research strategies:

Table 1.1 Relevant situations for different research strategies (Yin, 2003)

Strategy Form of research question | Requires control ol Focuses on contemporal
behavioural events? events?

Experiment How, why? Yes Yes

Survey Who, what, where, hov] No Yes

many, how much?

Archival Who, what, where, hov No Yes/No
analysis many, how much?

History How, why? No No
Case study How, why? No Yes

The Awhoo and fAwhereodo questions are comm
the research goal is to be predictive about specific outcomes orthd@mevalence of a
phenomenonneed o0 be described. The fAwhategorques:H
archival analysiswvhich, for example may provide theanswerto the outcomes of a
specific type of manageri al restructurin
more explanatory and used for the research strategies: case studies, exparcent
history. In general, the history research strategy is used whdivimgp persons of
relevance can report afterwards and therefore historical dateds to be applied
However, the case studstrategycan be used when contemporary events need to be
examined. In addition to the histoal datamethod,the case studstrategyincludesthe
possibilities of interviews with people involved and direct observation of the events
being studied. The experiment research strategy is carried out when the resmarcher
control behavioural events, i.ecan manipulate them directly, precisely and

systematically. (Yin, 2003)
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A multi-method researclstrategyis one that combines different research methods
(qualitative and quantitative)in order to provide a greater nderstanding of the
phenomenon of interest and to increase the confidence in the conclusions generated by
the research studyi¢ghnson et al., 200.7This can also be referréd astriangulation,

for resolving the inherent biases of one measurement teshfdgnzin, 2009). Denzin
(2009)divides triangulation into four basic categories:

1 Data triangulation means using more than one type of data collection method.
Different sources can be used to collect the data (observation, interviews or
documents)andthe datacan be collected at different timasd different places.

1 Investigator triangulation means using multiple observatker thansingle
observers. For example, different interviewers or data analysts can be used in the
study to remove the potentiabls connected to one person.

1 Theoretical triangulation means using multiple perspectives (theories) on a set of
objectsrather than aingle perspective.

1 Methodological triangulation means withmnethod triangulation or between

method triangulation.

Denzn (2009 suggest that using betweenlass triangulation, i.edifferent methods

and measurement strategies, is preferred in comparison to-elitiss triangulation, in
which there are variatiorsf oneandthe same measurement technique.

A wide rangeof research methods may be appropriate for systems engineering because
it is an interdisciplinary and broad field of engineering dealing with complex projects
(Ferris, 2009).According to Yin (2003), one reason why a cabased research
approach is approte is when contextual conditionsustbe covered because they are
believed to beelevant to the phenomenon of study, which is something that can be
characteged with qualitative research. At the same time, a case studpept of a
multi-method reearch studyYin, 2003).Consequently, the research approach adopted
is a multtmethod research strategy in which both theories of current research,
experiments (quantitative) and case study (qualitaaveysed to achieve the research

objectives. Datavas collected from three different sources:
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i Literature review of existing research to establish the understanding of
manufacturing systems and to explore the requirements of the scheduling in real
world complex hybrid flow shops (Chapse2, 3 andthe begnning of Chapter
4).

1 Evaluaton of the proposed system framework using a-veadld industrial case
study. Chapter 6 begins with the motivation and selection of industrial case
study, and then contieswith the implementation and evaluation of the system
(proposed in Chapte).

1 Data generation using simulatisased optimisation with a discrezgent
simulation model to investigate how the hybrid metaristic scheduling
algorithm (proposed in Chapter 5) can flexibly cope with different scheduling
apprachesin order to be more adaptiwe tackling complex hybrid flow shop

scheduling problems (Chapter 7).

Figure 1.1 providesan overview ofthe research methodology used to realise the

research objectives of thehole study.

Hybrid Flow Shop Scheduling Problems and Sche

. . Genetic algorithms &
Scheduling hybrid flow shops

Rescheduling and Systen Hybrid

schedules

/

A Web Services-based Architecture for Indus

OPTIMISE Scheduling System

Web-based simulation-based optimisation

Predictive scheduling

User-interfaces Reactive scheduling

P, oti H o
Production line v\&\o

Optimisation

l Architecture
methods

A Full-Scale Industrial ¢ ﬁ) Quantitative Results and
i Real-worl i
data & system support

Figure 1.1 Research methodologylopted
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1.4 Scope

Flow shops are generally the type of production lines used for mass production in
industry (Groover, 2000). In the classical definition of flolwog problems (Baker,

1974), each production stage consists of only one resource, e.g., machine, and there are
at least two production stages. All jobs need to go through the production stages in the

same machine order.

In industry, many companies needinarease their production capacity or balance the
capacity between different production stages. Companies may also need to manufacture
new products, which could mean that the new products are produced using the same
machines in most stages but require r@wes in others. Consequently, and for other
reasons, a flow shop with parallel machines is formed, commonly also known as a
hybrid flow shop (Ribas, et al., 2010).

Since fna dear child has many nameso, the
by a umber of definitions, e.g., flow shop with multiple machines, flexible flow shop,
multiprocessor flow shop, or modified flow shop. However, the hybrid flow shop
notation proposed in Ribas et al., (2010) is good for definingwedtd scheduling
problems,since it handles a broad range of flow shop scheduling problems. A hybrid
flow shop consists of at least two production stages and at least one of these stages

includes more than one machine (Gupta, 1988).

The scope of this thesis is therefore to addtiesanultistage (more than three stages)
hybrid flow shops with unrelated parallel machines for discrete parts manufacture,
because most realorld flow shops in industry consist of several production stages.
Furthermore, in order to diminish the gap bedwdheory and realorld scheduling
problems and not make unrealistic assumptions, several constraints and multiple
scheduling objectives are addressed as well. Consequently, a review of flow shop
scheduling problems and different scheduling methodolagierade. However, the

review of scheduling methodologies is not limited to hybrid flow shops, since much

11
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scheduling research has been conducted on other complex scheduling problems, e.g.,
job shops, which could in fact be useful for hybrid flow shops dks Weverthelessin

the design of the hybrid genetic representattbe focusis only put on hybrid flow

shops. As mentioned, because uncertainty is a key characteristic inwoskl
scheduling, it needs to be addressed in order to realise a schedybeoiduction line.
However, uncertainty is only one part of the scheduling task in whickiogday
challenges need to be handled by production schedulers. Consequently, methodologies
that handle uncertainty as well as scheduling system functions ancetgan order to

support the tasks of the scheduler, are also studied.

1.5 Thesis organisation

Chapters 2, 3, and parts of Chapter 4 feature the literature review. In short, Chapter 2
describes the background of scheduling theory and scheduling methosloOlgapter

3 reviews rescheduling and identifies the main functions and features to be included in a
system to support the scheduling task. Chapter 4 begins with a brief introduction and
literature review of Welbased simulation and some existing platforimsnd in the
literature. Furthermore, this chapter describes the overall system architecture of the web
servicesbased industrial scheduling system, i.e., OPTIMISE Scheduling System (OSS),
which is designed to be software architecture to solve the lionitatof existing
scheduling software used in industry. Chapter 5 describes a new novel hybrid genetic
representation which is based on a mixture of dispatching rules and genetic encoding
the entire schedule. The design and implementation of the hybritl@gmmesentation

into an SBO algorithm for handling various reabrld, complex hybrid flow shop
scheduling problems is then addressed in detail. In order to prove the system
architecture, optimisation methods and techniques proposed in this thedisscalf
industrial case study of a machining line was completed in this study and is presented in
Chapter 6. Chapter 7 presents the experimental results of applying the hybrid genetic
representation to the reaforld case study. All the results in thisagiter were obtained

from the OSS implementation on the real machining line. Finally, the thesis
conclusions, contributions to knowledge, and identified future reseaeds are

presented in Chapter 8.

12
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Chapter 2

2 Hybrid Flow Shop Scheduling Problems and
Scheduling Methodologies

This chapter describes the background of scheduling theory, classification of scheduling
problems, and what kinds of assumptions are usually made in scheduling research.
Furthermore, different approaches to solve scheduling prokd@chsiew advances to
solve complex hybrid flow shop scheduling problems are reviewed. Finally, the review
is concluded and recommendations regarding how to solvevoell, complex hybrid

flow shop scheduling problems are proposed.

2.1 The production scheduling problem

There are many different definitions of scheduling problems from the research
communities and still they may differ from the understanding of scheduling problems
faced daily in industry. The c¢| aswhiclkt al d
can be found in Conway et al., (1967), who define sequencing in terms of one machine
and scheduling as the sequencing of operations on several machines. In general,
schedul i n the alacaticneof reseurcés over time to perform a collectibn o
task® ( B a Krgetscha n1d9 7 4) . | n pr actthedetermiratomad d ul i
a set of orders, which will be processed by the resources during atsharfperiod

(day, week, et) ( Ki r an, 1998) .

2.2 Categories of scheduling problems

Graves (981) introduced a broad classification that covers the general characteristics of
both scheduling theory and scheduling practice. The classification divides production
scheduling problems into the following three dimensions:

1. Requirements generation

13
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2. Procesmg complexity

3. Scheduling criteria

The first dimension, requirements generation, means that a manufacturing facility can
be either an open shop when items are produced to order or a closed shop when orders
are filled from existing inventory. In an openogh the scheduling is simply described

as a sequencing problem in which open orders are sequenced at the production facility.
In a closed shop, both the sequencing problem and Hs&zlog decisions connected to

the inventory replenishment process needoé considered. The second dimension,
processing complexity, refers to the number of production stages and type of flow and
can be further classified into:

One stage, one processor

One stage, parallel processors

Multistage, flow shop

w0 NP

Multistage, job shop

In a one stage, one processor problem, all jobs require one production stage and only
one single resource or machine needs to be scheduled. The one stage, parallel processor
problem means that all jobs only require a single production stage, but theozeis

than one resource that can process the job. In the multistage, flow shop problem, all jobs
require processing by the same set of resources and there is a common route for all jobs.
The multistage, job shop problem means that there are no restrimtidhe production

stages for a job and alternative routes can be chosen for a job. The third dimension,
scheduling criteria, describes the scheduling objectives. These include, to mention a
few, to minimise tardiness, minimise weirkprocess, maximise pduction rate, and
maximise the utilisation level of resources, which are just some of the objectives

commonly used in production scheduling problems.

According to Graves (1981), there are two additional dimensions that could have been
included: the reguement specification and the scheduling environment. The
requirement specification shows the degree of uncertainty of the scheduling problem

which can be defined as deterministic or stochastic. Stochastic scheduling problems

14
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may include random variableach as distributions of processing times, failures, and so
on. The scheduling environment defines whether the scheduling problem is static or
dynamic. A static scheduling problem is when the number of jobs and their ready times
are available, while a dynaescheduling problem is when the number of jobs and

related characteristics change over time.

2.3 Hybrid flow shops

Flow shops are generally the type of production lines used for mass production in
industry (Groover, 2000). In the classical definition adwil shop problems, each
production stage consists of only one resource, e.g., machine, and there are at least two
production stages (Baker, 1974). All jobs need to go through the production stages in

the same machine order.

In industry, many companies rteé increase their production capacity or balance the
capacity between different production stages. Companies may also need to manufacture
new products, which could mean the new products are produced using the same
machines in most stages but require &&s in others. Consequently, a flow shop with
parallel machines is formed, commonly also known as a hybrid flow shop (Ribas, et al.,
2010). As mentioned earlier in Chapter 1, there are some other names to describe a
hybrid flow shop: e.g., flow shop withmultiple machines, flexible flow shop,
multiprocessor flow shop, or modified flow shop. In the remainder of this thesis, the
term hybrid flow shop is continuously used, because its formal definition, as introduced
in the next section, has captured the esseof the scheduling problems that can be

found on reaklorld shop floors.

2.3.1 Description of hybrid flow shop scheduling problem notation:

A HFS (hybrid flow shop) consists of at least two production stages and at least one of
these stages includes morerthane machine, which has proven to be-ddhplete,

even for this basic HFS case (Gupta, 1988). In the structyréj proposed by

Graham et al.,, (1979), a stands for the machine characteristigs, for the job
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constraints and for the objective considered. Ribas et al., (2010) refers to the specific
notation proposed by Vignier et al., (1999) which follows the same structure proposed

by Graham et al., (1979), bdivides @ into four terms, i.e.a, q( aly., . 52);1.

The firsttermaspeci fi es the problem considered,

The second terna, specifies the nmber of production stages, while the third team

specifies the type of machines at a stage, i.e., identical (P), uniform (Q), unrelated (R),

or one machine (0). Finally, the tera, specifies the number of anhines at a stage.

Furthermore, when there are several subsequent stages with the same type and number
k

of machines, the terms, and a,can be grouped a(s(a3 q)' )I_ , Wheres stands for the

first stage in the index akdor the last stage in the index (Ribas et al., 2010).

2.3.2 Machine characteristics

Identical parallel machines mean that all machines within each production stage are
considered to be identical, and therefore the processing tim@bfdoes not depend on
which of the machines it is assigned to. According to Ribas et al., (2010), most research

focuses on the hybrid flow shop problems with identical machines, e.g., Gupta et al.,

(1997) and Zhang et al., (2005) have studied IHREZ(PM“),O) problems, i.e., two

stage hybrid flow shop problems with several parallel identical machines in the first
stage and one machine in the second. However, uniform or unrelated machines
represent redife situations in a better way. Unifior parallel machines mean that each
machine within a production stage has its own speed and therefore has an individual
completion time for a job. However, unrelated parallel machines mean that the
processing times of a job on a production stage dependan ane of the parallel
machines. Some of the machines might be better suited to some jobs whilst others are
not, which may be due to physical differences in the machines, such as old machine
equipment or newly bought machines. The reason for machinéilgygii.e., when
machines are dedicated to certain jobs, can be due to the technological differences

between machines in the same stage or because some jobs have some special
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characteristics. On the other hand, it can also happen that a job can os$ygned to
machines that are physically nearby. The last cause is still valid for defining a
production stage with identical parallel machines, but if there are technological
constraints, the production stage should be defined as a stage with unrelatksdi par
machines (Ribas, et al., 2010).

