
1

A real-time simulation-based
optimisation environment for

industrial scheduling

Marcus Frantzén

A dissertation submitted in partial fulfilment of the requirements for

the degree of:

Doctor of Philosophy

April 2013

Sponsored by the University of Skövde, Sweden

i

Abstract

In order to cope with the challenges in industry today, such as changes in product

diversity and production volume, manufacturing companies are forced to react more

flexibly and swiftly. Furthermore, in order for them to survive in an ever-changing

market, they also need to be highly competitive by achieving near optimal efficiency in

their operations. Production scheduling is vital to the success of manufacturing systems

in industry today, because the near optimal allocation of resources is essential in

remaining highly competitive.

The overall aim of this study is the advancement of research in manufacturing

scheduling through the exploration of more effective approaches to address complex,

real-world manufacturing flow shop problems. The methodology used in the thesis is in

essence a combination of systems engineering, algorithmic design and empirical

experiments using real-world scenarios and data. Particularly, it proposes a new, web

services-based, industrial scheduling system framework, called OPTIMISE Scheduling

System (OSS), for solving real-world complex scheduling problems. OSS, as

implemented on top of a generic web services-based simulation-based optimisation

(SBO) platform called OPTIMISE, can support near optimal and real-time production

scheduling in a distributed and parallel computing environment. Discrete-event

simulation (DES) is used to represent and flexibly cope with complex scheduling

problems without making unrealistic assumptions which are the major limitations of

existing scheduling methods proposed in the literature. At the same time, the research

has gone beyond existing studies of simulation-based scheduling applications, because

the OSS has been implemented in a real-world industrial environment at an automotive

manufacturer, so that qualitative evaluations and quantitative comparisons of scheduling

methods and algorithms can be made with the same framework.

Furthermore, in order to be able to adapt to and handle many different types of real-

world scheduling problems, a new hybrid meta-heuristic scheduling algorithm that

combines priority dispatching rules and genetic encoding is proposed. This combination

is demonstrated to be able to handle a wider range of problems or a current scheduling

ii

problem that may change over time, due to the flexibility requirements in the real-

world. The novel hybrid genetic representation has been demonstrated effective

through the evaluation in the real-world scheduling problem using real-world data.

iii

Acknowledgements

I would like to express my gratitude to my academic supervisors, Professor Philip

Moore, Professor David Stockton and Doctor Amos Ng, for their support and guidance

during my research study. Special thanks to Amos who made me see the possibilities

rather than the difficulties and gave me valuable comments during my research.

Many thanks also to all of my colleagues at the Centre for Intelligent Automation who

supported me and gave me a great place at which to work. Among my colleagues, I

particularly thank: Martin Andersson for helping me realise many of my ideas; Mats

Jägstam who convinced me to continue with research studies; Anna Syberfeldt for her

good company and for ensuring that I had the time to complete my thesis; Tehseen

Aslam, Matias Urenda Moris, Catarina Dudas, and Leif Pehrsson who shared the

research journey with me; Ingemar Karlsson, and Jacob Bernedixen for their good

company and for their support, and Vera Lindroos for her language help in this thesis.

My gratitude to the University of Skövde for its financial support and to the partner

company for its extensive involvement in this research study. Their contribution made

completing the thesis possible.

I would also like to express my gratitude to my parents for supporting me during a hard

time in my life. Finally, I would like to dedicate this work to my wonderful wife,

Camilla Frantzén, for her unwavering support and understanding during the research

study and for her positive approach to life.

Marcus Frantzén

Skövde 2013

iv

Declaration

I declare that this research thesis report is my own work and every effort has been made

to clearly point out the contributions and materials from others, by providing references

and acknowledgements. I declare that the work was solely conducted during the

registration for the degree of PhD and that it has not previously been submitted for any

other academic award. I further declare that I obtained the necessary authorisation and

permission to carry out this research.

v

Table of Contents

Abstract ... i

Acknowledgements ... iii

Declaration .. iv

Table of Contents ... v

List of Figures .. xii

List of Tables... xiv

List of Acronyms .. xvi

Chapter 1 .. 1

1 Introduction ... 1

1.1 Research background ... 1

1.1.1 Challenges of manufacturing industry .. 1

1.1.2 State of the art: a brief overview ... 3

1.2 Aim and objectives ... 6

1.3 Research methodology ... 7

1.3.1 Qualitative, quantitative, and multi-method research 7

1.3.2 Different research strategies .. 8

1.4 Scope .. 11

1.5 Thesis organisation ... 12

Chapter 2 .. 13

2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies 13

2.1 The production scheduling problem ... 13

2.2 Categories of scheduling problems .. 13

2.3 Hybrid flow shops .. 15

2.3.1 Description of hybrid flow shop scheduling problem notation: 15

vi

2.3.2 Machine characteristics ... 16

2.3.3 Job constraints ... 17

2.3.4 Objective function ... 19

2.4 Scheduling methodologies ... 20

2.4.1 Optimisation-based approaches .. 21

2.4.2 Artificial intelligence-based approaches ... 22

2.4.3 Genetic algorithms .. 24

2.4.4 Dispatching rules approaches .. 29

2.4.5 Simulation-based approaches .. 31

2.4.6 GA or dispatching rules for simulation ... 33

2.5 Assumptions usually made in scheduling research .. 35

2.6 Scheduling objectives in real-world problems ... 37

2.7 Concluding remarks ... 38

Chapter 3 .. 40

3 Rescheduling and System Support ... 40

3.1 Uncertainty and rescheduling ... 40

3.1.1 Rescheduling environments .. 42

3.1.2 Completely reactive approaches ... 43

3.1.3 Predictive-reactive rescheduling policies .. 43

3.1.4 Rescheduling methods .. 44

3.1.5 Direct, indirect and hybrid representation of schedules 45

3.2 The scheduling task .. 47

3.2.1 Functions of the production scheduling task ... 47

3.3 System support ... 48

3.3.1 User-interfaces and human control ... 49

3.3.2 Flexible objectives over the horizon ... 51

vii

3.3.3 Feasibility check and fault control .. 51

3.3.4 Evaluating scheduling systems ... 51

3.3.5 Commercial software and real-world case studies 53

3.3.6 Proposed architectures .. 57

3.4 Identified functions to include in a system architecture 60

3.5 Concluding remarks ... 61

Chapter 4 .. 63

4 A Web Services-based Architecture for Industrial Scheduling .. 63

4.1 Web-based simulation .. 63

4.2 Existing Web-based systems for SBO .. 65

4.3 OPTIMISE: A web services-based SBO platform ... 66

4.3.1 Optimisation manager and database.. 70

4.3.2 Simulation components ... 71

4.4 OPTIMISE Scheduling System (OSS) ... 73

4.4.1 Scheduling functions and features included in OSS 75

4.4.2 OPTIMISE Information System ... 78

4.4.3 Scheduling operational steps and system communication 81

4.4.4 Rescheduling procedure .. 84

4.5 Concluding remarks ... 86

Chapter 5 .. 87

5 Hybrid Genetic Representations for Industrial Scheduling .. 87

5.1 Predictive and realised schedule ... 87

5.1.1 Indirect predictive schedule .. 88

5.1.2 Direct predictive schedule ... 89

5.1.3 Predictive schedule and sequence dependent setup times 90

5.1.4 Schedule representation for predictive and realised schedules 91

viii

5.1.5 Permutation versus non-permutation schedules .. 92

5.2 Optimisation algorithm representation ... 93

5.2.1 Hybrid genetic representation ... 94

5.2.2 Scheduling approaches in the GA ... 95

5.3 Optimisation algorithm steps .. 98

5.4 Optimisation algorithm operators ... 101

5.4.1 Initialisation .. 101

5.4.2 Job sequence crossover ... 102

5.4.3 Job allocation crossover .. 102

5.4.4 Dispatching rule crossover .. 102

5.4.5 Job allocation mutation ... 102

5.4.6 Dispatching rule mutation ... 102

5.4.7 Sequence mutations ... 103

5.5 Optimisation methods ... 108

5.6 Concluding remarks ... 109

Chapter 6 .. 110

6 A Full-Scale Industrial Case Study ... 110

6.1 The industrial case study .. 110

6.1.1 The scheduling problem .. 111

6.1.2 The real-world production system .. 112

6.1.3 The simulation model .. 114

6.2 The OSS implementation and integration overview 117

6.2.1 Input data module .. 119

6.2.2 Shop floor module ... 119

6.2.3 Predictive- and dispatching algorithm library ... 119

6.3 Scheduling user-interfaces.. 120

ix

6.3.1 Input data client ... 121

6.3.2 Scheduling client user-interface .. 123

6.4 Predictive schedule user-interface .. 127

6.4.1 Optimisation progress ... 129

6.4.2 Gantt chart ... 129

6.4.3 Stock levels ... 130

6.4.4 Export input and output data ... 130

6.5 Realised schedule user-interface .. 130

6.5.1 Schedule execution status ... 130

6.5.2 Line status ... 131

6.6 Dispatcher client user-interface .. 134

6.7 Scheduling scenarios .. 137

6.8 Real-world deployment stages ... 140

6.9 Stage 1: simulation model validation ... 141

6.10 Stage 2: line schedule validation .. 142

6.11 Stage 3: workstation schedule validation ... 143

6.12 Stage 4: rescheduling validation ... 145

6.13 Stage 5: PDA program validation .. 150

6.14 Stage 6: real-world validation .. 152

6.15 Concluding remarks ... 153

Chapter 7 .. 154

7 Quantitative Results and Analyses ... 154

7.1 General settings .. 154

7.1.1 Weighted-sum objective function ... 154

7.1.2 Scheduling scenarios ... 158

7.1.3 General optimisation settings .. 159

x

7.2 Results with setup-reduction mutation ... 159

7.2.1 Analysis ... 161

7.3 Results of the predictive scheduling ... 162

7.3.1 Bottleneck analysis.. 162

7.3.2 Different optimisation methods... 165

7.3.3 Results of different optimisation methods .. 166

7.3.4 Dispatching rule frequency ... 168

7.3.5 Performance analysis .. 172

7.4 Results with reactive scheduling .. 174

7.4.1 Experimental settings .. 174

7.4.2 Indirect approach ... 177

7.4.3 Direct approach ... 177

7.4.4 Hybrid approach .. 178

7.4.5 Comparison of the optimisation methods ... 179

7.5 Comparison of predictive and reactive scheduling results 180

7.6 Discussions ... 181

7.7 Concluding remarks ... 181

Chapter 8 .. 183

8 Conclusions and Future Work .. 183

8.1 Conclusions .. 183

8.2 Contributions to knowledge ... 186

8.3 Future work .. 189

8.3.1 Benchmark problems .. 189

8.3.2 Schedule robustness and hybrid methods ... 189

8.3.3 Integration ... 190

References .. 191

xi

Appendix A: Carrier Flag Client .. 208

Appendix B: Dispatching Client User-interface .. 209

Appendix C: Predictive Scheduling Performance Results Scenario 1 217

Appendix D: Predictive Scheduling Performance Results Scenario 2................................... 220

Appendix E: Reactive Scheduling Replication Results ... 223

Appendix F: Predictive and Reactive Scheduling Hypothesis Tests 225

Appendix G: Simulation model data .. 231

Appendix H: Simulation model in C# .. 243

Appendix I: Genetic Algorithm ... 247

Appendix J: List of Publications .. 248

xii

List of Figures

Figure 1.1 Research methodology adopted. .. 10

Figure 2.1 linear order crossover. ... 27

Figure 3.1 Extended modular architecture (Framinan, Ruiz 2010) 57

Figure 4.1 Web-based distributed simulation system. .. 65

Figure 4.2 Web-based SBO framework. ... 66

Figure 4.3 With XML Web services, OPTIMISE can be deployed with high flexibility

and scalability. ... 68

Figure 4.4 The generic OPTIMISE system architecture. .. 69

Figure 4.5 Architecture of OPTIMISE Scheduling System (see also Figure 4.6 for the

information exchanges between the modules). .. 73

Figure 4.6 Operational steps and system communication (see also Figure 4.5) 82

Figure 4.7 Rescheduling flowcart. .. 85

Figure 5.1 Gantt chart of a two stage production using FCFS. 89

Figure 5.2 Gantt chart of a two stage production using direct schedule. 90

Figure 5.3 Gantt chart with setup times and FCFS. .. 91

Figure 5.4 Gantt chart with setup times and direct schedule. ... 91

Figure 5.5 The hybrid genetic representation. .. 94

Figure 5.6 Direct, indirect, and hybrid approach. ... 96

Figure 5.7 Direct representation of an operation schedule. .. 96

Figure 5.8 Indirect representation of an operation schedule. .. 98

Figure 5.9 A hybrid of direct and indirect representation. .. 98

Figure 5.10 Flow chart of the optimisation algorithm steps. .. 99

Figure 5.11 Reproduction in the optimisation algorithm. ... 100

Figure 5.12 Mutation into new solution. ... 100

Figure 5.13 Variant group sequence mutation. ... 104

Figure 5.14 Setup group sequence mutation. .. 106

Figure 5.15 Optimisation methods. ... 108

Figure 6.1 Production stages. .. 116

Figure 6.2 Structure of a production stage. ... 116

Figure 6.3 OSS implementation. ... 117

xiii

Figure 6.4 OSS distributed on different servers. ... 118

Figure 6.5 Screenshot of a schedule in Excel. .. 122

Figure 6.6 Calendar client. .. 123

Figure 6.7 The scheduling client. .. 124

Figure 6.8 Optimisation algorithm settings. .. 125

Figure 6.9 Advanced optimisation client. ... 127

Figure 6.10 Optimisation progress. ... 128

Figure 6.11 Schedule execution status. ... 131

Figure 6.12 Line status program. .. 132

Figure 6.13 Personal digital assistant. ... 135

Figure 6.14 Expert suggestion in the PDA. .. 136

Figure 6.15 Scheduling horizon and periodic rescheduling. ... 137

Figure 6.16 The rescheduling point. ... 139

Figure 6.17 The new predictive schedule. .. 139

Figure 6.18 The realised schedule. .. 140

Figure 6.19 Real-world deployment stages. .. 141

Figure 6.20 Validation of a mock run. .. 142

Figure 6.21 Comparison of results from OSS with actual output from the real line. ... 143

Figure 6.22 A workstation schedule. .. 144

Figure 6.23 The procedure of the simulation environment rescheduling test. 148

Figure 6.24 One production stage in a PDA-program validation test. 151

Figure 7.1 Simulation-based optimisation progress. ... 157

Figure 7.2 Active duration of scenario 1. .. 162

Figure 7.3 Shifting bottleneck analysis of scenario 1. .. 163

Figure 7.4 Active duration of scenario 2. .. 164

Figure 7.5 Shifting bottleneck analysis of scenario 2. .. 165

Figure 7.6 Algorithm performance in scenario 1. ... 172

Figure 7.7 Algorithm performance in scenario 2. ... 173

Figure A. 1 Carrier flag program. ... 208

Figure B. 1 Start screen. .. 209

Figure B. 2 Start a job screen. ... 210

Figure B. 3 Confirm screen. .. 210

xiv

Figure B. 4 Move a job. .. 211

Figure B. 5 Confirm screen. .. 212

Figure B. 6 Block parts. .. 213

Figure B. 7 Warning when trying to break soft constraints. ... 214

Figure B. 8 Robustness and PDA-status. .. 214

Figure B. 9 Stocktaking menus. .. 215

Figure B. 10 Information menu. .. 216

Figure C. 1 FHYB performance on scenario 1. .. 217

Figure C. 2 HYB performance on scenario 1. ... 218

Figure C. 3 PDR performance on scenario 1. ... 218

Figure C. 4 PS performance on scenario 1. ... 219

Figure C. 5 NPS performance on scenario 1. .. 219

Figure D. 1 FHYB performance on scenario 2. .. 220

Figure D. 2 HYB performance on scenario 2. .. 221

Figure D. 3 PDR performance on scenario 2. ... 221

Figure D. 4 PS performance on scenario 2. .. 222

Figure D. 5 NPS performance on scenario 2... 222

List of Tables

Table 3.1 The main areas of modular scheduling system architecture 60

Table 5.1 Predictive and realised schedules. ... 92

Table 5.2 Example of a permutation schedule. ... 93

Table 5.3 Example of a non-permutation schedule. .. 93

Table 6.1 Product variants groups ... 113

Table 6.2 Simulation environment test. .. 149

Table 7.1 Setup reduction for scenario 1. ... 160

Table 7.2 Setup reduction for scenario 2. ... 161

Table 7.3 Results of scenario 1. .. 166

Table 7.4 Results of scenario 2. .. 166

Table 7.5 Dispatching rules frequency PDR scenario 1. .. 169

Table 7.6 Dispatching rules frequency PDR scenario 2. .. 170

xv

Table 7.7 Dispatching rules frequency HYB scenario 1. .. 170

Table 7.8 Dispatching rules frequency HYB scenario 2. .. 171

Table 7.9 Dispatching rules frequency FHYB scenario 1... 171

Table 7.10 Dispatching rules frequency FHYB scenario 2... 172

Table 7.11 Results of real-world compared to PDR. .. 177

Table 7.12 Results of real-world compared to PS. ... 177

Table 7.13 Results of real-world compared to FHYB. ... 178

Table 7.14 Comparison of different optimisation methods. ... 179

Table E. 1 Reactive scheduling results for the objective missed target levels. 223

Table E. 2 Reactive scheduling results for the objective makespan. 223

Table E. 3 Reactive scheduling results for the objective shortage hours. 224

Table E. 4 Reactive scheduling results for the objective setup time. 224

Table F. 1 PS setup reduction hypothesis test for scenario 1. 226

Table F. 2 NPS setup reduction hypothesis test for scenario 1. 226

Table F. 3 PS setup reduction hypothesis test for scenario 2. 227

Table F. 4 NPS setup reduction hypothesis test for scenario 2. 227

Table F. 5 Predictive scheduling hypothesis test for scenario 1. 228

Table F. 6 Predictive scheduling hypothesis test for scenario 1. 228

Table F. 7 Predictive scheduling hypothesis test for scenario 2. 229

Table F. 8 Reactive scheduling hypothesis test for the objective setup time. 229

Table F. 9 Reactive scheduling hypothesis test for the objective makespan. 230

Table G. 1 Product variant information .. 231

Table G. 2 Product variants production stages.. 231

Table G. 3 Machine settings.. 232

Table G. 4 Availability of machines ... 233

Table G. 5 Processing times (seconds) of product variants at different machines 234

Table G. 6 Sequence-dependent setup time production stage 1.................................... 235

Table G. 7 Sequence-dependent setup time production stage 5.................................... 235

Table G. 8 Machine-dependent setup times .. 237

Table G. 9 Work in process... 238

Table G. 10 Target levels for WIP .. 238

Table G. 11 Physical maximum of the FGI .. 239

xvi

Table G. 12 Number of parts in FGI at start of simulation ... 239

Table G. 13 Target levels of the finished goods inventory ... 239

Table G. 14 Demands Scenario 1 .. 240

Table G. 15 Demands Scenario 2 .. 241

Table G. 16 Production stage buffers .. 242

Table G. 17 Input and output buffers at the machines (number of carriers) 242

Table G. 18 Number of carriers .. 242

List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Networks

CDR Composite Dispatching Rule

CSMQ Company Specific Message Queuing

DES Discrete Event Simulation

EDD Earliest Due Date

ERP Enterprise Resource Planning

FCFS First Come First Served

FGI Finished Goods Inventory

FHYB Free HYBrid

GA Genetic Algorithm

GP Genetic Programming

GUI Graphical User Interface

HFS Hybrid Flow Shop

HNBS Hybrid Non-Blocking Sequence

HSNBS Hybrid Setup Non-Blocking Sequence

HYB HYBrid

IT Information Technology

LOX Linear Order Crossover

LPT Longest Processing Time

MSMQ MicroSoft Message Queuing

NPS Non-Permutation Schedule

xvii

OCBA Optimal Computing Budget Allocation

OIS OPTIMISE Information System

OptDB Optimisation DataBase

OptEngine Optimisation Engine

OPTIMISE OPTIMisation using Intelligent Simulation and Experimentation

OSP Optimisation Service Provider

OSS OPTIMISE Scheduling System

OX Order Crossover

PDA Personal Digital Assistant

PDR Priority Dispatching Rule

PMX Partially Mapped Crossover

PS Permutation Schedule

SA Simulated Annealing

SBO Simulation-Based Optimisation

SEQ SEQuence

SME Small to Medium Enterprise

SPT Shortest Processing Time

SQL Structured Query Language

TCP-IP Transmission Control Protocol/Internet Protocol

TS Tabu Search

TSP Travelling Salesman Problem

VBA Visual Basic for Applications

VPN Virtual Private Network

VSD Variant Setup Deadline

WBS Web-Based Simulation

WIP Work In Process

XML Extensible Markup Language

Chapter 1 Introduction

1

Chapter 1

1 Introduction

The introductory chapter presents the research background (Section 1.1) that motivated

this research study and thereby the aim and objectives (Section 1.2). The research

methodology (Section 1.3) used is explained, the scope of the work (Section 1.4) is then

defined and followed by the organisation of the whole thesis (Section 1.5).

1.1 Research background

1.1.1 Challenges of manufacturing industry

Manufacturing organisations are experiencing shortened product life cycles,

unpredictable customer demands, and fluctuating production volumes. At the same

time, the level of global competition is becoming much stronger. All these changes are

forcing manufacturing companies to react more flexibly and swiftly to changes in both

product diversity and production volume. In order to meet these challenges, the shop

floor control system of a manufacturing system has to be designed to incorporate a high

degree of flexibility. Groover (2001) defines different types of flexibility in

manufacturing systems as follows:

¶ Machine flexibility means the ability to adapt machines to different production

operations and parts.

¶ Production flexibility means the range of different parts that can be produced by

the system.

¶ Mix Flexibility means the systemôs ability to maintain production volume

despite a change of product mix.

¶ Product flexibility means the systemôs ability to cope with design changes and

introduction of new products.

¶ Routing flexibility means the systemôs ability to continue production through

alternative workstations if machines are subject to interruptions.

¶ Volume flexibility means the systemôs ability to economically produce parts of

high and low volumes.

¶ Expansion flexibility means the ability for a system to expand for a higher

production volume.

Chapter 1 Introduction

2

In terms of the challenges faced by any manufacturing company, there is no exception

for high quantity production (mass production) such as that of car manufacturers. In

order for them to survive in an ever-changing market, they need to be highly

competitive by achieving near optimal efficiency in their operations. However, with the

demand for much more flexibility to cope with greater product variety and fluctuating

production volumes, as mentioned above, industrial manufacturing systems, in general,

and car manufacturers, in particular, are becoming much more complex, viewed from

both a technological and management perspective.

In general, scheduling concerns ñthe allocation of resources over time to perform a

collection of tasksò (Baker and Trietsch, 1974). In practice, scheduling refers to ñthe

determination of a set of orders, which will be processed by the resources during a

short-term period (day, week, etc.)ò (Kiran, 1998). For a manufacturing company to

remain highly competitive, a near optimal allocation of their resources is essential.

Furthermore, scheduling may also contribute to the flexibility of a firm (De Snoo et al.,

2011). It is therefore not difficult to recognise that efficient scheduling is vital to the

success of manufacturing systems in industry today. This makes scheduling an

interesting area that has drawn much attention from both academic researchers and

industrial practitioners. Nevertheless, with the demand for higher flexibility, the

efficient scheduling of a production line has become an extremely difficult task,

especially when day-to-day challenges, such as product or order changes, have to be

handled efficiently. On a modern manufacturing shop floor, scheduling tasks are

undertaken by the Enterprise Resource Planning (ERP) system. Unfortunately, the

existing scheduling modules developed for an ERP system are based on deterministic

algorithms which are only suitable for operations in a predictable and stable

environment. This implies that ERP systems in general do not have the capability to

generate detailed schedules for a complex manufacturing system. Therefore, a

scheduling decision support that can cope with real-world industrial production systems

is needed. Consequently, it is necessary for the research community to explore some

new approaches that can make shop floor scheduling tasks capable of handling the

complexity and flexibility demands facing todayôs manufacturing companies.