Ribas et al., (2010) also further categorise scheduling problems according to the

specifics of the production system. For exaniﬁléZ(RM(l),O)| fmachy, means a two

stage hybrid flow shop with several unrelatedgiel machines in the first stage, one
machine in the second stage, and dedicated machines. Some constraints of production
systems are:

1 fmachs, represents jobs that at some or all stages are dedicated to specific
machines (machineiglbility).

T nw, stands for fino waito which means
processed from the start to the end without any interruption on or between
machines.

1 brk, means that unavailability peds (failures) may happen in some or all
machines in the production system.

1 size, stands for multiprocessor task, which means that more than one machine is
required in order to perform an operation at a certain stage.

1 blck, stands for blocking and means that jobs may be blocked for transportation
to the next production stage. Blocking can occur for several reasons, but

downstream machine failures with limited buffer capacities are a common cause.

There is no agred set of benchmark tests for the standard HFS, which makes it

difficult to compare different algorithms (Ruiz and Vazagdriguez, 2010).

2.3.3 Job constraints

Job constraints can be classified as hybpdcific or norhybrid-specific. Hybrid
specific jobconstraints are those that are to be found exclusively in a hybrid flow shop.
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The nonhybrid-specific job constraints are more general ones that can be found in any
manufacturing environment. An example of a {mybrid-specific job constraint is the
setuptime required to be able to process a job. If the setup time is machine dependent,
I.e., the required time will depend on which machine it is assigned to, the job constraint
is hybrid-specific. However, the differences between hybadd norhybrid-specfic

job constraints can be quite hard to define, and it is argued in this thesis that the
distinction between hybridand norhybrid-specific job constraints has made no
contribution to resolve complex scheduling problems. Therefore, hereafter, job
constrants will not be distinguished as hybridr norrhybrid-specific, but simply as job
constraints. Some common job constraints and characteristics follow:

1 Job preemption: this means that a job currently being processed on a machine
may be put on hold in ifgrocessing in favour of another job. When the job that
had been put on hold continues, it need not restart its entire processing
operation, but can continue where it left off. (Pinedo, 2008)

1 Job precedence: is a predefined sequence or order of jobsuistaterpreserved.

The reason for job precedence might be that certain sequences are prohibited due
to technological constraints or because of a policy decision. An example of
when job precedence rules are created is when there are long, sequence
dependensetup times. (Conway, et al., 1967)

1 Sequence dependent setup times: this means that a setup on a machine, in order
to start a job, depends on the differences between the last and the current job
(Pinedo, 2005).

1 Transportation times: this means the timetakes to move a job between
different locations (Pinedo, 2005).

1 Missing operations (Ribas, et al., 2010), bypass (Pinedo, 2005),-massing
move (Groover, 2000): all of these refer to the jobs which do not need to go
through all production stages andh¢aus disregard some of them.

1 Lot splitting means that a lot can be split over parallel machines in at least one
production stage. If lot splitting is not allowed, it means that a lot cannot be
started at the next production stage until the whole batdmighed in the

current production stage.
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1 A lot sizing and scheduling problem is common in a closed shop and means that
not only the sequencing problem is considered, but also tis&ziog decisions
associated with the inventory replenishment prodésaves, 1981).

1 Reentrant hybrid flow shop means that some jobs need to revisit some previous
production stages.

1 Rework means that some jobs might need to revisit a previous production stage

because of quality problems.

2.3.4 Objective function

The objective dinction of a scheduling problem is what determines whether a schedule
is good or bad. The definition of an objective function that represents the scheduling
and production system goals is crucial in order to find the best schedules. The
Amini max&iompiiéiied, as fAmaxo, are frequen
the time of the latest job to some criteria, e.g., the time of the lategtJob Ki ndt et
2002) I n the same manne rT,desigriates gctivésrbasedubomo  C |
all jobs, usually averages or sums of some Kind 6 Ki ndt .ePRinedol(2005) 200
sorts objectives into three main groups: (1) throughput and makespan objectives; (2)

due date related objectives, and (3) cost related objectivesielthtoughput and

makespan objectives, the following aims can be included:

Conax Maximum job completion time. The objective is to decrease the
makespan, i . e., the time required for
2002)

Th Throughput rate. The objective is to increase throughput rate (average),

e.g., throughput per hour. However, the throughput rate is usually unnecessary

when decreasing the makespan, because maxim%ﬂgtends to increase the
throughput rate (sefeinedo, 2005).

Ol

Average completion time or total completion time of jobs. The objective is
to decrease the average completion time of all jobs or the total completion time
of jJ obsetélT20R)L ndt
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In the due date related objectives the following aims can be included:

L Maximum lateness. The objective is to decrease the lateness of the latest

job. Lateness can be less than zero and often there are no benfitshing
earlier than the deadline. Therefore, it is often more appropriate to work with
tardiness instead (s®&aker and Trietsch, 2009)

Trax Maximum tardiness. The objective is to decrease the tardiness of the

tardiest job. ardiness for each job can be zero (on time) or larger than zero
(late). Tardiness can never be | ess t|

T Average tardiness or total tardiness of jobs. The objective is to decrease

the average tardiss of the tardy jobs or the total tardiness of the tardy jobs.

U Number of late jobs. The objective is to decrease the total number of late

jobs.

Examples of cost related objectives are setup costs,-wgufocess inventory cts

finished goods inventory costs and transportation costs. However, there are other costs,
such as those related to personnel and equipment, which may also depend on the
schedule, but are perhaps not necessarily proportional to other objectives, e.g.,
makespan.

2.4 Scheduling methodologies

According to the classical definition of the scheduling problem, the goal is to find the
best possible schedule (sequences). Makespan is probably the most common objective
and means the maximum job completion time. Howeivédnas to be clarified that there

might be several objectives and constraints that make the problem itself difficult. The
methodology used to solve the problem will differ, depending on what kind of
scheduling problem it is and the requirements of tietien, e.g., optimality and time

requirements.
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Different scheduling methodologies for different scheduling problems are presented in
this chapter, based on a classical definition of scheduling problems, i.e., sequencing of
operations on several machin@Sonway et al., 1967). When all numeric quantities
(processing times, due dates etc.) are known in advance, the scheduling problem can be
classified as a deterministic scheduling problem. In contrast, numerical quantities are
stochastic in a stochastic schuling problem. A static problem is when jobs are
assumed to be available at time 0, and a dynamic problem is when a subset of jobs has a
nonzero release or ready time. According to Kiran (1998), scheduling problems can be
defined into four different cagories: static stochastic, static deterministic, dynamic
deterministic and dynamic stochastic and can be addressed by three basic approaches:

1 Optimisationbased approaches

1 Atrtificial intelligence-based approaches

{1 Dispatching rules and simulatidrased aproaches

2.4.1 Optimisation-based approaches

Optimisationbased approaches attempt to find the optimal schedule mathematically.
There are different techniques that may be used according to the problem to be solved.
Approaches based on optimal scheduling ruteate schedules using a set of rules that

are based on the characteristics of the schedule and mathematical properties of the
problem. Once it has been proven that a scheduling rule can find optimal solutions for
most general causes of a scheduling probliéman be used for all other problems in
this problem cl ass. Examples are that th
time (SPT) and earliest due date (EDD) can prove their optimality for minimising the
total flow time and the maximum tardiss respectively for the single machine
sequencing problem (Baker and Trietsch, 2009). Another example is the adjacent
pairwise interchange technique, which can be used for static deterministic problems, to
evaluate different sequences by swapping adjadrst and checking the objective
function to find optimal schedules. Compared to a total or complete enumeration, where
all sequences need to be evaluated, the adjacent pairwise interchange technique has an

obvious advantage, according to Kiran (1998).
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While approaches based on optimal scheduling rules might be inappropriate, due to the
huge solutions space when considering larger problems, or even unfeasible with regard
to dynamic scheduling problems, implicit enumeration techniques can be used. The
functionality of enumeratiofbased approaches is to find optimal schedules faster, by
reducing the computational burden using mathematical analysis and mathematical
programming. Implicit enumeration uses the simultaneous evaluation of alternatives
and, comparetb total enumeration, not all possible combinations need to be evaluated,
because promising solutions are kept and unpromising ones are deleted. These
algorithms are also called branch and bound, proposed by Land and Doig (1960).
Implicit enumeration maypn the other hand, not be used for constrained optimisation
problems. Mathematical programming, also referred to as linear programming or
integer programming, can represent many quite different scheduling problems and is
mainly used to solve constrainedptionisation problems. For example, linear
programming can be used for scheduling optimisation problems, given that the
objective function and the constraints can be defined as linear equations. Another major
drawback with the mathematical approaches ittty take a long time to solve even
moderately sized problems.

As Laguna and Ma Many real @dld 8pjimizationt prokletns in fi
business, engineering and science are too complex to be given tractable mathematical
formulation® . Fur t Kempfrmeb ralg ,(2000) also conclude that using a
mathematical model with abstractions of the problem directly in a production line and
expecting it to work is unrealistic. Accordingly, complex realrld scheduling
problems would be impossible to solve ngsimathematical programming without
making huge simplifications, and with these simplifications it may not provide valid

solutions.

2.4.2 Artificial intelligence-based approaches

Artificial intelligence (Al}based approaches are used to generate schedulsatibiyt
the constraints, so called constraigtsed scheduling. Adased approaches can be
divided into three main groups:
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Rule/knowledgebased approaches.

1 Atrtificial Neural Networks (ANNS).

1 Metaheuristic approaches, such as using Tabu Search (TS),la&uhu
Annealirg (SA), or Genetic Algorithms (GA)

Rule/knowledgebased approaches, also called expert systems, rely on rules that
evaluate and develop schedules in a manner similar to human experts. These systems
need to have inpwdutput components thahave information regarding orders,
applicable rules stored in a database and a logic component that processes the data by
using the rules in the database. There might be rule conflicts that different systems

handle differently, e.g., by weighing up the ionfance of the rules (Kiran, 1998).

According to Jones (2009), these systems can successfully cope with both quantitative
and qualitative knowledge. They can handle complex heuristics, cope with huge
amounts of information that may directly or indirecé#lifect the scheduling problem,
capture complex relationships in new data structures, and create algorithms that can
manipulate those data structures in new and novel ways. The drawbacks are that they
can be difficult to build and manage and they becoettt the system for which they

are built. Furthermore, they only generate feasible solutions, making it hard to know

how close to the optimum any given solution is.

The basic idea of using ANNs for scheduling relies on their power of pattern
recognittn i n Agoodo schedul es. An ANN is tra
training problems and their acceptable solutions. The trained network can then be
presented to a new problem and, depending on how it is built, can generate the answer
of a recommended solutionHowever,using ANNs would be difficult with regard to

more complex scheduling problems.
Neighbourhood search techniques mainly consist of the following steps: (1) create an

initial solution and evaluate it according to the objective, &)egate new solutions in

the neighbourhood and evaluate them, and (3) select the best solution in the
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nei ghbourhood and | et it be the new AfAse
solutions better than the previous best solution. The generating msuhases the seed
solution to create new solutions according to a predefined pattern, e.g., the adjacent
pairwise interchange technique could be used to generate neighbourhood solutions.
Examples of widely used neighbourhood search methods are somenadttteeuristic
algorithms introduced earlier, such as TS, SA and GA (Baker and Trietsch, 2009).

TS can be regarded as a modified form of neighbourhood search in its basic form.
Stopping at local optima is a wadhown problem of neighbourhood search digdtries

to avoid that by occasionally moving to worse solutions. A number of already evaluated
solutions are stored in a Atabu I isto whi
evaluated. The method used for selecting the neighbourhood solutidribeasize of

the neighbourhood seems to have a major influence on the quality of the solution
obtained (Kiran, 1998; Baker and Trietsch, 2009).

SA selects neighbouring solutions randomly, whilst TS selects the bedtbum
solution in the neighbourlool. The better the value of a neighbouring solution, the
higher the probability it will be chosen as the next starting solution. Annealing comes
from the physical process of cooling down material slowly. At the beginning of the
optimisation process, the lua of the objective function tends to fluctuate quite a lot,
but at the end the value does not fluctuate significantly (Kiran, 1998; Baker and
Trietsch, 2009). Since a GBased approach is adopted in this thesis, GA is described in

more detail.

2.4.3 Genetic algorithms

Genetic algorithms (GAs), originally described by Holland (1962, 1975), may be
viewed as a neighbourhood search procedure (Baker and Trietsch, 2009). It can also be
classified as a populatidmased metaeuristic and belongs to the class of etiohary
algorithms. GAs are based on the Darwinian theory of natural selection, i.e., the
survival of the fittest. The first initial solutions are usually randomly generated into a
population of solutions. Each of the solutions is then evaluated, afieh @ahnew
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population is generated. The new population is based on current solutions and in the
selection strategy a good solution usually has a higher probability of being chosen as the
parent to form new solutions. The new solutions called children spraify of the
parent solutions are formed through reproduction, i.e., crossover and mutation. This
process is discontinued when the stopping criterion is met, e.g., time or number of
iterations. The success of the search for optimal or near optimal selusidargely
determined by the problem structure and the design of the genetic algorithm (Kiran,
1998; Talbi, 2009). GAs can be used for both manufacturing design and planning
decisions, such as decisions concerning aggregate planning, material regsiremen
planning, assembly line balancing and facilities layout, as reviewed and tested in
Stockton et al., (2004a, 2004b). Khalil et al., (2012) proposed a framework with
discreteevent simulation, drurbuffer-rope and GA, and demonstrated an improvement
when simultaneously changing the buffer sizes and batch sizes for aabjdttive
optimisation problem, i.e., maximising the throughput and minimising the queue length.
However, in this review of GA, the focus is on solving scheduling problems which

include hanging batch sizes, but exclude design parameters such as buffer sizes.