Chapter 1 Introduction

3

1.1.2 State of the art: a brief overview

The scheduling of a real-world production line may be highly complex; sequence

dependent setup times, constraints, and long failures could affect the possibility of

reaching the production target. Many real-world scheduling problems belong to the

class of NP-complete problems, for which finding the optimal solution within an

acceptable time period is impossible, due to the size of the problems (Garey and

Johnson, 1979). To prove that an optimisation problem is as difficult as an NP-complete

problem, the term NP-hard is useful, because it describes that it is not possible to find

the optimal solution with available techniques (Baker and Trietsch, 2009). The same

could be said about scheduling problems with increasing complexity. Trying to compare

all scheduling problems would not be feasible, simply because the combinations of

scheduling problems are huge. There are too many different sizes, constraints and

objectives in order to solve them optimally, which on the other hand can be done for

smaller scheduling problems. At the same time, trying to simplify complex scheduling

problems by reducing the number of constraints and characteristics would simply

transform them into unrealistic textbook problems that may not be acceptable in a real-

world scheduling situation. This claim can be supported by many other researchers. For

example, Pinedo (2008) states that advances in scheduling theory have only had a

limited impact on scheduling in practice, although the theoretical research has not been

a complete waste of time, because it has given insights into the scheduling problem in

general. Gupta and Stafford (2006) also claim that theoretical flow shop scheduling

problems remain largely unsolved, when the 50 years of research is considered. They

state that research within flow shop scheduling seems to have been motivated by what

the researchers can achieve rather than what is important, and thereby also suffers from

too much abstraction and too little application. Future research in flow shop scheduling

should address real-world problems (Jahangirian et al., 2010), in order to avoid

spending decades only trying to solve textbook problems. Even though most real-life

situations are better represented by models with uniform or unrelated machines, most

research has been done on flow shops with identical machines, which is probably due to

the fact that identical machines are easier to handle (Ribas et al., 2010). According to

Chapter 1 Introduction

4

Ribas et al., (2010), most research has been carried out with at most one constraint (e.g.,

setups, failures, blocking) at a time being studied and only a few researchers have

studied all or most of them at the same time. Consequently, in order to diminish the gap

between theory and real-world scheduling problems, several constraints need to be

considered.

Simulation modelling, i.e., discrete event simulation (DES), has the capability to

represent complex real-world systems and their constraints in detail. Simulation-based

scheduling approaches are derived from dispatching rule-based methods. In a

simulation-based approach, several dispatching rules might be used at different stages,

in order to make a decision (Kiran, 1998). Basically, a dispatching rule is a rule of

thumb that gives priority to a job among other ones at a specific stage, i.e., at a machine.

This is why dispatching rules can also be called priority dispatching rules (PDRs).

Generally, a PDR-based approach does not try to find an optimal schedule, but relies on

knowing that one scheduling rule statistically performs better than another one, which is

sufficient. In comparison, using a meta-heuristic optimiser, such as a Genetic Algorithm

(GA), to generate the near optimal schedules directly, may be advantageous if searching

for ñoptimalò solutions is desired. There are many studies that compare these two

approaches and some of them provide results showing that the use of GAs to generate

detailed schedules can obtain better solutions (Sankar et al., 2003; Kim et. al., 2007)

than those obtained by using PDRs. On the other hand, using a GA to select PDRs has

shown promising results (Tanev et. al., 2004; Ochoa et al., 2009) compared to

conventional GA approaches. Furthermore, hybrids that have a combined representation

of these two approaches have shown good results, when uncertainty is considered

(Roundy et.al., 1991; Barua et.al., 2005). Robust scheduling (e.g., Leon et al., 1994),

reactive scheduling, or rescheduling (Church and Uzsoy, 1992) are also some

methodologies that have been successfully used to address scheduling problems with

regard to uncertainty.

Regarding uncertainty, McKay and Wiers (1999) claim that researchers and real-world

schedulers do not discuss the same problem. While researchers are solving deterministic

sequencing problems, real-world schedulers are faced with day-to-day challenges in

Chapter 1 Introduction

5

which uncertainty is believed to be the key characteristic. McKay and Wiers (1999)

define a scheduling task as: ña dynamic and adaptive process of iterative decision

making and problem solving, involving information acquisition from a number of

sources, and with the decisions affecting a number of production facets in reaction to

immediate or anticipated problemsò. Wiers (1997) defines production scheduling as a

task and the following four types of control are used to further characterise the task:

Detailed control, Direct control, Restricted control, and Sustained control. These

controls generally mean that the scheduling task deals with short-term decisions

regarding what to do next and the situation at hand, answering questions and giving

directions. Furthermore, the scheduler monitors schedule execution and carries out

necessary changes when needed, in order to fulfil scheduling targets. It is also important

to generate a valid schedule, since there is no intermediate control before launching the

schedule and there is a risk that the schedules will be adjusted manually (Stoop and

Wiers, 1996). Pinedo (2005) also addresses that ñAnalyzing a planning or scheduling

problem and developing a procedure for dealing with it on a regular basis is, in the real

world, only part of the story. The procedure has to be embedded in a system that

enables the decision-maker to actually use it. The system has to be integrated into the

information system of the organization, which can be a formidable taskò. Jahangirian et

al., (2010) show that even though scheduling applications have been the most common

ones among simulation applications in manufacturing and business between 1997 and

2006, only a small portion of them use both real problems and real data. They also point

out that papers addressing real-world problems are important to future research.

According to the review of hybrid flow shops by Ribas et al., (2010), only two papers

use on-line algorithms for real-time scheduling, when simulation with dispatching rules

or realistic decision support systems is considered, and indicate this as an interesting

area for future research.

It is not only the scheduling problem that needs to be considered, but also the

scheduling task and its integration in the organisation. A real-time scheduling system is

not only needed to support the work of the production scheduler, but also the operators

on the shop floor, by re-generating feasible schedules when required. With a real-time

rescheduling capability, the proposed scheduling system not only solves the sequencing

Chapter 1 Introduction

6

problems, but also provides decision-making support on a day-to-day basis when

disturbances, such as machine breakdowns, happen. Based on this research background,

the need of a real-time shop floor scheduling system capable of handling the complexity

and uncertainty found in real-world problems, when generating near optimal schedules,

as well as interacting with users, such as production schedulers and shop floor

operators, is identified as the target of this study.

1.2 Aim and objectives

The overall aim of this study is the advancement of research in manufacturing

scheduling through the exploration of more effective approaches to address complex,

real-world manufacturing flow shop problems. The research hypothesis behind this aim

is that existing scheduling approaches and algorithms are believed to be inadequate to

address complex, real-world manufacturing flow shop problems because they lack the

real-time and reactive support to tackle uncertainty. Therefore, in order to advance the

research of manufacturing scheduling, a combination of systems engineering and

algorithmic design is needed to tackle the uncertainty issues in real-world environment.

The aim of this thesis can be further refined into the following specific objectives:

¶ Appraise the existing research knowledge and industrial practice to establish the

understanding of manufacturing systems and explore the requirements of the

scheduling in real-world complex hybrid flow shops.

¶ Based on the comprehensive literature review, investigate how simulation tools

and scheduling techniques can be enhanced to cope with uncertainty, and

flexibly cope with different scheduling approaches in order to enhance their

performance.

¶ To design a system framework with real-time and reactive support and then

evaluate this framework qualitatively using a real-world industrial case study.

¶ Design and propose a hybrid meta-heuristic scheduling algorithm for simulation-

based optimisation that can flexibly cope with different scheduling approaches

in order to be more adaptive to tackle complex hybrid flow shop scheduling

problems.

Chapter 1 Introduction

7

¶ Validate the performance of the algorithm using empirical experiments based on

real-world shop-floor data collected through the system framework implemented

in earlier stages.

1.3 Research methodology

Real-world research generally refers to applied research which typically uses projects

that are small in scope and scale. Compared to academic research, where the focus is on

advancing an academic discipline, real-world research focuses on problems with direct

relevance to people or the environment, such as child care and climate change. The real-

world researcher needs well-developed social skills and almost always works in the

field, e.g., industry, compared to the academic researcher that mainly uses laboratories

of some kind. (Robson, 2011)

1.3.1 Qualitative, quantitative, and multi-method research

According to Robson (2011), research can be divided into two main groups: qualitative

or quantitative. Whilst quantitative research makes use of numerical data, qualitative

data is typically non-numerical (e.g., in the form of words). Myers (1997) defines

qualitative research as research that ñinvolves the use of qualitative data, such as

interviews, documents, and participant observation, to understand and explain social

phenomenaò. Jabar et al., (2009) argue that qualitative research is significant for

information systems research because of its ability to explain what is going on in a real

organisation. Quantitative research was, on the other hand, first developed to study

natural phenomena in natural sciences (Jabar et al., 2009). Quantitative research

involves the collection of quantitative data, the design of which typically used is to

exactly determine at an early stage how to carry out the research project before the data

is accumulated (Robson, 2011). According to Reswick (1994), the researcher can isolate

a problem, e.g., using a laboratory, and can therefore with precision and accuracy define

and measure input and output parameters of the study. However, multi-strategy designs

have received increased interest because they produce a substantial collection of both

qualitative and quantitative data in different parts of a research project. (Robson, 2011)

Chapter 1 Introduction

8

1.3.2 Different research strategies

Depending on the form and context of the research question, as well as control over

behavioural events and focus on contemporary ones, the research strategy used will

differ. Yin (2003) defines different types of research strategies:

Table 1.1 Relevant situations for different research strategies (Yin, 2003)

Strategy Form of research question Requires control of

behavioural events?

Focuses on contemporary

events?

Experiment How, why? Yes Yes

Survey Who, what, where, how

many, how much?

No Yes

Archival

analysis

Who, what, where, how

many, how much?

No Yes/No

History How, why? No No

Case study How, why? No Yes

The ñwhoò and ñwhereò questions are common in survey or archival analysis in which

the research goal is to be predictive about specific outcomes or when the prevalence of a

phenomenon needs to be described. The ñwhatò question is also appropriate in survey or

archival analysis which, for example, may provide the answer to the outcomes of a

specific type of managerial restructuring. The ñhowò and ñwhyò questions are typically

more explanatory and used for the research strategies: case studies, experiment, and

history. In general, the history research strategy is used when no living persons of

relevance can report afterwards and therefore historical data needs to be applied.

However, the case study strategy can be used when contemporary events need to be

examined. In addition to the historical data method, the case study strategy includes the

possibilities of interviews with people involved and direct observation of the events

being studied. The experiment research strategy is carried out when the researcher can

control behavioural events, i.e., can manipulate them directly, precisely, and

systematically. (Yin, 2003)

Chapter 1 Introduction

9

A multi-method research strategy is one that combines different research methods

(qualitative and quantitative), in order to provide a greater understanding of the

phenomenon of interest and to increase the confidence in the conclusions generated by

the research study (Johnson et al., 2007). This can also be referred to as triangulation,

for resolving the inherent biases of one measurement technique (Denzin, 2009). Denzin

(2009) divides triangulation into four basic categories:

¶ Data triangulation means using more than one type of data collection method.

Different sources can be used to collect the data (observation, interviews or

documents), and the data can be collected at different times and different places.

¶ Investigator triangulation means using multiple observers rather than single

observers. For example, different interviewers or data analysts can be used in the

study to remove the potential bias connected to one person.

¶ Theoretical triangulation means using multiple perspectives (theories) on a set of

objects rather than a single perspective.

¶ Methodological triangulation means within-method triangulation or between-

method triangulation.

Denzin (2009) suggests that using between-class triangulation, i.e., different methods

and measurement strategies, is preferred in comparison to within-class triangulation, in

which there are variations of one and the same measurement technique.

A wide range of research methods may be appropriate for systems engineering because

it is an interdisciplinary and broad field of engineering dealing with complex projects

(Ferris, 2009). According to Yin (2003), one reason why a case-based research

approach is appropriate is when contextual conditions must be covered because they are

believed to be relevant to the phenomenon of study, which is something that can be

characterised with qualitative research. At the same time, a case study may be part of a

multi-method research study (Yin, 2003). Consequently, the research approach adopted

is a multi-method research strategy in which both theories of current research,

experiments (quantitative) and case study (qualitative) are used to achieve the research

objectives. Data was collected from three different sources:

Chapter 1 Introduction

10

¶ Literature review of existing research to establish the understanding of

manufacturing systems and to explore the requirements of the scheduling in real-

world complex hybrid flow shops (Chapters 2, 3 and the beginning of Chapter

4).

¶ Evaluation of the proposed system framework using a real-world industrial case

study. Chapter 6 begins with the motivation and selection of industrial case

study, and then continues with the implementation and evaluation of the system

(proposed in Chapter 4).

¶ Data generation using simulation-based optimisation with a discrete-event

simulation model to investigate how the hybrid meta-heuristic scheduling

algorithm (proposed in Chapter 5) can flexibly cope with different scheduling

approaches, in order to be more adaptive in tackling complex hybrid flow shop

scheduling problems (Chapter 7).

Figure 1.1 provides an overview of the research methodology used to realise the

research objectives of the whole study.

Figure 1.1 Research methodology adopted.

Chapter 1 Introduction

11

1.4 Scope

Flow shops are generally the type of production lines used for mass production in

industry (Groover, 2000). In the classical definition of flow shop problems (Baker,

1974), each production stage consists of only one resource, e.g., machine, and there are

at least two production stages. All jobs need to go through the production stages in the

same machine order.

In industry, many companies need to increase their production capacity or balance the

capacity between different production stages. Companies may also need to manufacture

new products, which could mean that the new products are produced using the same

machines in most stages but require new ones in others. Consequently, and for other

reasons, a flow shop with parallel machines is formed, commonly also known as a

hybrid flow shop (Ribas, et al., 2010).

Since ña dear child has many namesò, the same scheduling problem could be specified

by a number of definitions, e.g., flow shop with multiple machines, flexible flow shop,

multiprocessor flow shop, or modified flow shop. However, the hybrid flow shop

notation proposed in Ribas et al., (2010) is good for defining real-world scheduling

problems, since it handles a broad range of flow shop scheduling problems. A hybrid

flow shop consists of at least two production stages and at least one of these stages

includes more than one machine (Gupta, 1988).

The scope of this thesis is therefore to address the multi-stage (more than three stages)

hybrid flow shops with unrelated parallel machines for discrete parts manufacture,

because most real-world flow shops in industry consist of several production stages.

Furthermore, in order to diminish the gap between theory and real-world scheduling

problems and not make unrealistic assumptions, several constraints and multiple

scheduling objectives are addressed as well. Consequently, a review of flow shop

scheduling problems and different scheduling methodologies is made. However, the

review of scheduling methodologies is not limited to hybrid flow shops, since much

Chapter 1 Introduction

12

scheduling research has been conducted on other complex scheduling problems, e.g.,

job shops, which could in fact be useful for hybrid flow shops as well. Nevertheless, in

the design of the hybrid genetic representation, the focus is only put on hybrid flow

shops. As mentioned, because uncertainty is a key characteristic in real-world

scheduling, it needs to be addressed in order to realise a schedule in a production line.

However, uncertainty is only one part of the scheduling task in which day-to-day

challenges need to be handled by production schedulers. Consequently, methodologies

that handle uncertainty as well as scheduling system functions and features, in order to

support the tasks of the scheduler, are also studied.

1.5 Thesis organisation

Chapters 2, 3, and parts of Chapter 4 feature the literature review. In short, Chapter 2

describes the background of scheduling theory and scheduling methodologies. Chapter

3 reviews rescheduling and identifies the main functions and features to be included in a

system to support the scheduling task. Chapter 4 begins with a brief introduction and

literature review of Web-based simulation and some existing platforms found in the

literature. Furthermore, this chapter describes the overall system architecture of the web

services-based industrial scheduling system, i.e., OPTIMISE Scheduling System (OSS),

which is designed to be software architecture to solve the limitations of existing

scheduling software used in industry. Chapter 5 describes a new novel hybrid genetic

representation which is based on a mixture of dispatching rules and genetic encoding

the entire schedule. The design and implementation of the hybrid genetic representation

into an SBO algorithm for handling various real-world, complex hybrid flow shop

scheduling problems is then addressed in detail. In order to prove the system

architecture, optimisation methods and techniques proposed in this thesis, a full -scale

industrial case study of a machining line was completed in this study and is presented in

Chapter 6. Chapter 7 presents the experimental results of applying the hybrid genetic

representation to the real-world case study. All the results in this chapter were obtained

from the OSS implementation on the real machining line. Finally, the thesis

conclusions, contributions to knowledge, and identified future research areas are

presented in Chapter 8.

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

13

Chapter 2

2 Hybrid Flow Shop Scheduling Problems and

Scheduling Methodologies

This chapter describes the background of scheduling theory, classification of scheduling

problems, and what kinds of assumptions are usually made in scheduling research.

Furthermore, different approaches to solve scheduling problems and new advances to

solve complex hybrid flow shop scheduling problems are reviewed. Finally, the review

is concluded and recommendations regarding how to solve real-world, complex hybrid

flow shop scheduling problems are proposed.

2.1 The production scheduling problem

There are many different definitions of scheduling problems from the research

communities and still they may differ from the understanding of scheduling problems

faced daily in industry. The classical definition is more limited to ñsequencingò, which

can be found in Conway et al., (1967), who define sequencing in terms of one machine

and scheduling as the sequencing of operations on several machines. In general,

scheduling concerns ñthe allocation of resources over time to perform a collection of

tasksò (Baker and Trietsch, 1974). In practice, scheduling refers to ñthe determination of

a set of orders, which will be processed by the resources during a short-term period

(day, week, etc.)ò (Kiran, 1998).

2.2 Categories of scheduling problems

Graves (1981) introduced a broad classification that covers the general characteristics of

both scheduling theory and scheduling practice. The classification divides production

scheduling problems into the following three dimensions:

1. Requirements generation

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

14

2. Processing complexity

3. Scheduling criteria

The first dimension, requirements generation, means that a manufacturing facility can

be either an open shop when items are produced to order or a closed shop when orders

are filled from existing inventory. In an open shop, the scheduling is simply described

as a sequencing problem in which open orders are sequenced at the production facility.

In a closed shop, both the sequencing problem and the lot-sizing decisions connected to

the inventory replenishment process need to be considered. The second dimension,

processing complexity, refers to the number of production stages and type of flow and

can be further classified into:

1. One stage, one processor

2. One stage, parallel processors

3. Multistage, flow shop

4. Multistage, job shop

In a one stage, one processor problem, all jobs require one production stage and only

one single resource or machine needs to be scheduled. The one stage, parallel processor

problem means that all jobs only require a single production stage, but there is more

than one resource that can process the job. In the multistage, flow shop problem, all jobs

require processing by the same set of resources and there is a common route for all jobs.

The multistage, job shop problem means that there are no restrictions on the production

stages for a job and alternative routes can be chosen for a job. The third dimension,

scheduling criteria, describes the scheduling objectives. These include, to mention a

few, to minimise tardiness, minimise work-in-process, maximise production rate, and

maximise the utilisation level of resources, which are just some of the objectives

commonly used in production scheduling problems.

According to Graves (1981), there are two additional dimensions that could have been

included: the requirement specification and the scheduling environment. The

requirement specification shows the degree of uncertainty of the scheduling problem

which can be defined as deterministic or stochastic. Stochastic scheduling problems

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

15

may include random variables such as distributions of processing times, failures, and so

on. The scheduling environment defines whether the scheduling problem is static or

dynamic. A static scheduling problem is when the number of jobs and their ready times

are available, while a dynamic scheduling problem is when the number of jobs and

related characteristics change over time.

2.3 Hybrid flow shops

Flow shops are generally the type of production lines used for mass production in

industry (Groover, 2000). In the classical definition of flow shop problems, each

production stage consists of only one resource, e.g., machine, and there are at least two

production stages (Baker, 1974). All jobs need to go through the production stages in

the same machine order.

In industry, many companies need to increase their production capacity or balance the

capacity between different production stages. Companies may also need to manufacture

new products, which could mean the new products are produced using the same

machines in most stages but require new ones in others. Consequently, a flow shop with

parallel machines is formed, commonly also known as a hybrid flow shop (Ribas, et al.,

2010). As mentioned earlier in Chapter 1, there are some other names to describe a

hybrid flow shop: e.g., flow shop with multiple machines, flexible flow shop,

multiprocessor flow shop, or modified flow shop. In the remainder of this thesis, the

term hybrid flow shop is continuously used, because its formal definition, as introduced

in the next section, has captured the essence of the scheduling problems that can be

found on real-world shop floors.

2.3.1 Description of hybrid flow shop scheduling problem notation:

A HFS (hybrid flow shop) consists of at least two production stages and at least one of

these stages includes more than one machine, which has proven to be NP-complete,

even for this basic HFS case (Gupta, 1988). In the structure | |a b g proposed by

Graham et al., (1979), a stands for the machine characteristics, b for the job

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

16

constraints and g for the objective considered. Ribas et al., (2010) refers to the specific

notation proposed by Vignier et al., (1999) which follows the same structure proposed

by Graham et al., (1979), but divides ainto four terms, i.e., ()2()(1)

1 2 3 4 3 4,...,
aaa aa aa.

The first term 1aspecifies the problem considered, i.e., ñHFò for a hybrid flow shop.

The second term 2a specifies the number of production stages, while the third term 3a

specifies the type of machines at a stage, i.e., identical (P), uniform (Q), unrelated (R),

or one machine (0). Finally, the term 4a specifies the number of machines at a stage.

Furthermore, when there are several subsequent stages with the same type and number

of machines, the terms 3a and 4a can be grouped as ()()3 4

k
l

l s

aa
=

, where s stands for the

first stage in the index and k for the last stage in the index (Ribas et al., 2010).

2.3.2 Machine characteristics

Identical parallel machines mean that all machines within each production stage are

considered to be identical, and therefore the processing time of a job does not depend on

which of the machines it is assigned to. According to Ribas et al., (2010), most research

focuses on the hybrid flow shop problems with identical machines, e.g., Gupta et al.,

(1997) and Zhang et al., (2005) have studied the
()()1

2 ,0HF PM problems, i.e., two-

stage hybrid flow shop problems with several parallel identical machines in the first

stage and one machine in the second. However, uniform or unrelated machines

represent real-life situations in a better way. Uniform parallel machines mean that each

machine within a production stage has its own speed and therefore has an individual

completion time for a job. However, unrelated parallel machines mean that the

processing times of a job on a production stage depend on each one of the parallel

machines. Some of the machines might be better suited to some jobs whilst others are

not, which may be due to physical differences in the machines, such as old machine

equipment or newly bought machines. The reason for machine eligibility, i.e., when

machines are dedicated to certain jobs, can be due to the technological differences

between machines in the same stage or because some jobs have some special

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

17

characteristics. On the other hand, it can also happen that a job can only be assigned to

machines that are physically nearby. The last cause is still valid for defining a

production stage with identical parallel machines, but if there are technological

constraints, the production stage should be defined as a stage with unrelated parallel

machines (Ribas, et al., 2010).

Ribas et al., (2010) also further categorise scheduling problems according to the

specifics of the production system. For example,
()()1

2 ,0HF RM fmachs, means a two

stage hybrid flow shop with several unrelated parallel machines in the first stage, one

machine in the second stage, and dedicated machines. Some constraints of production

systems are:

¶ fmachs, represents jobs that at some or all stages are dedicated to specific

machines (machine eligibility).

¶ nw, stands for ñno waitò which means that the operations of a job have to be

processed from the start to the end without any interruption on or between

machines.

¶ brk , means that unavailability periods (failures) may happen in some or all

machines in the production system.

¶ size, stands for multiprocessor task, which means that more than one machine is

required in order to perform an operation at a certain stage.

¶ blck, stands for blocking and means that jobs may be blocked for transportation

to the next production stage. Blocking can occur for several reasons, but

downstream machine failures with limited buffer capacities are a common cause.

 There is no agreed set of benchmark tests for the standard HFS, which makes it

difficult to compare different algorithms (Ruiz and Vázquez-Rodríguez, 2010).

2.3.3 Job constraints

Job constraints can be classified as hybrid-specific or non-hybrid-specific. Hybrid-

specific job constraints are those that are to be found exclusively in a hybrid flow shop.