2.4.3.1 Population

A GA is a populatiorbased algorithm and in the conventional GA a generdizsed
approach is used where the entire population is replaced simultaneously (Rogers and
Prugel-Bennet, 1999). A shortcoming of this method is that if several computers are
being used in parallel all the computers may not be utilised if the population size is not
divisible by the number of computers or if there are more computers than the thiege of
population. On the other hand, a steady state GA can utilise parallel evaluations in a

better way, because the populations overlap.

2.4.3.2 Representation

A permutation is the arrangement of jobs into a row, hence thenm@ aermutations
totally out ofn unique jobs (Whitley, 1997). A permutation representation can be used

for resource scheduling where the permutation represents a priority queue of jobs. The
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classical GAs called canonical GAs use a binary string representing the decision
variables (Back, 197b), although a real number representation is possible and is
probably more intuitive (Davis, 1991). For example, a permutation representation can
be used for an actual sequence, and a vector of real values could be used for the capacity
size of a bufferThe former is the focus of the review in the following seations on

the two most important GA operators: crossover and mutation.

2.4.3.3 Initialisation

The task of the initialisation process is to create an initial population of solutions. This
is usually doe randomly, but domaispecific knowledge or other information can be
used to create the initial solutions (Sastry et al., 2005).

2.4.3.4 Selection

The main task of the selection process is to select parents for mating, in order to
generate new offspring. A maieature of this process is to let a better solution obtain a
higher probability of being chosen as parent. A common method is the roulette wheel
selection that uses a biased roulette wheel which is proportional to the fitness of the
different solutions. ldwever, a conventional roulette wheel method may get a
premature convergence at the beginning of the search process and, therefore, methods
such as tournament selection may be used (Talbi, 2009). Tournament selection simply

selects a number of individuasd the best one of these is chosen as a parent.

2.4.3.5 Crossover operators

A well-known scheduling problem is that of the travelling salesman (TSP), which is
NP-complete. In short, TSP represents a problem in which a salesman starts at a given
city and has toigit each ofn cities only once while making a round trip. The target is to
find the shortest possible path for the salesman. This problem has similarities to other
scheduling issues, such as the job shop scheduling problem, and many of its

applications ca be used for production scheduling as well. The partially mapped
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crossover (PMX) was introduced by Goldberg and Linge (1985) for the TSP and has
been compared to other crossover operators in various GA scheduling studies (Kellegdz
et al., 2008; Engin et.a2011). A great review of crossover operators applied to GAs
for scheduling problems can be found in Aytug et al., (2003). A popular crossover
operator in scheduling is the linear order crossover (LOX) (Falkenauer and Bouffouix,
1991), which can be appl to both simple and complex scheduling problems (Pinedo,
2008). The LOX is a modified version of the order crossover (OX) (Davis, 1985) and is
quite similar to both OX and PMX. However, it maintains the relative order of the
positions that need to mowiue to the insertion of new genetic material. The LOX
works in the following way, redrawn from Pinedo (2008) which is based on Liaw
(2000) inFigure2.1:

1 2 3 4 5 6 7 8 9 | 10 PARENT 1
8 9 2 4 5 6 7 1 10 | 3 OFFSPRING
L§ K | SN P
\ \ T~ =AY /
4 8 9 6 5 2 1 7 10 3 PARENT 2

Figure 2.1 linear ordercrossover
Basically it works in the following way: a range or a substring is selected from one of
the parents, exact positions of which are transferred to the offspring solution, and then
the remaining solutions are transferred to the offspring fromttier parent. The LOX
keeps the internal order of the parent two numbers: 8, 9, 2, 1, 10 andduia 2.1,
which is different when compared to the OX and PMX, where this internal order could

vary.

27



Chapter2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

2.4.3.6 Mutation operators

Mutation @erators are used to provide a random diversity in the population of
solutions. According to Deep and Thakur (2007), the proportion of the population
undergoing the mutation and the strength of the mutation is of great importance when
applying a mutation merator. According to Talbi (2009), there are three points that
must be taken into account when designing or using a mutation operator:

1 Ergodicity: all solutions of the search space should be able to be reached by the

mutation operator.

1 Validity: valid sdutions must be generated by the mutation operator.

1 Locality: a small change should be generated by the mutation operator.
There are different types of mutation operators applied to different types of problem
representations. Furthermore, there are diffetechniques when mutation is applied to
binary strings, reavalued vectors, permutations, fingéate machines, parse trees and
other representations such as hybrid representations. A mutation applied to a
permutation must result in a solution thatresgents a permutation. Most mutation
operators for permutations are related to and can be applied for local neighbourhood
search strategies (Back et al., 1997a).

The 2opt, 3opt and kopt mutation operators generally mean that cut points are
selected, b®veen which the sequence is reversed. The following is an example of a
sequence of ten elements [A, B, C, D, E, F, G, H, I, J] in whichoat 2nutation
operator is used. If the segment [D, E, F, G], i.e., two cut points, is selected this would
result in he complete sequence [A, B, C, G, F, E, D, H, |, J], which would be a minimal
change with regard to the TSP, but a larger change for resource scheduling where the
permutation represents a priority queue of jobs. Therefore, in order to make a smaller
changewhen considering a resource scheduling problem, it is possible tmsese,
swapor scramble Insert simply means to select a job and insert it at a random position
in the list of jobs. A similar approacppsitionbased mutationdescribes a variant of

this mutation that randomly selects two jobs and allows the second job to be inserted
before the first one (Syswerda, 1991). Another way is to select two jobs and swap their

positions (Back et al., 1997a) or, in other wordsjer-based mutatiordescribedby
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Syswerda (1991). Syswerda (1991) also defines a scramble mutation operator that

randomly reorders jobs in a sulist of jobs (Béack et al., 1997a).

To further distinguish the different types of mutation operators, there isadjaoent
exchange mutain, displacement mutatiorand inversion/displacement mutation
(Nearchou, 2004). The adjacent exchange mutation, also described@ef adjacent
elementsn (Back et al., 1997a), means that two consecutive jobs swap their positions.
A variant of the inert mutation is the displacement mutation that takes a range of
subsequent jobs and inserts them into a new position. The inversion/displacement
mutation is similar to the latter, but uses the reversion/inversion for the subsequent
range of jobs being inged into a new position.

However, some of the more conventional mutation operators may not be suitable for
reatworld scheduling problems in which several constraints may make it difficult for
them to create valid solutions. To prevent previously goddtisns being cast into
unfeasible regions of the search space, a despnific directed mutation operator that
follows the rules of the constraints can be used. Berry and Vamplew (2004) propose
Pointed Directed (PoD) mutation in which each gene islyigtdupled to a bit that
decides the mutation direction possible for that gene. Korejo et al., (2010) propose a
similar approach in which the directed mutation makes an individual shifting based on

statistical information, in order to guide the search ampvomising area.

2.4.4 Dispatching rules approaches

When it takes longer to actually solve a scheduling problem optimally than to actually
execute the work in the shop with any given sequence, there is -fardRituation
(Baker and Trietsch, 2009)herefae, in practice, using heuristics such as dispatching
rules is often the rule rather than the excepti@aker and Trietsch, 2009). According to
Kiran (1998), the scheduling objective is not directly considered when using a
dispatching rule. Basically, agpatching rule is a rule of thumb that gives priority to a

job among other jobs at a specific stage, i.e., at a machine. This is why dispatching rules
can also be called priority dispatching rules (PDRs). Generally, alR2B&] approach

does not try to fid an optimal schedule, but relying on knowing that one scheduling
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rule statistically performs better than another one is sufficient. According to Panwalkar
and Iskander (1977), PDRs can be classified into:
1 Simple priority rules: simple dispatching rulesmbinatorial dispatching rules,
weighted priority rules.
Heuristic scheduling rules.

i Other rules.

Simple dispatching rules, such as shortest processing time (SPT), earliest due date
(EDD), first come, first served (FCFS), among others, are quite simplenguitive

rules. When using combinatorial dispatching rules, also referred to as composite
dispatching rules (CDR), a ranking expression is used to create a function of attributes
of jobs and/or maching®inedo, 2005)An example of this approach cae found in

(Tay and Ho, 2008), in which CDRs are generated by genetic programming (GP). In
their simulation study they found that CDRs generated by GP outperformed several
simple PDRs, when minimising tardiness and makespan objec#vsgnilar approach

is the weighted priority indexes that use a combination of PDRs with assigned weights
to each PDR, e.g., Jayamohan and Rajendran (2004) who assign specific weights
according to the importance of different objectives. They also take the weighted priority
rules one step further, when the weighted dispatching rules have different weights due

to more important jobs.

Heuristic scheduling rules are rules that may use human experience expertise together
with both simple PDRs and CDRs (Panwalkar and Iskander,)197

Other scheduling rules may be those designed for a specific shop, rules based on
mathematical functions, and so ddarman (1997) reveals that combining different
priority rules at different production stages is appealing, because it is more [lactica
and less complex than many of the combinatorial rules. Furthermore, he points out that
it is an excellent strategy for achieving better results, when several performance
measures are consideréithey claim that the consensus of researchers is thaine s

way a combination of dispatching rules is better than using simple dispatching rules.
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The main disadvantage of PDRs is their myopic nature (Tanev et. al., 2004; Tay and
Ho, 2008), because local PDRs, at a stage, are far from optimal and no single PDR i
likely to perform highly on a range of complex scheduling problems (Pierreval and
Mebarki, 1997). In order to improve overall performance, both combined dispatching
rules at different stages, CDRs and combined GA with PDRs, e.g., approaches found in
Taner et al., (2004) and Ochoa et al., (2009) have lkgnonstratetio perform better

than simple PDRs.

2.4.5 Simulation-based approaches

A complex realworld scheduling problem comes with many constraints that cannot be
ignored if a valid schedule is to be ceght To find a good and feasible schedule is
much more important than attempting to find a mathematical optimal schedule fior near
term production scheduling practice (Sivakumar and Gupta, 2006). At the same time,
production facilities tend to exist in aneschanging environment which also affects

the problem structure of the scheduling problem, while at the same time, flexibility is
the key to the success of any production system (Groover, 2000). McKay et al., (2002)
conclude that flexible and configuraldigorithms need to be researched further.

Simulation modelling has the capability to represent complex real world systems in
detail, which is its main advantage compared to other methods. It is also very useful for
communicating details, such as a salied) situation, due to the visual aids provided

by most simulation software. According to Koh et al., (1996), a simulation model built
for scheduling is quite different compared to an ordinary simulation model which is
generally used for the design andalysis of an existing or proposed system.
Simulationrnbased scheduling, on the other hand, is used for tigpiog operation and
control of the system, and the ultimate output is a detailed operation plan. Hence,
models built for simulatioitbased schedulghneed to be more detailed compared to
typical simulation models. Typical simulation models are usually stochastic when
analysing design, and so on, whilst scheduling simulation models are usually
deterministic. Koh et al., (1996) also identifies a nunmdd@mportant requirements for
discrete event, simulation models used for scheduling, namely, flexibility, speed, and
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details. A model needs to be flexible enough to cope with changes in the physical
configuration, fast enough so a schedule can be genaratad acceptable time, and

detailed enough with an appropriate level of simplification.

Simulationnbased scheduling approaches are derived from the group of dispatching rule
based approaches. In a simulatlmased approach several dispatching rules nhght
used at different stages, in order to make a decision (Kiran, 1998). Manyamrl
optimisation problems can only be treated by simulation models (Laguna and Marti,
2003), but the problem is that simulation is not an optimisation in itself (Law and
McComas, 2000). Therefore, simulatibbased scheduling may include much user
intervention, in order to manually test different schedules, which would be unfeasible
with regard to larger optimisation problems. In order to automatically searctedor
optimd solutions, a scheduling problem can be solved by using the simulbstsad
optimisation (SBO) approach in which the simulation model is integrated with meta

heuristic search methods, such as TS or GA (Laguna and Marti, 2003).

In this approach the sirfation model is viewed as a black box function evaluator which
evaluates a set of input parameters generated by theheatatic optimiser. The
response or output is used by the rtegaristic optimiser to generate new values of the
inputs. Simulated amaling may be viewed as a sort of random search procedure, but its
main disadvantage is the computational time it takes to find a good solution. The main
advantage of evolutionary approaches, such as GAs, compared to those that use
neighbourhood seardbased methods on a single solution, e.g., simulated annealing, is
that fewer evaluations are needed in order to search a larger area of the solution space.
Finding good solutions early in the search process is particularly important regarding
SBO (April et al, 2003).

The weakness of simulation is that it is time consuming, which can be somewhat
compensated by SBO, because it does not try to evaluate all solutions, but rather a
fraction of the whole search space. Furthermore, it is possible to paralledise th

simulation evaluations (e.g., Li and Wang, 2008) and to use a steady state GA (Rogers

and PrugeBennet, 1999) in order to speed up the optimisation process. The weakness
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of GAs and other metheuristic search methods is that they may not find the optima
solution for larger scheduling problems. On the other hand, the question is whether any
method would find an optimal solution in an acceptable period of time for amaiNR
complex realworld scheduling problem? It is important to note that an optiolatisn

is usually not the target in a complex readrld scheduling problem; it is instead to
achieve a relatively high performance for many problems, which is a characteristic of
GA (Sankar et al., 2003).