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

18

The non-hybrid-specific job constraints are more general ones that can be found in any

manufacturing environment. An example of a non-hybrid-specific job constraint is the

setup time required to be able to process a job. If the setup time is machine dependent,

i.e., the required time will depend on which machine it is assigned to, the job constraint

is hybrid-specific. However, the differences between hybrid- and non-hybrid-specific

job constraints can be quite hard to define, and it is argued in this thesis that the

distinction between hybrid- and non-hybrid-specific job constraints has made no

contribution to resolve complex scheduling problems. Therefore, hereafter, job

constraints will not be distinguished as hybrid- or non-hybrid-specific, but simply as job

constraints. Some common job constraints and characteristics follow:

¶ Job pre-emption: this means that a job currently being processed on a machine

may be put on hold in its processing in favour of another job. When the job that

had been put on hold continues, it need not restart its entire processing

operation, but can continue where it left off. (Pinedo, 2008)

¶ Job precedence: is a predefined sequence or order of jobs that must be preserved.

The reason for job precedence might be that certain sequences are prohibited due

to technological constraints or because of a policy decision. An example of

when job precedence rules are created is when there are long, sequence

dependent setup times. (Conway, et al., 1967)

¶ Sequence dependent setup times: this means that a setup on a machine, in order

to start a job, depends on the differences between the last and the current job

(Pinedo, 2005).

¶ Transportation times: this means the time it takes to move a job between

different locations (Pinedo, 2005).

¶ Missing operations (Ribas, et al., 2010), bypass (Pinedo, 2005), or by-passing

move (Groover, 2000): all of these refer to the jobs which do not need to go

through all production stages and can thus disregard some of them.

¶ Lot splitting means that a lot can be split over parallel machines in at least one

production stage. If lot splitting is not allowed, it means that a lot cannot be

started at the next production stage until the whole batch is finished in the

current production stage.

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

19

¶ A lot sizing and scheduling problem is common in a closed shop and means that

not only the sequencing problem is considered, but also the lot-sizing decisions

associated with the inventory replenishment process (Graves, 1981).

¶ Re-entrant hybrid flow shop means that some jobs need to revisit some previous

production stages.

¶ Rework means that some jobs might need to revisit a previous production stage

because of quality problems.

2.3.4 Objective function

The objective function of a scheduling problem is what determines whether a schedule

is good or bad. The definition of an objective function that represents the scheduling

and production system goals is crucial in order to find the best schedules. The

ñminimaxò criteria, simplified as ñmaxò, are frequently used in the literature to denote

the time of the latest job to some criteria, e.g., the time of the latest job (TôKindt et al.,

2002). In the same manner, the ñminisumò criterion f designates objectives based on

all jobs, usually averages or sums of some kind (TôKindt et al., 2002). Pinedo (2005)

sorts objectives into three main groups: (1) throughput and makespan objectives; (2)

due date related objectives, and (3) cost related objectives. In the throughput and

makespan objectives, the following aims can be included:

maxC
 Maximum job completion time. The objective is to decrease the

makespan, i.e., the time required for the last job to be finished. (TôKindt et al.,

2002)

Th Throughput rate. The objective is to increase throughput rate (average),

e.g., throughput per hour. However, the throughput rate is usually unnecessary

when decreasing the makespan, because maximizing maxC
 tends to increase the

throughput rate (see Pinedo, 2005).

C Average completion time or total completion time of jobs. The objective is

to decrease the average completion time of all jobs or the total completion time

of jobs (TôKindt et al., 2002).

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

20

In the due date related objectives the following aims can be included:

maxL
 Maximum lateness. The objective is to decrease the lateness of the latest

job. Lateness can be less than zero and often there are no benefits in finishing

earlier than the deadline. Therefore, it is often more appropriate to work with

tardiness instead (see Baker and Trietsch, 2009).

maxT
 Maximum tardiness. The objective is to decrease the tardiness of the

tardiest job. Tardiness for each job can be zero (on time) or larger than zero

(late). Tardiness can never be less than zero (TôKindt et al., 2002).

T Average tardiness or total tardiness of jobs. The objective is to decrease

the average tardiness of the tardy jobs or the total tardiness of the tardy jobs.

U Number of late jobs. The objective is to decrease the total number of late

jobs.

Examples of cost related objectives are setup costs, work-in-process inventory costs,

finished goods inventory costs and transportation costs. However, there are other costs,

such as those related to personnel and equipment, which may also depend on the

schedule, but are perhaps not necessarily proportional to other objectives, e.g.,

makespan.

2.4 Scheduling methodologies

According to the classical definition of the scheduling problem, the goal is to find the

best possible schedule (sequences). Makespan is probably the most common objective

and means the maximum job completion time. However, it has to be clarified that there

might be several objectives and constraints that make the problem itself difficult. The

methodology used to solve the problem will differ, depending on what kind of

scheduling problem it is and the requirements of the solution, e.g., optimality and time

requirements.

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

21

Different scheduling methodologies for different scheduling problems are presented in

this chapter, based on a classical definition of scheduling problems, i.e., sequencing of

operations on several machines (Conway et al., 1967). When all numeric quantities

(processing times, due dates etc.) are known in advance, the scheduling problem can be

classified as a deterministic scheduling problem. In contrast, numerical quantities are

stochastic in a stochastic scheduling problem. A static problem is when jobs are

assumed to be available at time 0, and a dynamic problem is when a subset of jobs has a

non-zero release or ready time. According to Kiran (1998), scheduling problems can be

defined into four different categories: static stochastic, static deterministic, dynamic

deterministic and dynamic stochastic and can be addressed by three basic approaches:

¶ Optimisation-based approaches

¶ Artificial intelligence-based approaches

¶ Dispatching rules and simulation-based approaches

2.4.1 Optimisation-based approaches

Optimisation-based approaches attempt to find the optimal schedule mathematically.

There are different techniques that may be used according to the problem to be solved.

Approaches based on optimal scheduling rules create schedules using a set of rules that

are based on the characteristics of the schedule and mathematical properties of the

problem. Once it has been proven that a scheduling rule can find optimal solutions for

most general causes of a scheduling problem, it can be used for all other problems in

this problem class. Examples are that the priority dispatching ruleôs shortest processing

time (SPT) and earliest due date (EDD) can prove their optimality for minimising the

total flow time and the maximum tardiness respectively for the single machine

sequencing problem (Baker and Trietsch, 2009). Another example is the adjacent

pairwise interchange technique, which can be used for static deterministic problems, to

evaluate different sequences by swapping adjacent jobs and checking the objective

function to find optimal schedules. Compared to a total or complete enumeration, where

all sequences need to be evaluated, the adjacent pairwise interchange technique has an

obvious advantage, according to Kiran (1998).

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

22

While approaches based on optimal scheduling rules might be inappropriate, due to the

huge solutions space when considering larger problems, or even unfeasible with regard

to dynamic scheduling problems, implicit enumeration techniques can be used. The

functionality of enumeration-based approaches is to find optimal schedules faster, by

reducing the computational burden using mathematical analysis and mathematical

programming. Implicit enumeration uses the simultaneous evaluation of alternatives

and, compared to total enumeration, not all possible combinations need to be evaluated,

because promising solutions are kept and unpromising ones are deleted. These

algorithms are also called branch and bound, proposed by Land and Doig (1960).

Implicit enumeration may, on the other hand, not be used for constrained optimisation

problems. Mathematical programming, also referred to as linear programming or

integer programming, can represent many quite different scheduling problems and is

mainly used to solve constrained optimisation problems. For example, linear

programming can be used for scheduling optimisation problems, given that the

objective function and the constraints can be defined as linear equations. Another major

drawback with the mathematical approaches is that they take a long time to solve even

moderately sized problems.

As Laguna and Marti (2003) put it, ñMany real world optimization problems in

business, engineering and science are too complex to be given tractable mathematical

formulationsò. Furthermore, Kempf et al., (2000) also conclude that using a

mathematical model with abstractions of the problem directly in a production line and

expecting it to work is unrealistic. Accordingly, complex real-world scheduling

problems would be impossible to solve using mathematical programming without

making huge simplifications, and with these simplifications it may not provide valid

solutions.

2.4.2 Artificial intelligence-based approaches

Artificial intelligence (AI)-based approaches are used to generate schedules that satisfy

the constraints, so called constraint-based scheduling. AI-based approaches can be

divided into three main groups:

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

23

¶ Rule/knowledge-based approaches.

¶ Artificial Neural Networks (ANNs).

¶ Meta-heuristic approaches, such as using Tabu Search (TS), Simulated

Annealing (SA), or Genetic Algorithms (GA).

Rule/knowledge-based approaches, also called expert systems, rely on rules that

evaluate and develop schedules in a manner similar to human experts. These systems

need to have input-output components that have information regarding orders,

applicable rules stored in a database and a logic component that processes the data by

using the rules in the database. There might be rule conflicts that different systems

handle differently, e.g., by weighing up the importance of the rules (Kiran, 1998).

According to Jones (2009), these systems can successfully cope with both quantitative

and qualitative knowledge. They can handle complex heuristics, cope with huge

amounts of information that may directly or indirectly affect the scheduling problem,

capture complex relationships in new data structures, and create algorithms that can

manipulate those data structures in new and novel ways. The drawbacks are that they

can be difficult to build and manage and they become tied to the system for which they

are built. Furthermore, they only generate feasible solutions, making it hard to know

how close to the optimum any given solution is.

The basic idea of using ANNs for scheduling relies on their power of pattern

recognition in ñgoodò schedules. An ANN is trained by feeding data to it from a set of

training problems and their acceptable solutions. The trained network can then be

presented to a new problem and, depending on how it is built, can generate the answer

of a recommended solution. However, using ANNs would be difficult with regard to

more complex scheduling problems.

Neighbourhood search techniques mainly consist of the following steps: (1) create an

initial solution and evaluate it according to the objective, (2) generate new solutions in

the neighbourhood and evaluate them, and (3) select the best solution in the

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

24

neighbourhood and let it be the new ñseedò or terminate the search, if there are no

solutions better than the previous best solution. The generating mechanism uses the seed

solution to create new solutions according to a predefined pattern, e.g., the adjacent

pairwise interchange technique could be used to generate neighbourhood solutions.

Examples of widely used neighbourhood search methods are some of the meta-heuristic

algorithms introduced earlier, such as TS, SA and GA (Baker and Trietsch, 2009).

TS can be regarded as a modified form of neighbourhood search in its basic form.

Stopping at local optima is a well-known problem of neighbourhood search and TS tries

to avoid that by occasionally moving to worse solutions. A number of already evaluated

solutions are stored in a ñtabu listò which makes sure that the same sequences are not re-

evaluated. The method used for selecting the neighbourhood solutions and the size of

the neighbourhood seems to have a major influence on the quality of the solution

obtained (Kiran, 1998; Baker and Trietsch, 2009).

SA selects neighbouring solutions randomly, whilst TS selects the best non-taboo

solution in the neighbourhood. The better the value of a neighbouring solution, the

higher the probability it will be chosen as the next starting solution. Annealing comes

from the physical process of cooling down material slowly. At the beginning of the

optimisation process, the value of the objective function tends to fluctuate quite a lot,

but at the end the value does not fluctuate significantly (Kiran, 1998; Baker and

Trietsch, 2009). Since a GA-based approach is adopted in this thesis, GA is described in

more detail.

2.4.3 Genetic algorithms

Genetic algorithms (GAs), originally described by Holland (1962, 1975), may be

viewed as a neighbourhood search procedure (Baker and Trietsch, 2009). It can also be

classified as a population-based meta-heuristic and belongs to the class of evolutionary

algorithms. GAs are based on the Darwinian theory of natural selection, i.e., the

survival of the fittest. The first initial solutions are usually randomly generated into a

population of solutions. Each of the solutions is then evaluated, after which a new

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

25

population is generated. The new population is based on current solutions and in the

selection strategy a good solution usually has a higher probability of being chosen as the

parent to form new solutions. The new solutions called children or offspring of the

parent solutions are formed through reproduction, i.e., crossover and mutation. This

process is discontinued when the stopping criterion is met, e.g., time or number of

iterations. The success of the search for optimal or near optimal solutions is largely

determined by the problem structure and the design of the genetic algorithm (Kiran,

1998; Talbi, 2009). GAs can be used for both manufacturing design and planning

decisions, such as decisions concerning aggregate planning, material requirements

planning, assembly line balancing and facilities layout, as reviewed and tested in

Stockton et al., (2004a, 2004b). Khalil et al., (2012) proposed a framework with

discrete-event simulation, drum-buffer-rope and GA, and demonstrated an improvement

when simultaneously changing the buffer sizes and batch sizes for a multi-objective

optimisation problem, i.e., maximising the throughput and minimising the queue length.