2.4.6 GA or dispatching rules for simulation

In the last decade, there has been extensive research in the field of production
scheduling using simulation. Simulation modelling has the capability to represent
complex realworld systems in detail, and several dispatching rules can be used at
different stages tanake decisions about what parts to select for the next scheduling
period. The number of rules can be infinite, because it is possible to define new
scheduling rules as the combinations of several other dispatching rules (Holtaus, 1997).
Generally speakinga PDRbased simulation scheduling approach does not attempt to
find an fAoptimal 0 schedul e, but relies ¢
rules, performs better than another one. In comparison, using dnegtstic optimiser,

such as a GenetiAlgorithm (GA), to generate theear optimal schedules directly,

which is referred to as a direct approach in this thesis, may be advantageous if searching
for Aoptimal 06 solutions is desired. Neve.l
GA-basedSBO may require very long computing time. This is usually impractical or

even unacceptabl e, i f the restuilmed.s need:

There are many studies that compare these two approaches and some of them provide
results showinghat the use of GAs to generate detailed schedules can obtain better
solutions than those obtained by using PDRs. For example, Sankar et al., (2003) use a
GA for the scheduling of a job shop with five production stages, parallel machines in
each stage and34jobs to be scheduled. Several objectives, including customer
satisfaction, machine utilisation and total elapsed time, are integrated into a single
combined objective function. A GA is coded in such a way that the chromosomes
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represent the job sequenagkich the manufacturing system has to follow in order to
achieve the best schedule. The results obtained with the GA are then compared with the
results obtained using six different dispatching rules including SPT, LPT, EDD, largest
batch quantity (LBT), s@lest batch quantity (SBQ), and highest penalty (HP). It has
been found that the solutions generated by GA outperform the solutions obtained by

using PDRs, for this specific production system.

The most common form of hybridisation is combining a GA witical search
procedures or using domain specific knowledge. Hybrid genetic algorithm and memetic
approaches have achieved good results in complexvagdd application areas, but
there has been limited work developing a theoretical basis for genetigthatgor
hybridisation (Sastry et al., 200%im et al., (2007) made a comparison between the
use of PDRs and GAs for solving the scheduling problem in a real factory that
manufactures standard hydraulic cylinders. More specifically, it was a job shop of six
machines and nine jobs. Different dispatching rules were used in this study, namely
SPT, LPT, most work remaining (MWKR), and least work remaining (LWKR). When
using GAs, different jobs to be performed by different machines are codified into an
individual chromosome, and then the different individuals are selected following the
Anatur al selectiono, in order to minimis
found that the GAased approach outperforms the PbBaged one. At the same time,

the reseateers state in their conclusion that better results could be found if the two
techniques for the scheduling of orders are used in combinAtinexample is Kianfar

et al. (2012) that propose a hybrid GA procedure that uses PDRs to generate initial
solutiors. Overall, the algorithm was shown to be better than some common dispatching

rules, when compared in four flow shop scheduling scenarios.

A method that combines GA and PDR can be found in Tanev et al., (2004), where a
hybrid evolutionary algorithm foihe scheduling of a plastic injection machines factory
was developed. The system was a job shop with four machines &t %0bs. In their
approach, the researchers proposed a hybrid GA combined with the use of PDRs; a GA
was used to evolve the differecdmbinations of dispatching rules and to finally find

which one provides the best schedule. The solutions were then evaluated by means of a
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fithess function conformed by the different parameters (flow times, setups, makespan,
tardiness, etc.) to be optinid. They found that letting the GA select PDRs generated
better solutions compared to a conventional GA, in a shorter time period. At the same
time, the computational effort/job to be scheduled seems to decrease with an increasing
number of jobs, making iparticularly appropriate for complex reabrld problems

compared to a conventional GA. Another study has been carried out by Ochoa et al.,
(2009), in which the hybrid flow shop was consideretiais( QM' )Ik1 where k is 530

stages and M idour to five machines. A conventional GA creating a permutation
schedule was compared to a GA that selected dispatching rules, and the latter approach

wasdemonstratetb be advantageous compared to the conventional GA.

These methodologies that use sasnet of metaheuristic, e.g., GA, in order to select
other heuristics, e.g., PDRs, may also be referred to as a-tgypestic approach, in
which some metheuristics are used to select the appropriate heuristics (Burke at al.,
2003). This kind of appro&cin which a GA chromosome is used to represent different
combination of PDRs, is referred to as the indirect approach in this thesis. The reason is
that the actual sequence itself is only indirectly handled by the GA using the PDRs.
Burke at al., (2003)aveal that current metseuristic search methods tend to solve and

be customised for a particular problem type, whilst hypiristics are able to handle a

wi der range of problems and may | ead to

adapt and learhas been identified as future research issues (McKay et al., 2002).

2.5 Assumptions usually made in scheduling research

Even moderately sized scheduling problems tend to become complex. Gupta and
Stafford (2006) state that research within flow shop scheglideems to have been
motivated by what the researchers can achieve rather than what is important, and
thereby also suffers from too much abstraction and too little application. According to
Pinedo (2008), advances in scheduling theory have only had adinmtpact on
scheduling in practice, but the theoretical research has not been a complete waste of
time, because it has given insights into the scheduling problem. Still, looking at 50 years
of research, theoretical flow shop scheduling problems remaalyannsolved (Gupta
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and Stafford, 2006). Generally, scheduling problems include many restrictive
assumptions to be solved (Kiran, 1998). Many of these assumptions are valid for
different scheduling problems, but it would not be true to say that thesa@gsws can
be used for all different kinds of scheduling problems. Assumptions are usually made
about scheduling problems and some of the most general ones include the following
(e.g., Baker and Trietsch, 1974; Ramasesh, 1990; Kiran, 1998; Baker arsthlriet
2009):
1 All jobs to be scheduled are available at time zero.
1 Machines can only process one job at a time.
1 Setup times are sequence independent, i.e., there are no sequence dependent
setup times.
1 Setup times are included in the processing times.
1 There @ae not any breakdowns of machines, i.e., the machines are continuously
available for production.
1 Jobs are processed without any disruptions.
There is no alternative routing of jobs, i.e., jobs have strictly ordered operation
sequences.
No parallel machinesan do the same type of operation.
An operation may not start before the preceding ones are finished.
1 There is no premption of jobs, i.e., once started jobs must be processed until
completion.
1 A job may not be started before it is finalised in previoperations.

There is no variation of processing times.

=

Jobs are moved directly between production stages, i.e., there are no transfer
times between machines.

Buffer sizes (queue lengths) are not limited.

There are no assembly operations.

Jobs are carriedub on a machine only once.

= =2 =/ =4

There is no rework of jobs.
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When considering complex, reabrld production scheduling problems, only a few of
these assumptions can possibly be made without changing the original issue into a
completely different scheduling gstem, i.e., a theoretical scheduling problem that is

not of much use in practice. In a review of flow shop scheduling research, Ribas et al.,
(2010) states that even though most-téalsituations are better represented by models
with uniform or unrelatd machines, most research has been done on flow shops with
identical machines, which is probably due to the fact that identical machines are easier
to handle. According to Allahverdi et al., (2008) who reviewed 300 papers on
scheduling with setup times, teen 1999 and 2008, there has been a significant
increase in scheduling problems involving setup times. The reason is that substantial
savings can be made, when setup times are considered fovomdlindustries. The
majority of papers dealt with sequEnindependent setup times, because this is easier to
handle compared to sequence dependent setup times. Again, according to Ribas et al.,
(2010), most research has been carried out with, at most, one constraint (e.g., setups,
failures, blocking) being stlied at a time and only a few studies dealt with all or most
constraints at the same time. Consequently, in order to diminish the gap between theory
and realworld scheduling problems, several constraints need to be considered

simultaneously.

2.6 Scheduling objectives in real-world problems

Most reatlworld scheduling problems have more than one objective of interest (Gary et
al., 1995; Yang and Chang, 1998), commonly defined as -ohjkictive scheduling
problems. However, most of the theoretical literaturdr@sses single objectives only
(Graves, 1981; Allahverdi et al., 2008; Ribas et al., 2010).

There are different ways to address mahjective scheduling problems, of which some
can be found in Kempf et al., (2000). One way is to use the primary obj@stithe one

to optimise and a secondary objective as a constraint. Another strategy is to use a multi
objective approach and let the user decide from a set of Pareted@nonated)
solutions. For example, when using the Elitistglmminated sorting getie algorithm

(NSGA-II), the Pareto front consists of all the solutions that are not dominated by other
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solutions of at least one objective (Deb et al., 2000). Another common approach is to
combine different objectives into a single one by using weightstife different
objectives of intereqKempf et al., 2000)Finally, a similar approach to the latter one is

to use a codbased objectivésee SectioR.3.4 where all the objectives are measured in
cost (Kempf et al., 2000) Reatworld scheduling problems usually have multiple
objectives. Whilst a Pareto set of solutions of multiple objectives may be beneficial
when analysing a production systeitnwould require much time from the production
scheduler and igprobably better suited for other types of SBO problems, such as
optimal buffer allocatiorones A weightbased objective function waslopted inthe

thesis because the production scheduieead to obtain the result quite quickly and

the user had no tinte study separate stbrgets.

Regarding reaWworld problems, different organisations have different objectives and
therefore the scheduling metrics will vary from case to case. At a higher company level,
profit is the important londgerm objective, alog with customer satisfaction; however,

the importance of customers may vary depending on the custdsmarmatter of fact,

on the production floor, the supervisor might want high overall machine utilisatidn
throughput rate by having bigger batch sjzssdemonstrated in Stockton et al., (2012),

and an operator might want homogenous batches, in order to avoid setups on a certain

machine.

2.7 Concluding remarks

In summary, it has been emphasised in this chapter that even a moderately sized
scheduling prolem tends to be too complex to solve by any analytical approaches and
many reaiworld problems, such as the hybrid flow shop, belong to the class -of NP
complete problems. In other wordsgcould be possible to solvealworld scheduling
problems using ntaematical programmindyut it would requirehuge simplifications,

as reviewed in this chapter. Flow shop scheduling seems to have been motivated by
what the researchers can achieve rather than what is important, and thereby also suffers
from too much absaction and too little application. Discrete event simulation has the

capability to represent complex rembrld systems in detail, as well as cope with
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several constraints and multiple objectives, which have been identified as important
factors. By usingthe simulatiorbased optimisation (SBO) approach in which the
simulation model is integrated with mdtauristic search methods, such as genetic
algorithms, the search for optimal or near optimal solutions can be done automatically.
A main advantage of usj genetic algorithms is that quite a few evaluations are needed,
in order to search a large area of the solution space. Furthermore, combining GA with
dispatching rules (hypédreuristics) seems to be a promising research direction,
according to several searchers reviewed in this chapter. Therefaréybrid genetic
representation is proposed in this study and presented in Chaplée Scheduling

problem from the perspective of uncertainty is dealt with in Chapter 3.
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Chapter 3

3 Rescheduling and System Support

This chapter describes the functicarsd featuresieeded in order to support production
scheduling in realvorld problems which arsubjecedto disturbancesuch asnachine
breakdownslt begins with a brief introduction of how uncertainty affdbisexecution

of a schedule and continues witleschedulingmethods and policies to handle
uncertainty. Furthermore,functions of the scheduling taskre presented, which is
followed by a review of importantscheduling systenfunctions identified in the
research societyHnally, based on the literature reviews in chapters 2 aadsBmmary
of themost important functionsf aproductionscheduling system is presented

3.1 Uncertainty and rescheduling

In the research of the higher levels of production abnthere have been successful
practical implementations of research, such as Enterprise Resource Planning (ERP)
systemsused more oftennowadaysby companies in industry (McKay and Wiers,
1999). However there have beemery few successful practical impteentations or
usable optimisation methods in dynamic job shops and detailed dispatching (McKay
and Wiers, 1999; Stoop and Wiers, 1996)fact, McKay and Wiers (1999 epictthat

the underlying principles of scheduling research are insufficient and shmuld
reassessed. A common opinion is however that the theoretical techamguastually
applicable but people in industry do not useem becausehey do not know how to

apply themor simplybecauseheyarenot aware of their existen¢®cKay and Wiers

1999) The traditional definition of scheduling is more about sequeneimge the
impact of uncertainty is systematically underestimated by academic redeaghent
schedule interruptions may occur during the execution of a schedule in a production
system, due to the variability present in these systems (Stockton et al.,&i3tyling

to McKay and Wiers (1999), aommon approach to uncertainty is to react and
rescheduleln some wayit is possible to reduce uncertainty by taking precautionary

acions, such as preventive maintenance, but it is hard to remove uncertainty
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completely. Some researchers wharldress specific scheduling problechs include
uncertainty in the scheduling problemith stochastic arrival and/or processing times
e.g., Danielsand Kouvelis 1995 and Leon et al. (1994). However,with regard to
hybrid flow shop scheduling problemsnost research papers do not consider
uncertainty or otherelatedconstraintsor they simply handleonly one constraint at a
time (Ribas et al., 2D).

Graves (98] identified that scheduling robustness is an important area of future
research andividly statedthai A f r equent comment heard ir
t hat there is no scheduling pr.cPodueom but
scheduling research can be divided into two groups, nametgrministic scheduling
researchin which the problems are defined with deterministic teramsl stochastic
scheduling researchvhereby at least some randomnessnodelled for the problems

Aytug etal., (2005)revealthat manyof the stochastic schedulimgsearch effortave
focused on local control policies, such as priority dispatching ,ruésed at
minimising some measure of performance. Most of these methodsodose any
information about the global state of the shibpor and create the schedslduring
execuions The deterministic scheduling research is more focused on creating a
optimal or neaoptimal scheduleaccording toa single or multipleobjectives, usually

with regad to a single or multiplemachines. The problem with the deterministic
solutions obtainedis that it is assumed they can kexactly executed in the real
machine/line/shopfor which they are created. However, many researchers have
recognisedhat uncertaint is alwayspart of the problem and therefopet effort into
extendng the deterministic approaches table them to handle some form of

uncertainty.

The predictive schedule could be describ
by the schedulig approach used and may be updated with a new predictive schedule
when requiredWhen this predictie schedule is used in the rearld, very oftenwith

regardto disturbances, it is called tmealisedschedule Stoop and Wiers (1996)ave
foundthatthe expected performance of(predictive)schedule often deviates from the

(realised) actual performancewhich, in most cases is worse than the expected
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performance. Three categories of disturbances that cause these performance deviations
have beenclassfied (Stoop and Wiers, 1996§1) capacity disturbancessuch as
machinebreakdowns; (2prder disturbancessuch as rush orders; (3) atds to the
measurement of data, such as estimated processing times used in the scheduling
process.The quality of data féects the uncertainty and is very importaiiut a high

quality measurement of data could be difficult to obtain in some production systems
Therefore, these three types of uncertainties are included in the reactive scheduling
experimentpresented irbedion 7.4. Vieraet al, (2003)furtherpresent a framework to
classify rescheduling researdh which uncertainty playssome keyrole. Such a
rescheduling framework includesscheduling environmentseschedulng strategies,
rescheduling policiesand rescheduling methodsvhich is discussed in more detail in

the following subsections

3.1.1 Rescheduling environments

The rescheduling environment refersth® problem instanceéo be rescheduled, i,e.
whether itis a finite set of jobs (static) or an infinite set of jobs (dynamic). In a static
and deterministic environme(ihstance)nothing is unknown and a rescheduling is not
necessary. In a static and stochastic environntleateis a finite set of jobs but some
uncertain variablegxist such as the processing timestio¢ jobs. When there is no
arrival variability of the jobsin a dynamic environment cyclic schedule that is
executedrepeately could be usedOn the other hand, en thereis an arrival
variablity of the jobs, but all the jobs have the same rotlie sequence cannot be
reusedif a direct representation of the schedideused Finally, process flow
variability and arrival variability of the job®iay ceexist, whichis mostlycharacterised

in job shopswherea great variability of job arrivalss very common
In terms of reschedulingtrategies two commoncategories of approachesan be

identified: (1) dynamic- completely reactive approachemnd (2) predictivereactive

approaches, which adiscussed belaw
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3.1.2 Completely reactive approaches

In a dynamic approachhe schedule itself is not generated beforehand, but jobs are
dispatched at the machines in raale. Dispatching ruleor other types of heuristics or
control policies characteise dynamic schedulin(yiera et al., 2003)This group is also
called completely reactive approaches (McKay and Wiers, 1283he dspatching
rules actually reacto the eventghat aretaking place and dynamically generate the
sequence Different appoaches using dispatching rukeereviewed in Chapter 2, such
as simple priority dispatching ruléBDRs)(Panwalkar and Iskander, 1977), combined
dispatching rules at different stages (Barman, 1,9&Mposite dispatching rul¢$ay
and Ho, 2008)and @mbined GA with PDRs (Tanev et. al., 2004; Ochoa et al.,)2009
Dispatching rules have the capability to keep the machitiesed, as long as theris
material waiting in the queue, but itnenethelesbard to knowthe performance of the
realisedsequ@ce ordein the presence of uncertainfjherealisedsequence ordenay
have asignificantimpact on the performance of the schediflesequencelependent

setup timesrepreseni{Allahverdi etal., 2008)

3.1.3 Predictive-reactive rescheduling policies

When the schedule is generated beforehand,dieect representation of the schedule,
there are different policies to decide when to reschednleorder to update the
predictive scheduleChurch and Uzsoy (1992) present a rough taxonomy of the existing
appoaches, namely: periodic, continuous, and edenen reschedulingPeriodic
rescheduling is when rescheduling telkéace periodically with a predetermined time
interval. The eventlriven rescheduling is triggered as soon asiai g enoug
disruption ocurs In other words, ithe realisedschedule deviates too much from the
predictive schedule by some measuiena rescheduling will be executein example

is Kianfar et al. (2012) that usa eventdriven triggeringbased on tharrival of new
jobsand reschedules if the number of jobs or time elapsed since last rescheduling is big
enough.Continuousrescheduling is an extreme case in which each event starts a new
rescheduling.Periodic rescheduling may also be seen as a formvehtdriven

rescheduhg policy. Additionally, in hybrid rescheduling policjggeriodic rescheduling
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is combined with everdriven rescheduling (Herrmann, 200&}hurch and Uzsoy
(1992) studied one stage, one machine apdrallel machingsproblemwith dynamic

job arrivals for the purpose ofdecreasingmaximum latenessand show how the
rescheduling frequency affects the schedule performance. Suwa and Fui@@ra (
propose a new hybrid rescheduling policy basedhercumulative delayof jobs i.e,
differences between thepredictive andrealisedschedule thabutperform acombined
periodic and evenrdriven rescheduling policy for a single machine scheduling problem
anda parallel machingsscheduling problemwhich showed positive resultactually,
periodic and hybrid rehieduling policies seem to be the most commioes in practice
(Herrmann, 2006)Since the main approach used in this thesis is react and reschedule, a

hybrid rescheduling policy has been adopted, as described in Skdtidn

3.1.4 Rescheduling methods

While a predetermined sequence created by a direct appcoatthbe resequenced
when a disruption occara more novel approach is to generate the sequendss to
robust enough to handle uncertainties. Robust dadimg approaches, also called
proactive approaches, focus on creating a schetialewhen implementedwill be
robustenoughto handledifferent disruptions rrd minimisetheir effects with respect to
someperformance measuréheseapproaches can Warther classified (1) optimising
the worst possible scenari(2) minimising differences in objective functigsubject to
disturbancesand (3) to include the effects of machine failures, subject to a given
rescheduling method. Daniels and Kouvelis (198&yelop a procedure for creating
robust schedulesby analysing worst case scenaid.eon et al. (1994) createa
scheduleapproachthat showsrobushessfor processing time varlity and machine
failures with makespan as thminimisation objective Lean et al, (1994) develop
robustnessneasures thareused witha GA to find robust schedule&notherapproach
to optimise buffer allocation in a job shaeyas proposed by Ahomar (2002) In this
method the author achieves robustness by integratingto the GA search engine
through assigning a Signab-Noise ratio (S/N) to each simulation outconihe
method has been appliéd a hypothetical job shop example with buffer sizs the
discrete factorgAl-Aomar, 2006)
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When rescheduling is necessagyg, due to thedeviationsof the initial plan, there are
different ways of repairing a schedule. According to Herrmann (28@®)iera et I,
(2003) there are three ways to reschedule: d@jnplete regeneratiorf2) right-shift
scheduling and (3) mach-up scheduling oso calledpartial reschedulingComplete
regeneration means that the whole schedule is regeneratgll thejobs that haveot

been executeldy the time of rescheduling will be rescheduled. A complete rescheduling
may lead teschedulenervausness (Stoop and Wiers, 1998hich, according to McKay

and Wiers(1999),can be overcoma most realworld situationsif small changesare
continuously updateand only partial solutionsare generatedRight-shift scheduling
means that theemaining jobs are postponed by the time needeabtain a feasible
schedule. Right shift scheduling may be seen as a simple form of-o@asttheduling

since the jobs are shifted to the right in the Gantt chdttiout any resequencindpeing

done Matthup schedul i ng means the necessary
tracko with the pr ed e-upepoimindcaeswhat pant efche!| e .
scheduléhasto be rescheduled. Bean et £.991) propose a matalp heuristic method

that begis with incrementally searchirfgr the appropriate matetp pointwith regard

to machine disruption. Jobsearescheduled for the machjma machineswith the
disruption using several dispatching rules. If jobs can be rescheduled without exceeding
the tireshold for the tardiness cqdtse searclstops. If a schedule caat be found for a
given, maximum matckup time point for the machige), then the search is extended by
scheduling several machingskturk and Gorgulu (1999propose a matehp heuristt
procedure that determines the matighpoint anddoesthe reschedulindpr a modified

flow shop Since both the matelp point and the new schedule for that peravd
determined simultaneouslya heuristic procedure was choseanvolving different
dispdching rules in the creation of a new schedule. this thesisall three ways to

reschedule have been adopted, as described in Séatidn

3.1.5 Direct, indirect and hybrid representation of schedules

Severalresearchers.g, Sankar et al.(2003 andKim et al, (2007) have shown that
global scheduling, i.ea direct representation of schedules, using k& the potential
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to improvethe performance of complex shqgmompared to dispatching ruldsawrence

and Sewell (1997alsocompare dynamic heuristics, e.dispatching rules, with static
algorithms such asshifting bottleneck heuristic, for several job shop scheduling
problems withmakespan objective arifferent degrees of processing time variability.
They found that simple dynam{ceattime/online) scheduling heuristics yieldqually

good or better results compared to complex staffeline) algorithms, especially when
complexity and uncertaintgreincreased. Wan (1995howssimilar results tohe latter,

in which a dynamic dispatching rule yisldqually good or better ressicompared to
static methodswhen subjeced to processing time variabilityRegardingscheduling
problems with high uncertainty many studieshave confirmed thatan indiret¢
representation of schedujesuch as dispatching rulesan produce better solutions
compared to a direct representation of schedules (Lawrence and Sewell, 1997, Matsuura
etal., 1993; 1997; Wan, 1995n order to showthat the predictive&eactive apprach

using a direct representation could be be#g®enwhen the uncertainty is quite low,
Matsuura et al.(1993) proposea hybrid approach called switching. such ahybrid
approach a predictive schedule is created for the shop which uses a periodic
rescheduling policy. Ithe realisedschedule deviatesignificantly from the predicted

one, the system switches to using a dispatching rule for the remainder of the period.
Another hybrid approagtwhich includesa global scheduler and a dispatching module
for a job shp with variable processing times,proposed by Roundy ai., (1991) In

this approachthe dispatching module sele@gob, whichis base& onthe outcome of
deriving the costs associated with performing a job at a particulayftione theglobal
schedule. With increasing shop complexitlyis method haveenshown to perform

well in comparisond dispatching rulesA similar hybrid approacto the lattey called
SB-DIS, was proposed bBarua efal., (2005) A global schedule is created fitlve shop
which uses a periodic rescheduling policy. The global schedule is implemented directly,
but serves to provida priority index for the jobs. Compared tioe latter approaghhe

global schedule does not need to be feasihleserves aa priority indexfor jobs use

by the dispatching procedur&B-DIS was testedon both a deterministic anda
stochastic hypothetical multistage shop problenand generallyshowed that it

outperformedlifferentdispatching rules.

46



Chapter3 Rescheduling and System Support

3.2 The scheduling task

Conway et al (1967)statethat a scheduling problem taken out of its context gains in
generality since it approximates many situations, but does not represent a solution to
any realworld sequencing problem. This information is oalyarial assessmerdf the
realproblem.McKay and Wiers (1999laim thatresearcherand reatworld schedulers

are not discusmg the same problemsince researchers are solving the sequencing
problems and realworld schedulers are faced with d@yday challenges, such as
communicatng with personnetbout events of the previomsght. A critical task of a
scheduleris also to check the current status of the phaith regard todemand,
machines, materigand personnel. Another task isdnticipateand plan future events,
such as mehine maintenance and repair issya®cessing changeand new product
samples When planningwhat has to be done, where, and by whtmereis almost
always a compromise@lue tothe wide range of options faced by the schedleis is

why McKayand Wie s (1999) defi ne adymamicancaeaptivé i ng
process of iterative decision making and problem solving, involving information
acquisition from a number of sources, and with the decisions affecting a number of
production facets in reactioto immediate or anticipated problegnsvhich this work is

basedn.

3.2.1 Functions of the production scheduling task

Wiers (1997)proposeghat four types of controtan be used to furtheharacterise
scheduling taskDetailed control, Direct control, Regted control and Sustained
control. In Detailed control, the scheduling isvery detailedin orderto deal with the
shortterm dispatchingdecisionsthat determine what to do neXWiers, 1997) It is
important that a valid schedule fola shortterm schduling horizon is generated
becausehere is no intermediate control before the schedulaunched anthere is a
risk that the scheduldgve to badjusted manually (Stoop and Wiers, 1996).

Direct control means that the schedulexrsdirect controlto answer questions and give

directions asthe schedule has been created without any intermediate control tefore
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launch (Wiers, 1997) Methods such asompletely reactive approaches predictive
reactive approaches are possible solutibosin realworld situationstheseprocedures
need tohave some systersupport in order to be ableéo provide the direct control

functions

With regard toRestrictedcontrol, schedules haveto deal with the situation at hand
with material availability and regrementsusually beyond the control (Wiers, 1997).
McKay and Wiers (1999xplainthat the decisions madeegardingvariousproblems
may differ, depending on th&inds of situation, such athe beginning of a dayr a
Friday afternoon. The scheduling preseneed to be able to answer questions in a
limited amount of timeand small changes to the schedmestbe made continuously
throughoutthe day even if there imot a completeset ofdata availablelnstead of a
complete reschedulingome sort of padl rescheduling could possibly reduce the risk

of schedule nervousness.

Finally, Sustainectontrol refers tothe schedulethat monitors schedule execution and
carries ounecessary changes when neededarder to fulfil scheduling targe(®Viers,
1997. Consequently, a solution for reabrld scheduling problems would have to

include detailed monitoring capability.

3.3 System support

As Pinedo (2005)vividly states fiAnalysing a planning or scheduling problem and
developing a procedure for dealing withon a regular basis is, in the real world, only

part of the story. The procedure has to be embedded in a system that enables the
decisionmaker to actually use it. The system has to be integrated into the information
system of the organization, whichnche a formidable task Therefore, m order to be

able to handle the scheduling tatsiat takes uncertainty int@ccount,a scheduling
system not only a scheduling algorithm neededFraminan and Ruiz (2009) believe

that scheduling research nedd increasestudiesin areas such as user interfaces, data
management, scheduling monitorireg well as inmore tools and methods faohe

design and implementation of scheduling systéongnanufacturing facilitiesHence,
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this review identifies important futions and features that need to be handled by a

scheduling system.