However, in this review of GA, the focus is on solving scheduling problems which

include changing batch sizes, but exclude design parameters such as buffer sizes.

2.4.3.1 Population

A GA is a population-based algorithm and in the conventional GA a generation-based

approach is used where the entire population is replaced simultaneously (Rogers and

Prugel-Bennet, 1999). A shortcoming of this method is that if several computers are

being used in parallel all the computers may not be utilised if the population size is not

divisible by the number of computers or if there are more computers than the size of the

population. On the other hand, a steady state GA can utilise parallel evaluations in a

better way, because the populations overlap.

2.4.3.2 Representation

A permutation is the arrangement of jobs into a row, hence there are n! permutations

totally out of n unique jobs (Whitley, 1997). A permutation representation can be used

for resource scheduling where the permutation represents a priority queue of jobs. The

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

26

classical GAs called canonical GAs use a binary string representing the decision

variables (Bäck, 1997b), although a real number representation is possible and is

probably more intuitive (Davis, 1991). For example, a permutation representation can

be used for an actual sequence, and a vector of real values could be used for the capacity

size of a buffer. The former is the focus of the review in the following sub-sections on

the two most important GA operators: crossover and mutation.

2.4.3.3 Initialisation

The task of the initialisation process is to create an initial population of solutions. This

is usually done randomly, but domain-specific knowledge or other information can be

used to create the initial solutions (Sastry et al., 2005).

2.4.3.4 Selection

The main task of the selection process is to select parents for mating, in order to

generate new offspring. A main feature of this process is to let a better solution obtain a

higher probability of being chosen as parent. A common method is the roulette wheel

selection that uses a biased roulette wheel which is proportional to the fitness of the

different solutions. However, a conventional roulette wheel method may get a

premature convergence at the beginning of the search process and, therefore, methods

such as tournament selection may be used (Talbi, 2009). Tournament selection simply

selects a number of individuals and the best one of these is chosen as a parent.

2.4.3.5 Crossover operators

A well-known scheduling problem is that of the travelling salesman (TSP), which is

NP-complete. In short, TSP represents a problem in which a salesman starts at a given

city and has to visit each of n cities only once while making a round trip. The target is to

find the shortest possible path for the salesman. This problem has similarities to other

scheduling issues, such as the job shop scheduling problem, and many of its

applications can be used for production scheduling as well. The partially mapped

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

27

crossover (PMX) was introduced by Goldberg and Linge (1985) for the TSP and has

been compared to other crossover operators in various GA scheduling studies (Kellegöz

et al., 2008; Engin et al., 2011). A great review of crossover operators applied to GAs

for scheduling problems can be found in Aytug et al., (2003). A popular crossover

operator in scheduling is the linear order crossover (LOX) (Falkenauer and Bouffouix,

1991), which can be applied to both simple and complex scheduling problems (Pinedo,

2008). The LOX is a modified version of the order crossover (OX) (Davis, 1985) and is

quite similar to both OX and PMX. However, it maintains the relative order of the

positions that need to move due to the insertion of new genetic material. The LOX

works in the following way, redrawn from Pinedo (2008) which is based on Liaw

(2000) in Figure 2.1:

Figure 2.1 linear order crossover.

Basically it works in the following way: a range or a substring is selected from one of

the parents, exact positions of which are transferred to the offspring solution, and then

the remaining solutions are transferred to the offspring from the other parent. The LOX

keeps the internal order of the parent two numbers: 8, 9, 2, 1, 10 and 3 in Figure 2.1,

which is different when compared to the OX and PMX, where this internal order could

vary.

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

28

2.4.3.6 Mutation operators

Mutation operators are used to provide a random diversity in the population of

solutions. According to Deep and Thakur (2007), the proportion of the population

undergoing the mutation and the strength of the mutation is of great importance when

applying a mutation operator. According to Talbi (2009), there are three points that

must be taken into account when designing or using a mutation operator:

¶ Ergodicity: all solutions of the search space should be able to be reached by the

mutation operator.

¶ Validity: valid solutions must be generated by the mutation operator.

¶ Locality: a small change should be generated by the mutation operator.

There are different types of mutation operators applied to different types of problem

representations. Furthermore, there are different techniques when mutation is applied to

binary strings, real-valued vectors, permutations, finite-state machines, parse trees and

other representations such as hybrid representations. A mutation applied to a

permutation must result in a solution that represents a permutation. Most mutation

operators for permutations are related to and can be applied for local neighbourhood

search strategies (Bäck et al., 1997a).

The 2-opt, 3-opt and k-opt mutation operators generally mean that cut points are

selected, between which the sequence is reversed. The following is an example of a

sequence of ten elements [A, B, C, D, E, F, G, H, I, J] in which a 2-opt mutation

operator is used. If the segment [D, E, F, G], i.e., two cut points, is selected this would

result in the complete sequence [A, B, C, G, F, E, D, H, I, J], which would be a minimal

change with regard to the TSP, but a larger change for resource scheduling where the

permutation represents a priority queue of jobs. Therefore, in order to make a smaller

change when considering a resource scheduling problem, it is possible to use insert,

swap or scramble. Insert simply means to select a job and insert it at a random position

in the list of jobs. A similar approach, position-based mutation, describes a variant of

this mutation that randomly selects two jobs and allows the second job to be inserted

before the first one (Syswerda, 1991). Another way is to select two jobs and swap their

positions (Bäck et al., 1997a) or, in other words, order-based mutation described by

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

29

Syswerda (1991). Syswerda (1991) also defines a scramble mutation operator that

randomly re-orders jobs in a sub-list of jobs (Bäck et al., 1997a).

To further distinguish the different types of mutation operators, there is also adjacent

exchange mutation, displacement mutation and inversion/displacement mutation

(Nearchou, 2004). The adjacent exchange mutation, also described as swap of adjacent

elements in (Bäck et al., 1997a), means that two consecutive jobs swap their positions.

A variant of the insert mutation is the displacement mutation that takes a range of

subsequent jobs and inserts them into a new position. The inversion/displacement

mutation is similar to the latter, but uses the reversion/inversion for the subsequent

range of jobs being inserted into a new position.

However, some of the more conventional mutation operators may not be suitable for

real-world scheduling problems in which several constraints may make it difficult for

them to create valid solutions. To prevent previously good solutions being cast into

unfeasible regions of the search space, a domain-specific directed mutation operator that

follows the rules of the constraints can be used. Berry and Vamplew (2004) propose

Pointed Directed (PoD) mutation in which each gene is tightly coupled to a bit that

decides the mutation direction possible for that gene. Korejo et al., (2010) propose a

similar approach in which the directed mutation makes an individual shifting based on

statistical information, in order to guide the search into a promising area.

2.4.4 Dispatching rules approaches

When it takes longer to actually solve a scheduling problem optimally than to actually

execute the work in the shop with any given sequence, there is an NP-hard situation

(Baker and Trietsch, 2009). Therefore, in practice, using heuristics such as dispatching

rules is often the rule rather than the exception (Baker and Trietsch, 2009). According to

Kiran (1998), the scheduling objective is not directly considered when using a

dispatching rule. Basically, a dispatching rule is a rule of thumb that gives priority to a

job among other jobs at a specific stage, i.e., at a machine. This is why dispatching rules

can also be called priority dispatching rules (PDRs). Generally, a PDR-based approach

does not try to find an optimal schedule, but relying on knowing that one scheduling

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

30

rule statistically performs better than another one is sufficient. According to Panwalkar

and Iskander (1977), PDRs can be classified into:

¶ Simple priority rules: simple dispatching rules, combinatorial dispatching rules,

weighted priority rules.

¶ Heuristic scheduling rules.

¶ Other rules.

Simple dispatching rules, such as shortest processing time (SPT), earliest due date

(EDD), first come, first served (FCFS), among others, are quite simple and intuitive

rules. When using combinatorial dispatching rules, also referred to as composite

dispatching rules (CDR), a ranking expression is used to create a function of attributes

of jobs and/or machines (Pinedo, 2005). An example of this approach can be found in

(Tay and Ho, 2008), in which CDRs are generated by genetic programming (GP). In

their simulation study they found that CDRs generated by GP outperformed several

simple PDRs, when minimising tardiness and makespan objectives. A similar approach

is the weighted priority indexes that use a combination of PDRs with assigned weights

to each PDR, e.g., Jayamohan and Rajendran (2004) who assign specific weights

according to the importance of different objectives. They also take the weighted priority

rules one step further, when the weighted dispatching rules have different weights due

to more important jobs.

Heuristic scheduling rules are rules that may use human experience expertise together

with both simple PDRs and CDRs (Panwalkar and Iskander, 1977).

Other scheduling rules may be those designed for a specific shop, rules based on

mathematical functions, and so on. Barman (1997) reveals that combining different

priority rules at different production stages is appealing, because it is more practicable

and less complex than many of the combinatorial rules. Furthermore, he points out that

it is an excellent strategy for achieving better results, when several performance

measures are considered. They claim that the consensus of researchers is that in some

way a combination of dispatching rules is better than using simple dispatching rules.

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

31

The main disadvantage of PDRs is their myopic nature (Tanev et. al., 2004; Tay and

Ho, 2008), because local PDRs, at a stage, are far from optimal and no single PDR is

likely to perform highly on a range of complex scheduling problems (Pierreval and

Mebarki, 1997). In order to improve overall performance, both combined dispatching

rules at different stages, CDRs and combined GA with PDRs, e.g., approaches found in

Tanev et al., (2004) and Ochoa et al., (2009) have been demonstrated to perform better

than simple PDRs.

2.4.5 Simulation-based approaches

A complex real-world scheduling problem comes with many constraints that cannot be

ignored if a valid schedule is to be created. To find a good and feasible schedule is

much more important than attempting to find a mathematical optimal schedule for nearï

term production scheduling practice (Sivakumar and Gupta, 2006). At the same time,

production facilities tend to exist in an ever-changing environment which also affects

the problem structure of the scheduling problem, while at the same time, flexibility is

the key to the success of any production system (Groover, 2000). McKay et al., (2002)

conclude that flexible and configurable algorithms need to be researched further.

Simulation modelling has the capability to represent complex real world systems in

detail, which is its main advantage compared to other methods. It is also very useful for

communicating details, such as a scheduling situation, due to the visual aids provided

by most simulation software. According to Koh et al., (1996), a simulation model built

for scheduling is quite different compared to an ordinary simulation model which is

generally used for the design and analysis of an existing or proposed system.

Simulation-based scheduling, on the other hand, is used for the on-going operation and

control of the system, and the ultimate output is a detailed operation plan. Hence,

models built for simulation-based scheduling need to be more detailed compared to

typical simulation models. Typical simulation models are usually stochastic when

analysing design, and so on, whilst scheduling simulation models are usually

deterministic. Koh et al., (1996) also identifies a number of important requirements for

discrete event, simulation models used for scheduling, namely, flexibility, speed, and

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

32

details. A model needs to be flexible enough to cope with changes in the physical

configuration, fast enough so a schedule can be generated in an acceptable time, and

detailed enough with an appropriate level of simplification.

Simulation-based scheduling approaches are derived from the group of dispatching rule-

based approaches. In a simulation-based approach several dispatching rules might be

used at different stages, in order to make a decision (Kiran, 1998). Many real-world

optimisation problems can only be treated by simulation models (Laguna and Marti,

2003), but the problem is that simulation is not an optimisation in itself (Law and

McComas, 2000). Therefore, simulation-based scheduling may include much user

intervention, in order to manually test different schedules, which would be unfeasible

with regard to larger optimisation problems. In order to automatically search for near

optimal solutions, a scheduling problem can be solved by using the simulation-based

optimisation (SBO) approach in which the simulation model is integrated with meta-

heuristic search methods, such as TS or GA (Laguna and Marti, 2003).

In this approach the simulation model is viewed as a black box function evaluator which

evaluates a set of input parameters generated by the meta-heuristic optimiser. The

response or output is used by the meta-heuristic optimiser to generate new values of the

inputs. Simulated annealing may be viewed as a sort of random search procedure, but its

main disadvantage is the computational time it takes to find a good solution. The main

advantage of evolutionary approaches, such as GAs, compared to those that use

neighbourhood search-based methods on a single solution, e.g., simulated annealing, is

that fewer evaluations are needed in order to search a larger area of the solution space.

Finding good solutions early in the search process is particularly important regarding

SBO (April et al., 2003).

The weakness of simulation is that it is time consuming, which can be somewhat

compensated by SBO, because it does not try to evaluate all solutions, but rather a

fraction of the whole search space. Furthermore, it is possible to parallelise the

simulation evaluations (e.g., Li and Wang, 2008) and to use a steady state GA (Rogers

and Prugel-Bennet, 1999) in order to speed up the optimisation process. The weakness

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

33

of GAs and other meta-heuristic search methods is that they may not find the optimal

solution for larger scheduling problems. On the other hand, the question is whether any

method would find an optimal solution in an acceptable period of time for an NP-hard,

complex real-world scheduling problem? It is important to note that an optimal solution

is usually not the target in a complex real-world scheduling problem; it is instead to

achieve a relatively high performance for many problems, which is a characteristic of

GA (Sankar et al., 2003).

2.4.6 GA or dispatching rules for simulation

In the last decade, there has been extensive research in the field of production

scheduling using simulation. Simulation modelling has the capability to represent

complex real-world systems in detail, and several dispatching rules can be used at

different stages to make decisions about what parts to select for the next scheduling

period. The number of rules can be infinite, because it is possible to define new

scheduling rules as the combinations of several other dispatching rules (Holtaus, 1997).

Generally speaking, a PDR-based simulation scheduling approach does not attempt to

find an ñoptimalò schedule, but relies on knowing that one rule, or a combination of

rules, performs better than another one. In comparison, using a meta-heuristic optimiser,

such as a Genetic Algorithm (GA), to generate the near optimal schedules directly,

which is referred to as a direct approach in this thesis, may be advantageous if searching

for ñoptimalò solutions is desired. Nevertheless, to generate a complete schedule using a

GA-based SBO may require very long computing time. This is usually impractical or

even unacceptable, if the result is needed to control the system in ñreal-timeò.

There are many studies that compare these two approaches and some of them provide

results showing that the use of GAs to generate detailed schedules can obtain better

solutions than those obtained by using PDRs. For example, Sankar et al., (2003) use a

GA for the scheduling of a job shop with five production stages, parallel machines in

each stage and 43 jobs to be scheduled. Several objectives, including customer

satisfaction, machine utilisation and total elapsed time, are integrated into a single

combined objective function. A GA is coded in such a way that the chromosomes

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

34

represent the job sequences which the manufacturing system has to follow in order to

achieve the best schedule. The results obtained with the GA are then compared with the

results obtained using six different dispatching rules including SPT, LPT, EDD, largest

batch quantity (LBT), smallest batch quantity (SBQ), and highest penalty (HP). It has

been found that the solutions generated by GA outperform the solutions obtained by

using PDRs, for this specific production system.

The most common form of hybridisation is combining a GA with local search

procedures or using domain specific knowledge. Hybrid genetic algorithm and memetic

approaches have achieved good results in complex real-world application areas, but

there has been limited work developing a theoretical basis for genetic algorithm

hybridisation (Sastry et al., 2005). Kim et al., (2007) made a comparison between the

use of PDRs and GAs for solving the scheduling problem in a real factory that

manufactures standard hydraulic cylinders. More specifically, it was a job shop of six

machines and nine jobs. Different dispatching rules were used in this study, namely

SPT, LPT, most work remaining (MWKR), and least work remaining (LWKR). When

using GAs, different jobs to be performed by different machines are codified into an

individual chromosome, and then the different individuals are selected following the

ñnatural selectionò, in order to minimise makespan. Again in this study, the researchers

found that the GA-based approach outperforms the PDR-based one. At the same time,

the researchers state in their conclusion that better results could be found if the two

techniques for the scheduling of orders are used in combination. An example is Kianfar

et al. (2012) that propose a hybrid GA procedure that uses PDRs to generate initial

solutions. Overall, the algorithm was shown to be better than some common dispatching

rules, when compared in four flow shop scheduling scenarios.

A method that combines GA and PDR can be found in Tanev et al., (2004), where a

hybrid evolutionary algorithm for the scheduling of a plastic injection machines factory

was developed. The system was a job shop with four machines and 50-400 jobs. In their

approach, the researchers proposed a hybrid GA combined with the use of PDRs; a GA

was used to evolve the different combinations of dispatching rules and to finally find

which one provides the best schedule. The solutions were then evaluated by means of a

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

35

fitness function conformed by the different parameters (flow times, setups, makespan,

tardiness, etc.) to be optimised. They found that letting the GA select PDRs generated

better solutions compared to a conventional GA, in a shorter time period. At the same

time, the computational effort/job to be scheduled seems to decrease with an increasing

number of jobs, making it particularly appropriate for complex real-world problems

compared to a conventional GA. Another study has been carried out by Ochoa et al.,

(2009), in which the hybrid flow shop was considered as()
1

k
l

l
HFk QM

=
, where k is 5-30

stages and M is four to five machines. A conventional GA creating a permutation

schedule was compared to a GA that selected dispatching rules, and the latter approach

was demonstrated to be advantageous compared to the conventional GA.

These methodologies that use some sort of meta-heuristic, e.g., GA, in order to select

other heuristics, e.g., PDRs, may also be referred to as a hyper-heuristic approach, in

which some meta-heuristics are used to select the appropriate heuristics (Burke at al.,

2003). This kind of approach in which a GA chromosome is used to represent different

combination of PDRs, is referred to as the indirect approach in this thesis. The reason is

that the actual sequence itself is only indirectly handled by the GA using the PDRs.

Burke at al., (2003) reveal that current meta-heuristic search methods tend to solve and

be customised for a particular problem type, whilst hyper-heuristics are able to handle a

wider range of problems and may lead to more general systems. Algorithmsô ability to

adapt and learn has been identified as future research issues (McKay et al., 2002).

2.5 Assumptions usually made in scheduling research

Even moderately sized scheduling problems tend to become complex. Gupta and

Stafford (2006) state that research within flow shop scheduling seems to have been

motivated by what the researchers can achieve rather than what is important, and

thereby also suffers from too much abstraction and too little application. According to

Pinedo (2008), advances in scheduling theory have only had a limited impact on

scheduling in practice, but the theoretical research has not been a complete waste of

time, because it has given insights into the scheduling problem. Still, looking at 50 years

of research, theoretical flow shop scheduling problems remain largely unsolved (Gupta

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

36

and Stafford, 2006). Generally, scheduling problems include many restrictive

assumptions to be solved (Kiran, 1998). Many of these assumptions are valid for

different scheduling problems, but it would not be true to say that these assumptions can

be used for all different kinds of scheduling problems. Assumptions are usually made

about scheduling problems and some of the most general ones include the following

(e.g., Baker and Trietsch, 1974; Ramasesh, 1990; Kiran, 1998; Baker and Trietsch,

2009):

¶ All jobs to be scheduled are available at time zero.

¶ Machines can only process one job at a time.

¶ Setup times are sequence independent, i.e., there are no sequence dependent

setup times.

¶ Setup times are included in the processing times.

¶ There are not any breakdowns of machines, i.e., the machines are continuously

available for production.

¶ Jobs are processed without any disruptions.

¶ There is no alternative routing of jobs, i.e., jobs have strictly ordered operation

sequences.

¶ No parallel machines can do the same type of operation.

¶ An operation may not start before the preceding ones are finished.

¶ There is no pre-emption of jobs, i.e., once started jobs must be processed until

completion.

¶ A job may not be started before it is finalised in previous operations.

¶ There is no variation of processing times.

¶ Jobs are moved directly between production stages, i.e., there are no transfer

times between machines.

¶ Buffer sizes (queue lengths) are not limited.

¶ There are no assembly operations.

¶ Jobs are carried out on a machine only once.

¶ There is no rework of jobs.

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

37

When considering complex, real-world production scheduling problems, only a few of

these assumptions can possibly be made without changing the original issue into a

completely different scheduling problem, i.e., a theoretical scheduling problem that is

not of much use in practice. In a review of flow shop scheduling research, Ribas et al.,

(2010) states that even though most real-life situations are better represented by models

with uniform or unrelated machines, most research has been done on flow shops with

identical machines, which is probably due to the fact that identical machines are easier

to handle. According to Allahverdi et al., (2008) who reviewed 300 papers on

scheduling with setup times, between 1999 and 2008, there has been a significant

increase in scheduling problems involving setup times. The reason is that substantial

savings can be made, when setup times are considered for real-world industries. The

majority of papers dealt with sequence independent setup times, because this is easier to

handle compared to sequence dependent setup times. Again, according to Ribas et al.,

(2010), most research has been carried out with, at most, one constraint (e.g., setups,

failures, blocking) being studied at a time and only a few studies dealt with all or most

constraints at the same time. Consequently, in order to diminish the gap between theory

and real-world scheduling problems, several constraints need to be considered

simultaneously.

2.6 Scheduling objectives in real-world problems

Most real-world scheduling problems have more than one objective of interest (Gary et

al., 1995; Yang and Chang, 1998), commonly defined as multi-objective scheduling

problems. However, most of the theoretical literature addresses single objectives only

(Graves, 1981; Allahverdi et al., 2008; Ribas et al., 2010).

There are different ways to address multi-objective scheduling problems, of which some

can be found in Kempf et al., (2000). One way is to use the primary objective as the one

to optimise and a secondary objective as a constraint. Another strategy is to use a multi-

objective approach and let the user decide from a set of Pareto (non-dominated)

solutions. For example, when using the Elitist non-dominated sorting genetic algorithm

(NSGA-II), the Pareto front consists of all the solutions that are not dominated by other

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

38

solutions of at least one objective (Deb et al., 2000). Another common approach is to

combine different objectives into a single one by using weights for the different

objectives of interest (Kempf et al., 2000). Finally, a similar approach to the latter one is

to use a cost-based objective (see Section 2.3.4) where all the objectives are measured in

cost (Kempf et al., 2000). Real-world scheduling problems usually have multiple

objectives. Whilst a Pareto set of solutions of multiple objectives may be beneficial

when analysing a production system, it would require much time from the production

scheduler and is probably better suited for other types of SBO problems, such as

optimal buffer allocation ones. A weight-based objective function was adopted in the

thesis, because the production scheduler needed to obtain the result quite quickly and

the user had no time to study separate sub-targets.

Regarding real-world problems, different organisations have different objectives and

therefore the scheduling metrics will vary from case to case. At a higher company level,

profit is the important long-term objective, along with customer satisfaction; however,

the importance of customers may vary depending on the customer. As a matter of fact,

on the production floor, the supervisor might want high overall machine utilisation and

throughput rate by having bigger batch sizes, as demonstrated in Stockton et al., (2012),

and an operator might want homogenous batches, in order to avoid setups on a certain

machine.

2.7 Concluding remarks

In summary, it has been emphasised in this chapter that even a moderately sized

scheduling problem tends to be too complex to solve by any analytical approaches and

many real-world problems, such as the hybrid flow shop, belong to the class of NP-

complete problems. In other words, it could be possible to solve real-world scheduling

problems using mathematical programming, but it would require huge simplifications,

as reviewed in this chapter. Flow shop scheduling seems to have been motivated by

what the researchers can achieve rather than what is important, and thereby also suffers

from too much abstraction and too little application. Discrete event simulation has the

capability to represent complex real-world systems in detail, as well as cope with

Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies

39

several constraints and multiple objectives, which have been identified as important

factors. By using the simulation-based optimisation (SBO) approach in which the

simulation model is integrated with meta-heuristic search methods, such as genetic

algorithms, the search for optimal or near optimal solutions can be done automatically.

A main advantage of using genetic algorithms is that quite a few evaluations are needed,

in order to search a large area of the solution space. Furthermore, combining GA with

dispatching rules (hyper-heuristics) seems to be a promising research direction,

according to several researchers reviewed in this chapter. Therefore, a hybrid genetic

representation is proposed in this study and presented in Chapter 5. The scheduling

problem from the perspective of uncertainty is dealt with in Chapter 3.