3.3.1 User-interfaces and human control

Improvements can usually only be made through the scheduling procpeaciite
(McKay and Wiers, 1999), and the success of a particular techniqueeaslygr
determined byts humanuses (Stoop and Wiers, 1996n the fidd studyof McKay et
al,(1995)at a printed circuit board (PGB f ac
made to find out which decisions were taken due to uncertdihgyanaysis indicates

that the scheduler was more of a problem solver and used more than 100 héuwristics
orderto take precautionary actions and to anticipate probléomshermore, Stoop and
Wiers (1996Y)ightly notethat humans often rely on their oyudgemat with regardo

the application of techniques and comnsmEmsetells themthat these techniques are
imperfect. The only way to increase the use of pevceduress to have a great deal of
trangarency, e, letting the user see what happens and ta affenitoringsupport.

User interfaces to support both dab input manipulation and schdd manipulatiorare
believed to be @ important research area (McKay et al., 2D0&antt charts are
probably the most common way to present schedule informaftog, McKay and
Buzacott, 2000) and theere realworld case studiethat allow the user to modify the
predictive schedule through aait chartbasedinterface (McKay and Black, 2007).
Higgins (1996 observesthat the jobs screen, which displays the attabubf the
available jobsis central to the interactive decisiomaking and thereby presents a
systemarchitecture for humanomputer interactionA jobs screen iboth made up of
assigned jobs at machines and unassigyess Although this approach is psible

using the dispatching clients or monitoring programs of the proposed system (see
Chapter 6)it is not used in this work because a schedule, generated by the SBO, is used
to suggest jobs for the operators in a production IPensequently, the schelthg
system will support the operators with a schedmle&ontrastto jobs screens (Higgins,
1996) that would leave this decisionto the operatorsthemselves Scheduling
rules/heuristics can be used to test different policies and the knovwledgd adwger

will indicateif any constraints are infringed. Higgiméso noteghat human decision
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making withits ability of pattern recognition and setting things iatoontext is part of
an interactive proceskor creaing the Gantt chartln a similar vein,McKay et al,
(2002) alsomaintain that the monitoring schedule execution status ewaluation
performance is important. Furthermptley identify the research opportunity of task
design, i.e. what functions should be automatadd what should be leftot human

control.

McKay et al, (1999) also rightly point out thatlisturbances in th@rocess and the
environment can banticipated, reacted to, and adjusted in the scheduling process. A
manufacturing system is exposed to uncertainty in many formsyasing machine
processing times, machine failures, quality problems, persamdick leave late
supplydeliveries and so forth Although someuncertainties cannot be predicted, there
are some fAsurpriseso that c annhatthe hummitye s e e
during the summer months is higher and may affect the production line and quality of
products, but can be takento account since it is known in advancknerefore a
resource calendar interface (Pinedo, 2005)bmansed for this reaa and also for shert

term conditions, such as planned maintenance and shift schedules.

Additionally, Pinedo (2005)provides other examples ofvarious, important user
interfaces that may be usedascheduling system: plant layoubuting table, capagit
buckets, and throughput data interfacBlant layout and rding table interfacgeare
simple userinterfaces for the input datdhe @pacity buckets interface issedwhen
the time axis is divided into buckets or periods of time, days, weeksor months, in
order to show thautilisation of the line capacity when jobs are assigned to these
buckets.The benefitof suchinformation is that the decisiemaker can be proactive and
make sure that the resources can utéised efficienly over time, e.g.to avoid
generating schedules that would require additional work on weelsams weeks,
whenthe extra workcould in fact,be balanced over several weeks of production. The
throughput data interfacghows information about material waiting to be procsesd,
products delivered, WHevels, FGillevels, utilisation of machines,and so forth
Finally, a column editor could be useful for the scheduecause it displayksts of
jobsin scheduled order dividealverthe machines (Pinedo et al., 1994).
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3.3.2 Flexible objectives over the horizon

McKay et al, (1999)describethat everything chamegover time and one day is nidte
amother, e.g. Monday morning isdifferent to Friday afternoon.Consequently, the
scheduling function must be able to handle both absauod relative time. Absolute
time is calendabased informatiorsuch aghe planned maintenance of machinesile
relativetime refers to the decisions on the rolling horizon affects thdevel of deail
andtype of constraints used to make decisidfor example, ithe nextfew weeks all
the constraintsnaybe relevantvhenspecifig production target levels are to be met, but
sincethe scheduling strategy might be changdde to a future machine installation,
infinite loading may be used tcerable prepaation for production line maintenance.
Stoop and Wiers (1996tate hat the scheduling horizon must be determined long
enough in order to avoid generating swiptimal schedules due to a tebort

scheduling horizon. Hence, it is natural thatghaductivity fluctuates over time.

3.3.3 Feasibility check and fault control

McKay and Wiers(2003 observethat checkingthe consistency ofnput data is
important since data mayamne from many different sourcel® addition,Blazewiczet

al., (200)) proposea feasibility analysis te@rsure that resources, e.machinesaandraw
material, are available for scheduling the jobs. Framinan and Ruiz (2009) point out that
a standard language, such as XML standard, is neededilitate system integration

for scheluling systems. However, may also beimportant to control scheduling
dispatching in reatime, similar tothe knowledgéased adviseproposed by Higgins
(1996), in order to indicatéf any constraints areviolated Hence, breaking soft
constraints coul give a warning and breaking hard constrawitsbe prohibited.

3.3.4 Evaluating scheduling systems

Kempf et al. (2000) concludethat one of thgroblemswith implementing systems in

industry is the difficulty evaluaing the effectiveness of production schules.An
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absolute measurememiay be used tascertairwhether a schedule is good or not on its
own. Furthermore, abenchmark result is needed to be ableobdain an absolute
measurement. Most realorld problems are Nfhard (Garey and Johnson, 19719¢,,

finding the optimal solutions for them c®mputatonally difficult or not possible.An
alternative is to theoretically compute a resuth regardto a stable stateand compare

it against that value. Aelative comparisormeans that two or more schdes are
available and the best among them may be determined. However, if the system is to be
evaluated against a reabrld production systeprealworld historical datacan be used

for the comparison in a relative an absolute approach. Omeay could be to use the
historical data as it is and another could be to use the trends of the historical data.
Manufacturing facilitiesare subject to an everhanging environment and therefore the
historical data needo be updatedStatic measuremerg when thepredictive schedule

iIs measured without considering the dynamics of the real systdite a dynamic
measuremenis when the predictive schedule is tested in the real environwignt
regardto disturbances. The result of the dynamic test would besttised schedule. A
schedule measuremestwhen the schedule itself is evaluaseginstsome objectives,

but a good schedule might still leave a production line in a bad state at the end of the
horizon. For example, leag a production line in a WIBtats that is too lowmay lead

to a problem later on, and therefore #tate measuremelig of importance as well
(Kempf et al., 2000)

When comparinghe results of differentoptimisationmethods one replication is not
enough,if the model or the algorithris stochastic, such &As. Comparing average
results betweervarious optimisation methods will almost alwaygeneratedifferent
outcomesand it may be tempting to proclaim that thethodwith the better average
results is the better one. However, itynee an erroneous conclusjdrecause there is a
risk that the randomness is the cawdethe difference between them. dommon
method is to use a hypothesis testtesting claims:

1 Ho: Optimisation method A (OMA) is not better than optimisation method B

(OMB).
1 Hi: OMA is better(lower) than OMB.
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The hypothesis His the hypothesisan experimentewants to prove correct, but
hypothesisH, cannot be rejectedntil H; has been provestatistically correct. Two
commonstatisticmethodghat canprovewhethe hypothesis His true arghet-test and

the ManAaWhitney test.An unpaired test is based on the difference betwdba
averages of the two groups divided by the standard deviation of the two populations,
and if this fractional number is large it isgsible to reject hypothesisyldnd state that
hypothesis His true Observe that thetest assumethe data sets in comparisare
normally distributedL 6vas, 2006)

The ManAWhitney test is called a ngwarametric testsince it doesnot needany
paraneters such as standard deviation and average, and hersaatcassume thdata
ses are normally distributefLowry, 2012) Hypothesis tests, i.eMannWhitney test
and unpaired-test, for the experimental results in Chapteh&e been used in this

work and can be found in Appendix

3.3.5 Commercial software and real-world case studies

3.3.5.1 Commercial software

A generic job shop scheduling system nan
Built mainly for education and researcht, has also been used in edworld
implementations. The system is able to handle many different environments from single
machine to flexible flowand job shops. The machine environment is modelled directly
in the software which guides the user tothetnecessary settingBifferent predefined
algorithms as well agserdeveloped algorithmsanbe usal. A problemwith using this
softwarewhich isrelated to the validity of the schedugethatthe constraints necessary

for many realworld schedulg problems cannot be modeljatle to the fact that no

real discreteevent simulation software or language is usedrthermore, it is not
designed to be part of an-tine reactive scheduling system and would need to be re
designed (if possiblejn order to handle ctine data Anothertype ofsoftwarewhich is

al so wused mainly for |l earning schedul in

53



Chapter3 Rescheduling and System Support

(Morton and Pentico, 1993). However, the softwsgemsdo be outdatedas itruns only

on MS-DOS. A commercial scheduling tool thaas the possibtly to usediscrete event
simulation is Delfoi PlannefDelfoi, 2012. The simulatiorbased version, Delfoi
Planner Simu, i® web-based scheduling software primariiged forthe analysis of a
scheduling situation and possibly also to generate detailestiglels but without the
possibility of online scheduling and monitoring. The other version, Delfoi Planner Lite,
is without dscrete event simulation suppddcusesmore on the integration with other
systemsandonly supportsa simple finite capacityplanning functionThe two systems
together could possibly support-tine and reactive scheduling, buistnot possiblet
this time. Furthermore, no informatiois available about the optimisation algorithms
used to generate schedules,its capabili of handlingcomplex scheduling problenis

uncertain

ILOG (2012)is the name usedor an umbrella of products supplied by IBMInd the
ILOG solver isthe mostcommon commercial tool for constraints programming
(Gusikhin et al., 2007 For example, aystem based oproducts within ILOG called
Centralized Vehicle Scheduler (CV/8)as developed for the sequencing in a paint shop
at DaimlerChrysler (CVS, 2012). Manyatevorld applications use ILOGroducts
(ILOG, 2012), but the main problem is th#te systemis primarily based on

mathematical programming techniques.

3.3.5.2 Real-world case studies

In a statistical reviewof flow shop scheduling research between 1952 and 1994
(Reisman et al.1997) it has beershown that only5 out of 184 papers dealt withut
applications, which is much less compared to otheras withinthe science of
operations research/managemeéitie study carried out byahangirian et gl.(2010)
illustratesthat even though scheduling applicationsénbeen the most commarnes
amongsimulation applications in manufacturing and business between 1997 and 2006,
only a small portion of them use both real problems and real Hagg alsopoint out

that papers addressing ree@brld problems are important future resear©n. the other

hand Kumar and Nottestad (2006) present a-weatld, decision support system for the
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scheduling of a plastic parts manufacturing Jlinsing discrete event simulation. The
application uses the discredgent simulation software WITNESS aacheuristics to
gererate job allocation for two different lanesamanufacturing lindor plastic parts.

The heuristis used in the simulation includenany different constraintslthough the
model itself is deterministiclt seems that gredictivereactive approacls used in

which a manual periodic and evetitiven rescheduling strategys applied.
Furthermore Excel, Microsoft Accessand Visual Basic for Applications (VBAare
usedto present input and output data for decision support. The result of a scheduling

cycleis the output data repasthich can be printed and delivered to the shop floor.

Dangelmaier et gl.(2006; 2007) present a simulatidrased scheduling system with
reaktime control. Although the experiments their researctare not based on real
world data, the system idea of online reactive schedulibgssd on &ealisticproblem

The systems divided into two parts: predictive scheduling and reactive scheduling. In
the predictive scheduling pathe schedules are generated in two steps. Inntestep

an optimisation algorithm generates a sésasible schedu)decause not all constraints
are considered, e,gbuffer sizes. A simple heurisicsequence each job with the
longest tailorder at the earliest available machine based on the rmtkestage and
then applied for all the stageBhe schedule generated from the optimisation algorithm
is simulated in a discrete event simulation model in order to obtain a valid schedule.
Another simulation is started with thactivated Flow Analyzer Module that may
overide the current schedulby using rules mostly based tme waiting times of jobs

in the system. The schedule from the predictive phase is exenuted manufacturing
floor. Once there is a process disturbatice rescheduling mecham is activated. The
reaktime monitoring and control module starts the simulation evaluation funetien

a disturbanceccurs In order to generate a new schedtue algorithmsareused: an
optimisation reschedulg algorithm that reschedideas fewjobs as possible and the
matchup rescheduling algorithwhich tries to get the current schedule back on track.
Thereafter,a simulation is started together with the Flow Analyzerd the user may
decidewhetherto applythe new schedule avhetherthe curent oneis preferred The
proposed system was implemented in the discrete event simulation software

Tecnomatix eMPlant (Plant Simulation) and partly tested in Dangelmaier ,28I06)
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for a hypothetical flexible flow shop with parallel and identicalcimnesat three stages.

The results show that the combination of simulation and optimis@timetterthanonly

using optimisation or random scheduli@igne when the number of jobhacreasesThe

system proposed by Dangelmaier et, §2006; 2007) hasonly been tested for
theoretical problemsand i mpl e opti mi sation heuri sti
is implemented as module irside discreteevent simulation softwayevhich would

limit its generalusein otherapplicatiors. However,to our bestknowledge,it is one of

few simulationbased scheduling systems ttaal withonline reactive scheduling.

McKay and Buzacott (2000) describe two diffefantustrial reatworld case studies,
onewith ahigh volume low product mix anithe othemwith alow volume high product
mix. The first case studsevealedthat the decisions of the scheduler were too difficult
to handle incomputerisedscheduling softwarewhich wastherefore stopped before
implementation. However, if the product mix had been higiher need for scheduling
software would have been desirable. In the second case satymtgduction planning
system using an evolutionary approach was implemented. The tool was lxitel
with VBA and produced @ntt charts In addition,the necessary perts were printed
and delivered to the shop floor. The scheduling weheratesschedugs in a short

horizon of two daysbut deals withvarious realworld constraints.

McKay and Black (2007¢lescribethe evolution of a realorld scheduling system tha
supports the tasks of the scheduler in a job shop environinestme ways, the shop
may be defined sa a reconfigurable flowshop since several machinesere put
together in order to form a line without intermediate inventory between production
stagesiInitially, a twoweek cyclic schedule was desireahd one of the key issues was
setup reduction and workforce constraints. A first prototype was built in Excel and
VBA, used simple heuristics and presented the resudt@antt chart. Howeverthe
systen has beemleveloped over tenyearperiodinto to a small miriMRP system with
finite capacity. The scheduling or sequencing thak beerdivided into two parts
namely scheduler and dispatcher. The scheduiandlesthe longterm (weeks)
schedling ard the dispatcher handlése shoritterm (two days) reactive dispatching

using heustics. The scheduling system hashumber of different functionalities to
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support the work of the scheduler, such as user interface for modihgrgyedictive

schedule though aGantt chart andrariouskinds of output reports.

3.3.6 Proposed architectures

To briefly summarisethe above detailed reviewgompany confidence irexisting
software toolss reducedbecause modbols do not provide a fair representation af
c 0 mp astheduling probles) due tothe vast simplifications(Tolio, et al.,2010.
FurthermorePinedo (2005glso stateshat many of the commercial systems claim that
their systems can be used with only minor modificatidmsyever,in reality, the
changesrequired are often substantial Nonethelessif a systemwere designed to be
highly modular it would increase the possibility for thesers toexpand their
functionality and save development tinkgaminan and Ruiz (2@) presenta system
architecturewith sucha modular attributéhat entails both production flseduling and
shop floor contrglas shown irFigure 3.1 which illustrates aimplified version of their
proposed architecture

[ MANUFACTURING SCHEDULING ;
SYSTEM

Schedule Genet
Module

Algorithm Generator

Algorithm Library
S Scheduler & Dispatchel

(" Business Logic Unit/
Data Abstraction

|

| Business Information
| System
|

|

Database Manage
Module

Figure 3.1 Extendednodular architecture (Framinan, Ruiz 2010)
The first module Business Logic/Data Abstraction Management Modoiakes sure

that data needed is at the required abstrackmel. The second the Database
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Management Modulestores thedata and handles the import/export of data and
production monitoring data from the business information system. The tinrtIser
Interface Module,handles the necessary usgterfaces while the fourth one the
Schedule Generator Moduleandles the foctions in order to generate schedules.

The usefinterface module consists of five parts which thefirst is the output sub
module that presents necessary Gantt charts and other information. The second part is
the scenario management subdule which can answer whatf questions that may
arise,e.g, what happens when the night shift is cancéll€de third part is the system
maintenance sutmodule which handlesthe shop configuration andproduct
information.The fourth part is the scheduling contrabsnodule that handles reime

data from the production. tthecks feasibility and input dat@ith each new scenario

and warns the user when need€le fifth part is the lgorithm generator interface that

allowsusers to createew algorithns through auserfriendly interface.

The schedule generatonodule consists of an algorithm library, algorithm generator,
scheduler & dispatcher, and gpeocessorThe algorithm librarycontainsthe different
optimisation algorithmswhile thealgorithm generatorud-module is mainly an object
that generates algorittenbased orinformation inthe algorithm generator interface in
the user interface module. The Scheduler & Dispatcher use algorithms from the library
In addition,a two-step schedule generation is posedin which the schedule(sfrom

the first steptakes major constraints into consideration and the second akep
incorporats those minor constraints thaive beengnored in the first steplhe main

task of the prgrocessor sumoduleis to find cut which algorithms are suitable for the
scheduling problemat hand.

Framinan and Ruiz (2010urtherclaimt h a 't t-ehses efinnt oi na | constr al
separated from the schedule generation processisedivhen the actual scheduls i
constructed. Thigs due to the fact that the architecture p uis rpamly ® use
mathematical optimisation methods and niearistics and there is no support for
discretee v e n t simul ation. -elScsea@x ¢lal decamwomeé r &ir

when building a discreteevent simulation modgbut a simulation model may include
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manymore constraintdn fact,the effectof excludingdifferent constraintsanbe tested

in the simulation modddy some validation and sensitivity tests.

Li et al, (2012) propose a newnoduar design fora simulationbased scheduling
system for semiconductor manufacturing lind$e architecture is divided into a
software layer, a simulation layeand a data layer. They use a modular approach in
which simulation models, algorithms, etare divided into different modules. Both
predictive (dispatching rules) and reactive algorithms are, bsethe main focus is on

the automatic geneten of simulation models based on theegrated and modular
approach of simulatiomata. Furthermore, the is no informationwhether on-line

reactive scheduling is possiblehen integrated into a rewlorld system.A similar
approach of automatically generating disci@tent simulation models proposed by

Horn et al, (2006). A successful implementatiam a realworld systememployeda
five-step simulationbased optimisation procedure using different heuristitewing

the usetto modifythe schedule and finallyeneratinga detailed operational plan, i.e.

Gantt chart.Sivakumar and Gupta (2006)gppose an fdi mpl ement at
another similar system usinige automatic generation of simulation models. Th&ate

that a simulation model would require much maintenaasdhe circumstances change

if the model itself is not generated automdhjcalrhe system includes the generation of
schedules ira predictivereactive manner, but the output reports prodwggaearo be

static, i.e, not updated until a rescheduling is carried out. The system was implemented
at a realworld facility andit allows the userto use bot h-iflbe sGehart

experiments and the scheduling function.

Sonet al, (2003) describéhe structure and architecture of a simulatimesed reatime

shop floor control system for discrete part manufacturing. Disenetat simulation
models in ARENAare automatically generatedy using a model generator and a
resource model, i.ethe database in MS Access 97, and a Messmged Part State
Graph (MPSG) shop level execution model. Most of the software tool has been
develomd in VBA. The control system can be used for either flow shops or job shops
and its purpose i2o work on automatic systembut it may also operate at manual

workstations as long as feedback is sent back to the system. The simulation

59



Chapter3 Rescheduling and System Support

communicates with ahop level executor and interacts with different external databases,
such as master production schedilee scheduling function is similar to other hybrid
methods (e.gMatswra et al., 1993; Barua etf., 2005). A commercial scheduler was

used to findgood schedules withoudmploying any simulatioAbasedoptimisation
technique Each resource, e,gnachine to be scheduled, is associated with a dispatch

list which is a sequence of jobs to be scheduledhe ordemwhichis to be kept, but the
simulationmodelis able to run in a FCFS mode as well. The réate simulation is

used as the central controller that keeps track of the current status of the system and
sends required messages. The simulation sends messages to the lower level controllers

and therreceives feedback from the system.

3.4 Identified functions to include in a system architecture

Following the comprehensive literature reviewresented in chap®r2 and 3, a
completelist of the necessaryunctions that can be included in the architecofra
scheduling systencapableof handlingrealworld production scheduling problenis
provided in Table3.1.

Table3.1 The main areas of modular scheduling system architecture

Identified main areas Identified functions

DES for complex problems (Laguna and Marti, 2003): multiple
constraints (Ribas et al., 2010), uniform or unrelated machines (R
et al., 2019 multiple objectives (Gary et al., 199.

Automatic model generation (Sivakumar and Gupta, 2006).
Model properties: Flexibility, Speed, Details (Koh et al., 1996).

Genetic Algorithms (GA) + DES (April et al., 2003).
Simulationbased optimisatior] Steady state GARogers and Prugd&ennet, 199Pandparallel
evaluationgLi and Wang, 2008)

Schedule representation: Global scheduling (direct) (Sankar et al.
2003; Kim et. al., 2007), Dispatching rules (Baker and Trietsch, 2(
and other heuristics (indirect) (McKay and Wiers, 1988)rid
solutions (Roundy &dl., 1991; Barua «dl., 2005).

Algorithm generator (Framinan and Ruiz, 2010).
Scheduling Automatic algorithm selection (Framinan and Ruiz, 2010).
Metaheuristics (Laguna and Marti, 2003).

Hyperheuristics (Burke at al., 2003).

Setuptime reduction (Allahverdi et al., 2008).

Flexible and configurable algorithms (McKay et al., 2002).
Adaptive and learning by algorithms (McKay et al., 2002).

Discreteevent simulation
(DES)
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List of jobs to be dispatched (Son et al., 2003).
Dispatching (oHine) Switching (Matsiura et al., 293)
Priority index hybrids (Roundy ail., 1991; Barua «dl., 2005)

Rescheduling policies: Periodic rescheduling, Exdivten
rescheduling, Hybrid rescheduling (Church and Uzsoy, 1992;
Rescheduling Herrmann, 2006)

Rescheduling methods: Robust schedylComplete regeneration,
Right-shift scheduling, Matclup scheduling (Viera et al., 2003).

Scheduling algorithms Scheduling algorithms library (Framinan and Ruiz, 2010).

Multiple objectives (Gary et al., 1995).

Objectives Flexible objectives (McKay el 1999).
Validation experiments (Kempf et al., 2000

Experimentation module Whatif scenariosKraminan and Ruiz, 2010; Sivakumar and Guptg
2006).

Integration with other system Izn(;(ig;atlon and import/export (Pinedo, 2005; Framinan and Ruiz,
Input data (Framinan and Ruiz, 2010).

Database Output data (Framinan and Ruiz, 2010).

Monitoring data (Framinan and Ruiz, 2010).

Data feasibility (Blazéwicz eil, 2001) and consistey (McKay and
Wiers, 2003) check.

Reattime dispatchingdult control: Soft constraints, Hard constraint
(Higgins, 1996)

Fault control

Model input data: Plant layout (Pinedo, 2005), Shop configuration
(Framinan and Ruiz, 2010), Routing table (Pinedo, 2005), Produc
information (Framinan and Ruiz, 2010).

Scheduling input data: Scheduling horizon (Stoop and Wiers, J1996
User interactivity (Higgins, 1996; McKay and Black, 2007), Resou
calendar (Pinedo, 2005; McKay and Wiers, 1999), €lgnned
maintenance, Machine repairs, Prodsetnples

Scheduling outpt data: Capacity buckets (Pinedo, 2005), Gantt ch
(McKay and Buzacott, 2000), Column editor (Pinedo et al., 1994),
output reports (Kumar and Nottestad, 2006).

Ontline data: Schedule executistatusProduction status,
Performance measures (McKay ket 2002), WIP levels (Pinedo,
2005), User interactivity (Higgins, 1996).

Algorithm generator (Framinan and Ruiz, 2010).

Userinterfaces

3.5 Concluding remarks

As a general conclusiomé impact of uncertainty is systematically underestimated by
academic research and a coon approach to uncertainty is to react and reschedule
(McKay and Wiers, 1999). Different methodsth which to react and rescheduéand
create schedules thare robust or reactive to re&orld disturbanceshave been
identified in this chapterHowever solving the sequencing problems is not engugh

since realworld schedulers are faced with di@myday challenges. In order to handle the
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scheduling taskncluding uncertaintyan integratedscheduling systerandnot only an
intelligent algorithmis neededThis review hasdentified the mostimportant functions
and features that need to bandled bysuchan integratedscheduling system, such as
simulationbased optimisatiorflexible algorithms, system integration capability, within
a modulararchitecture Chaptes 4 and5 further address the internal details of such

scheduling system architectdor handlingmost of the important functions identified
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Chapter 4

4 A Web Services-based Architecture for Industrial
Scheduling

This chapter describes the ovéralstem architecture of the Web servitesed
industrial scheduling system, which is designed to be a software architecture to solve
the limitations of existing scheduling software used in industry. This architecture is
based on the generic simulatibesed optimisation platform, OPTIMISE, introduced in

(Ng et al., 2008), and is customised and extended for industrial scheduling. Hence, the
architecture is called OPTIMISE Scheduling System, or OSS. Since a Web services
based simulation system like OSS ifosely related to Webased simulation
applications, this chapter begins with a brief introduction and literature review of Web
based simulatioSection 4.1)as well as some existing platforms found in the literature
(Section 42). A short introduction bthe OPTIMISE architecture is presented in
Section 43, after which the chapter focuses on OSS and its core components (Section
4.4).

4.1 Web-based simulation

The internet has grown considerably in the last two decades and it is not only a platform
for information sharing, but also for new applications within many different areas.
Simulation applications have started using the concept ofhEsed simulation (WBS)
moving from more traditional local desktop solutioRgshwick (1996) states that WBS
frepresens the connection between the web and the field of simubation and By r n
al ., (2010) thd esé of resourddBad tecknoldgies offered by the World
WideWeb (WWW) for interaction with client and server modelling and simulation
toolso . C odnip desktep systems, some advantages can be identified when-a Web

based system approach is used:
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1 Accessibility: A Webbased system enables users at different locations to access
the datafrom any computer that has internet available. Furthermore, a Web
based system is also accessiblelufiirs (Veith et al., 1999).

1 Crossplatform capability: Such a solution is flexible because the web
applications can be independent of computer type or operating system (Jin et al.,
2010; Byrne et al., 2010).

1 Controlled acess: A Wekbased system can use passwords andacs@unts to
restrict the access of the system. (Veith et al., 1999)

1 Licensing: The cost of simulation software and computer hardware can be high
for a company (Fishwick, 1996), especially if there ar@iregqments for parallel
or distributed evaluations. Using a Whhsed approach means licenses can be
used when these are required from within a company or an external service
provider. The total cost of simulation projects can be substantially reduced
(Wiedemann, 2001).

1 Maintenance: The maintenance is carried out on the server and the changes take

effect without needing to involve actual client applications. (Byrne et al., 2010)

However, there are drawbacks to Wmdsed systems, some of which follow:

1 Graphtcal user interface limitations: Interfaces supported by the web are limited
(Suh, 2005), and it may require too much effort (Wiedemann, 2001) creating
complex Wekbased interfaces compared to deskiaped interfaces.

1 Security vulnerability: Welbased apjdations are vulnerable to malicious
Internet attacks (Suh, 2005).

1 Licensing: Some software vendors may only allow a single place usage
(Wiedemann, 2001).

1 Network traffic delays: Luo et al., (2000) state that distributed simulation clients
may take longeto execute compared to local simulation because of network

traffic delays.

Byrne et al., (2010) claim that the research within WBS s still in its infancy and the

number of realvorld applications is still low. When it comes to Wehsed SBO
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systems, ther are only a few publications, which are briefly reviewed in the following
subsection.

4.2 Existing Web-based systems for SBO

Luo et al., (2000) describe a Wéhsed distributed SBO system that is based on Java.
The system consists of three parts: a manageroonsole, a web server and central

controller, and the simulation clients, segure 4.1 freely redrawn from Lou et al.,
(2000).

[ Client )
1 [ Client )
Web Server ¢ e
Central Control .
(OCBA) ( Client )
{ JClienti_}

Figure 4.1 Webbased distributed simulation ggm.
A Web-browser is used to start a java application, i.e. the management console which is
used to set up and start experiments for-tiee@ monitoring of the clients and to show
the simulation results of present and past optimisations. The web sedvereacentral
controller handle the assignment of jobs to be evaluated by the clients and use a
sequential optimisation algorithm for Optimal Computing Budget Allocation (OCBA).

The clients are the computing resources used for the simulation evaluations.

Another Webbased SBO system has been proposed by Yoo et al.,, (2009). Their
framework for Wekbased SBO uses a distributed platform, Parallel Replicated
DiscreteEvent Simulation (PRDES), to execute the simulation evaluations;igese

4.2 freely redrawn from Yoo et al., (2009).
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Optimisation service )
(NP algorithm)

/ Simulation service

Repository
_ (EOCBA & simulation) /

(Store simulation

“Simulation service
\__ (EOCBA & simulation) /

Figure 4.2 Webbased SBO framework.

A Web-page is used as a user interface, making it accessible through-brd\ieder.

The optimisation service uses aptimisation engine based on an -Hlgorithm and,
when a promising solution is found, it is sent to the simulation service through the
repository. The simulation service is not entirely an evaluative client, since it uses a
variant of the OCBA algorithnealled EOCBA, which takes the computing power into

account as well. The results are stored in the repository, i.e., database.

4.3 OPTIMISE: A web services-based SBO platform

OPTIMISE (OPTIMisation using Intelligent Simulation and Experimentation) is
conceivel as a generic Internet computing platform that tightly integrates different
DiscreteEvent Simulation (DES) systems with Artificial Intelligerioased
optimisation tools in a Web serviebased platform that can be integrated with other
industrial/busines information systems for valid simulation and optimisation runs (Ng
et al., 2008). By generic, it is designed to be a computing platform that can be used to:
(1) address a wide range of reabrld optimisation problems commonly found in
manufacturing andogistic applications; (2) facilitate the combined use of various
search algorithms (e.g., Genetic Algorithms (GA) and local search); (3) be able to
connect to different types of simulators and Discietent Simulation (DES) packages
through the SimAgentconcept (se€&igure4.4), and (4) support inherently parallel and
distributed simulation to significantly reduce the time spent on simulation evaluations.
The platform is designed to be mtier client/server based in which abmplex
components, including various métauristic search algorithms, neural netwbdsed
metamodels, deterministic/stochastic simulation systems and the corresponding
database management system are integrated in a parallel and distributed platform an
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made available to general users for easy access, anytime, anywhere, through Web

Services technology (Ng et al., 2007).

Even though the term cloud computing was not in popular use when OPTIMISE started
to be implementedin 2006, it actually bears manymmon features that a cloud
infrastructure should provide. Particularly, the concept of dual parallelism in cloud
computing is supported by OPTIMISE, because it supports (1) multiple users from
several companies/institutions that may be geographicallgbdittd; and (2) running
multiple simulations for different simulation models developed using various simulation

languages/packages.

To support these goals, OPTIMISE was designed with the following important features:

1 Web services: using a Web page iesalWeb browser as user interface, which
Yoo et al., (2009) adopt, is advantageous with regard to accessibility and cross
platform capability. Although, approaches using client applications, e.g.-.NET
applications are supported as well.

7 Distributed simudtions: distributed simulations facilitate the simulation
evaluations that are to be run in parallel on different computing nodes/cores,
which is important to reduce the total execution time for SBO. Network traffic
delays, identified by Luo et al., (200@®re believed not to cause any problems,
due to the improvements in the network technologies over the years.

1 Remote databadeusing a database to store optimisation results similar to Lou
et al., (2000) supports the storage and access to experimdatal da

1 Modularity: The system is designed to be highly modular, since it would
increase the possibility to expand the functionality and save development time
(Pinedo, 2005).

1 Security: The security is taken into account in order to avoid unauthorized
accesse.g., by using security certificates.

T User s: Di fferent user accounts are n
so that an ordinary user does not have administrator privileges. Furthermore, it is

important that multiple users can use the systetmeasame time.
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1 Researcli to facilitate further research on SBO using hybrid search methods for
reaktime decision making and/or weekly/daily scheduling.

Resembling the system architecture commonly used for cloud computing, the
OPTIMISE systems architecturgFigure 4.3) is composed of multiple server
components (cloud components) communicating with each other dvese coupling
mechanism such as a messaging queue. OPTIMISE fulfils the definition of cloud
computing, as it incorporates the ideas of virtualisation and distributed computing using
Web serviceseachnologies. With the XML Web services platform, OPTIMISE can be
deployed as a thre@er architecture that consists of the following three layers: 1)
OPTIMISE client; 2) OPTIMISE server; 3) data sources. This is a highly flexible and
scalable solution andhe separation is intended to support industrial IT service
providers in delivering and supporting both computing services and technical
consultancies to a wide range of industries, national and global, from SMEs te multi

national enterprises.

Optimi

XML : XML
@
_— XML { = XMLi _XM
|
Data P

Sources ‘ External Data Data

A g Sources Sources
Simulation

Provider

a. SME without simulation resources b. SME with simulation resources

Data 1
>«
XML Sources |

i Data
XML ' Sources

XML ‘
XML__ | N Data ‘
Sources |

IT/Simulation
Department

¢. Multinational Enterprise

Figure 4.3 With XML Web services, OPTIMISE can be deployed with high flexibility
and scalability.
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For example, as illustrated iRigure 4.3a, a SME that does not possess its own
simulation esources and required computing capacity can run the OPTIMISE client and
data sources layer locally and connect to a remote OPTIMISE server that houses the
DES systems and optimisation engines, by contracting an Optimisation Services
Provider (OSP). The s#& kind of configuration can also be applied to a rmational
enterprise in which multiple OPTIMISE clients can connect to the optimisation services

supplied by a central IT department, which acts as an internal EXgRg4.3c).

As shown in Figure 4.4, the OPTIMISE architecture consists of a number of
optimisation engines, surrounded by a set of OPTIMISE Server Components divided
into three tiers: (1) Web Server; (2) Optimisation, and (3) Simulatidoisystem. The
optimisation engine (OptEngine) in the optimisation tier is the most important
component for an SBO application, because it provides the core functionality for a

optimisation/experiment and acts as the hub for coordinating other functions.
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Figure 4.4 The generic OPTIMISE system architecture.
The web services function, hosted by the Webserver, listens to the XML requests from
the client tier, such as start an SBO (through OptManager) or datad from the
optimisation database (OptDB). Th@plementationof OPTIMISE started in 2006.
While several extensions to support new technologies and applications have been made
over the years, the core components have not been changed. Since these core
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components are used or extended in OSS, they are briefly introduced in this section and

described in detail in the following sigections.

4.3.1 Optimisation manager and database

The Optimisation Manager (OptManager) is a Windows process that listens to the
request from the Web Server to launch different OptEngines, according to the settings
specified in the client applications. Data required to start an SBO procedure may
include: (1) simulation settings (e.g., waup time, simulation horizon, number of
replicaions and production line configuration), (2) objective function, (3) list of input
variables, (4) list of output variables, (4) constraints to input variables, (5) choice of
optimisation algorithm, and (6) optimisation parameters (e.g., population sigepeer

rate, and stop criterion). Currently, OPTIMISE supports several optimisation
algorithms, such as meta modaesisted hill climbing and evolutionary algorithms.
However, meta modalssisted hill climbing algorithmsare not used in the
implementatioc. of OSS (Chapter 6) or in the genetic algorithm (Chapter 5).
Furthermore, new algorithms can be added easily, by compiling the modified algorithm
core with the ObjeeOriented libraries which OPTIMISE supplies. Generic algorithm
software or templates needesearch in its owmrea (Vo3 and Woodruff 2000).
OPTIMISE has an Objeddriented class library that allows new algorithms to inherit or
override class methods for selection, crossover, and mutation operations which are
commonly used in any evolutionamigorithms. There are also common function
libraries for training metanodels, data normalisations, and communication with other
components. These enable new algorithms to be quickly developed or customised and
fit into the OPTIMISE framework by reuse. 3uc gener i ¢ support of
development and ease of launch during optimisation runs is a very important feature for
the experiments in comparing different genetic representations (Chapter 5) and have

generated the experiment results presentedhapter 7.

By letting all OptEnginessave their optimisation settings and other experiment results
in a central database, i.e., OptDB, OPTIMISE supports the following features:

70



Chapter4d A Web servicelBased Architecture for Industrial Scheduling

1 Initial solutions, their quality and diversity, have a huge impact on the
perfamance of an optimisation run, especially when a GA or other population
based algorithms are used. All the experiment results are stored in the OptDB, to
enable a user to choose the set of initial solutions from previous experiments,
when starting a new dimisation run. This can also be used in combination with
other experimental designs, e.g., Design of Experiments (DoE), provided in the
OPTIMISE client applicationddowever, DoE is not used in the implementation
of OSS (Chapter 6) or in the genetic algon (Chapter 5).

1 Dynamical changes to mekeeuristic algorithms during the optimisation run are
especially useful when global search methods, e.g., GAs, are used for
exploration in a first stage followed by local search methods, e.gclimibing
algorithms, in order to further improve the optimisation reddtiwever, local
search methods are not used in the implementation of OSS (Chapter 6) or in the
genetic algorithm (Chapter 5).

1 Fault toleranceé Faults in a simulation evaluation can easily be deteeind
recovered by ratarting the run with another SimAgent using timgs for the
communication. If a simulation model returns invalid results, due to model
deficiencies, it will be shown in OPTIMISE Browser, with which it is possible
to browse new andistorical optimisation data from OptDB. If the OptEngine
crashes due to software faults, OPTIMISE indirectly facilitates -eewovery,
by allowing a user to start an OptEngine andoexl the previous simulation
records saved in OptDB.

4.3.2 Simulation components

Parallel simulation evaluations may be needed to speed up the SBO process. Therefore,
the simulation components are located in a tier of their own, decoupled from the server
components, to offer a modular solution that enables them to be widéaiputed.
Different simulation systems, e.g., commercial software or developed .Net applications,
are connected to SimManager homogenously by using SimAgents in the SimAgent tier.
To launch the simulation software used in a particular optimisatiorthhar§imAgents

use the software specific BackEnd objects that support Distributed Component Object
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Model (DCOM) and Socket communications for connecting to different simulation
systems. Furthermore, BackEnd protocols are used to be able to communicéte with
simulation software, e.g., load model, start simulation run, and collect output data. A
standard format, XML, is used to return the output data via SimManager, to the

OptEngine for evaluation and storage.

Unlike the SimManager described in Biles akeijnen (2005), which needs the
software for the statistical methodology and optimisation techniques to be able to
analyse the simulation results, the SimManager in OPTIMISE is a generic and light
weighted job dispatcher. Several SimAgents can be staftetie same computer,
depending on the computing capacity, i.e., number of processor cores. The SimManager
registers all of the SimAgents that have been started, which means that it can dispatch
several jobs received from OptEngines to multiple simulaggstems running in
parallel. The SimManager will send a job that is pending in the message queue to the
first available SimAgents that fulfil the correct software requirements. The SimAgent

will be marked as busy until the result is sent back to SimManage

Any applications that use the Web services provided by OPTIMISE can be called an
OPTIMISE client application. In order to supply the data needed to run SBO for the
industrial scheduling problems, the GUI was extended to connect to the OPTIMISE
Web sevices to launch SBO for industrial scheduling applications. On the other hand,
there are some generic applications which have been developed for the
monitoring/control of the OPTIMISE Server Components and management of
optimisation project data. With gemg it means that they have not been specifically
developed for a particular application. OPTIMISE Browser is useful for many
optimisation projects and is an example of such a generic application. OPTIMISE
Browser reads the data from OptDB, presents #ta th tables and graphs, and can be
used to analyse the data. How the OPTIMISE framework and client applications are
customised for industrial production scheduling is the topic of the next section.
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4.4 OPTIMISE Scheduling System (OSS)

The architecture ofne OPTIMISE Scheduling System (OSS) (Frantzén et al., 2010;
Frantzén et al., 2011) can be seeRigure4.5.

Figure 4.5 Architecture of OPTIMISE Scheduling Sys{see also Figuz 4.6 for the

information exchanges between the modules)

73
















































































































































































































































































































































































































































































































