Chapter 3 Rescheduling and System Support

40

Chapter 3

3 Rescheduling and System Support

This chapter describes the functions and features needed in order to support production

scheduling in real-world problems which are subjected to disturbances such as machine

breakdowns. It begins with a brief introduction of how uncertainty affects the execution

of a schedule and continues with rescheduling methods and policies to handle

uncertainty. Furthermore, functions of the scheduling task are presented, which is

followed by a review of important scheduling system functions identified in the

research society. Finally, based on the literature reviews in chapters 2 and 3, a summary

of the most important functions of a production scheduling system is presented.

3.1 Uncertainty and rescheduling

In the research of the higher levels of production control, there have been successful

practical implementations of research, such as Enterprise Resource Planning (ERP)

systems used more often nowadays by companies in industry (McKay and Wiers,

1999). However, there have been very few successful practical implementations or

usable optimisation methods in dynamic job shops and detailed dispatching (McKay

and Wiers, 1999; Stoop and Wiers, 1996). In fact, McKay and Wiers (1999) depict that

the underlying principles of scheduling research are insufficient and should be

reassessed. A common opinion is however that the theoretical techniques are actually

applicable, but people in industry do not use them, because they do not know how to

apply them or simply because they are not aware of their existence (McKay and Wiers,

1999). The traditional definition of scheduling is more about sequencing, while the

impact of uncertainty is systematically underestimated by academic research. Frequent

schedule interruptions may occur during the execution of a schedule in a production

system, due to the variability present in these systems (Stockton et al., 2012). According

to McKay and Wiers (1999), a common approach to uncertainty is to react and

reschedule. In some way, it is possible to reduce uncertainty by taking precautionary

actions, such as preventive maintenance, but it is hard to remove uncertainty

Chapter 3 Rescheduling and System Support

41

completely. Some researchers who address specific scheduling problems do include

uncertainty in the scheduling problem with stochastic arrival and/or processing times,

e.g., Daniels and Kouvelis (1995) and Leon et al., (1994). However, with regard to

hybrid flow shop scheduling problems, most research papers do not consider

uncertainty or other related constraints, or they simply handle only one constraint at a

time (Ribas et al., 2010).

Graves (1981) identified that scheduling robustness is an important area of future

research and vividly stated that ñA frequent comment heard in many scheduling shops is

that there is no scheduling problem but rather a rescheduling problemò. Production

scheduling research can be divided into two groups, namely, deterministic scheduling

research, in which the problems are defined with deterministic terms, and stochastic

scheduling research, whereby at least some randomness is modelled for the problems.

Aytug et al., (2005) reveal that many of the stochastic scheduling research efforts have

focused on local control policies, such as priority dispatching rules, aimed at

minimising some measure of performance. Most of these methods do not use any

information about the global state of the shop floor and create the schedules during

executions. The deterministic scheduling research is more focused on creating an

optimal or near-optimal schedule, according to a single or multiple objectives, usually

with regard to a single or multiple machines. The problem with the deterministic

solutions obtained is that it is assumed they can be exactly executed in the real

machine/line/shop for which they are created. However, many researchers have

recognised that uncertainty is always part of the problem and therefore put effort into

extending the deterministic approaches to enable them to handle some form of

uncertainty.

The predictive schedule could be described as the forecasted ñoptimalò schedule found

by the scheduling approach used and may be updated with a new predictive schedule

when required. When this predictive schedule is used in the real world, very often with

regard to disturbances, it is called the realised schedule. Stoop and Wiers (1996) have

found that the expected performance of a (predictive) schedule often deviates from the

(realised) actual performance which, in most cases, is worse than the expected

Chapter 3 Rescheduling and System Support

42

performance. Three categories of disturbances that cause these performance deviations

have been classified (Stoop and Wiers, 1996): (1) capacity disturbances, such as

machine breakdowns; (2) order disturbances, such as rush orders; (3) relates to the

measurement of data, such as estimated processing times used in the scheduling

process. The quality of data affects the uncertainty and is very important, but a high

quality measurement of data could be difficult to obtain in some production systems.

Therefore, these three types of uncertainties are included in the reactive scheduling

experiments presented in Section 7.4. Viera et al., (2003) further present a framework to

classify rescheduling research in which uncertainty plays some key role. Such a

rescheduling framework includes rescheduling environments, rescheduling strategies,

rescheduling policies and rescheduling methods, which is discussed in more detail in

the following sub-sections.

3.1.1 Rescheduling environments

The rescheduling environment refers to the problem instance to be rescheduled, i.e.,

whether it is a finite set of jobs (static) or an infinite set of jobs (dynamic). In a static

and deterministic environment (instance), nothing is unknown and a rescheduling is not

necessary. In a static and stochastic environment, there is a finite set of jobs but some

uncertain variables exist, such as the processing times of the jobs. When there is no

arrival variability of the jobs in a dynamic environment, a cyclic schedule that is

executed repeatedly could be used. On the other hand, when there is an arrival

variability of the jobs, but all the jobs have the same route, the sequence cannot be

reused if a direct representation of the schedule is used. Finally, process flow

variability and arrival variability of the jobs may co-exist, which is mostly characterised

in job shops, where a great variability of job arrivals is very common.

In terms of rescheduling strategies, two common categories of approaches can be

identified: (1) dynamic - completely reactive approaches, and (2) predictive-reactive

approaches, which are discussed below.

Chapter 3 Rescheduling and System Support

43

3.1.2 Completely reactive approaches

In a dynamic approach, the schedule itself is not generated beforehand, but jobs are

dispatched at the machines in real-time. Dispatching rules, or other types of heuristics or

control policies, characterise dynamic scheduling (Viera et al., 2003). This group is also

called completely reactive approaches (McKay and Wiers, 1999), as the dispatching

rules actually react to the events that are taking place and dynamically generate the

sequences. Different approaches using dispatching rules are reviewed in Chapter 2, such

as simple priority dispatching rules (PDRs) (Panwalkar and Iskander, 1977), combined

dispatching rules at different stages (Barman, 1997), composite dispatching rules (Tay

and Ho, 2008), and combined GA with PDRs (Tanev et. al., 2004; Ochoa et al., 2009).

Dispatching rules have the capability to keep the machines utilised, as long as there is

material waiting in the queue, but it is nonetheless hard to know the performance of the

realised sequence order in the presence of uncertainty. The realised sequence order may

have a significant impact on the performance of the schedule, if sequence-dependent

setup times are present (Allahverdi et al., 2008).

3.1.3 Predictive-reactive rescheduling policies

When the schedule is generated beforehand, i.e., direct representation of the schedule,

there are different policies to decide when to reschedule, in order to update the

predictive schedule. Church and Uzsoy (1992) present a rough taxonomy of the existing

approaches, namely: periodic, continuous, and event-driven rescheduling. Periodic

rescheduling is when rescheduling takes place periodically with a predetermined time

interval. The event-driven rescheduling is triggered as soon as a ñbig enoughò

disruption occurs. In other words, if the realised schedule deviates too much from the

predictive schedule by some measure, then a rescheduling will be executed. An example

is Kianfar et al. (2012) that use an event-driven triggering based on the arrival of new

jobs and reschedules if the number of jobs or time elapsed since last rescheduling is big

enough. Continuous rescheduling is an extreme case in which each event starts a new

rescheduling. Periodic rescheduling may also be seen as a form of event-driven

rescheduling policy. Additionally, in hybrid rescheduling policies, periodic rescheduling

Chapter 3 Rescheduling and System Support

44

is combined with event-driven rescheduling (Herrmann, 2006). Church and Uzsoy

(1992) studied one stage, one machine and a parallel machinesô problem with dynamic

job arrivals, for the purpose of decreasing maximum lateness, and show how the

rescheduling frequency affects the schedule performance. Suwa and Fujiwara (2007)

propose a new hybrid rescheduling policy based on the cumulative delay of jobs, i.e.,

differences between the predictive and realised schedule that outperform a combined

periodic and event-driven rescheduling policy for a single machine scheduling problem

and a parallel machinesô scheduling problem, which showed positive results. Actually,

periodic and hybrid rescheduling policies seem to be the most common ones in practice

(Herrmann, 2006). Since the main approach used in this thesis is react and reschedule, a

hybrid rescheduling policy has been adopted, as described in Section 4.4.4.

3.1.4 Rescheduling methods

While a predetermined sequence created by a direct approach could be re-sequenced

when a disruption occurs, a more novel approach is to generate the sequences to be

robust enough to handle uncertainties. Robust scheduling approaches, also called

proactive approaches, focus on creating a schedule that, when implemented, will be

robust enough to handle different disruptions and minimise their effects with respect to

some performance measure. These approaches can be further classified: (1) optimising

the worst possible scenario; (2) minimising differences in objective function, subject to

disturbances, and (3) to include the effects of machine failures, subject to a given

rescheduling method. Daniels and Kouvelis (1995) develop a procedure for creating

robust schedules, by analysing worst case scenarios. Leon et al., (1994) create a

schedule approach that shows robustness for processing time variability and machine

failures with makespan as the minimisation objective. Leon et al., (1994) develop

robustness measures that are used with a GA to find robust schedules. Another approach

to optimise buffer allocation in a job shop was proposed by Al-Aomar (2002). In this

method, the author achieves robustness by integrating it into the GA search engine

through assigning a Signal-to-Noise ratio (S/N) to each simulation outcome. The

method has been applied to a hypothetical job shop example with buffer sizes as the

discrete factors (Al -Aomar, 2006).

Chapter 3 Rescheduling and System Support

45

When rescheduling is necessary, e.g., due to the deviations of the initial plan, there are

different ways of repairing a schedule. According to Herrmann (2006) and Viera et al.,

(2003), there are three ways to reschedule: (1) complete regeneration, (2) right-shift

scheduling, and (3) match-up scheduling or so called partial rescheduling. Complete

regeneration means that the whole schedule is regenerated, i.e., all the jobs that have not

been executed by the time of rescheduling will be rescheduled. A complete rescheduling

may lead to schedule nervousness (Stoop and Wiers, 1996), which, according to McKay

and Wiers (1999), can be overcome in most real-world situations, if small changes are

continuously updated and only partial solutions are generated. Right-shift scheduling

means that the remaining jobs are postponed by the time needed to obtain a feasible

schedule. Right shift scheduling may be seen as a simple form of match-up scheduling,

since the jobs are shifted to the right in the Gantt chart, without any re-sequencing being

done. Match-up scheduling means the necessary actions to be able to get ñback on

trackò with the predetermined schedule. The match-up point indicates what part of the

schedule has to be rescheduled. Bean et al., (1991) propose a match-up heuristic method

that begins with incrementally searching for the appropriate match-up point with regard

to machine disruption. Jobs are rescheduled for the machine, or machines, with the

disruption, using several dispatching rules. If jobs can be rescheduled without exceeding

the threshold for the tardiness costs, the search stops. If a schedule cannot be found for a

given, maximum match-up time point for the machine(s), then the search is extended by

scheduling several machines. Akturk and Gorgulu (1999) propose a match-up heuristic

procedure that determines the match-up point and does the rescheduling for a modified

flow shop. Since both the match-up point and the new schedule for that period are

determined simultaneously, a heuristic procedure was chosen, involving different

dispatching rules, in the creation of a new schedule. In this thesis, all three ways to

reschedule have been adopted, as described in Section 4.4.4.

3.1.5 Direct, indirect and hybrid representation of schedules

Several researchers, e.g., Sankar et al., (2003) and Kim et al., (2007), have shown that

global scheduling, i.e., a direct representation of schedules, using GA, has the potential

Chapter 3 Rescheduling and System Support

46

to improve the performance of complex shops, compared to dispatching rules. Lawrence

and Sewell (1997) also compare dynamic heuristics, e.g., dispatching rules, with static

algorithms such as shifting bottleneck heuristic, for several job shop scheduling

problems with makespan objective and different degrees of processing time variability.

They found that simple dynamic (real-time/on-line) scheduling heuristics yield equally

good or better results compared to complex static (off-line) algorithms, especially when

complexity and uncertainty are increased. Wan (1995) shows similar results to the latter,

in which a dynamic dispatching rule yields equally good or better results compared to

static methods, when subjected to processing time variability. Regarding scheduling

problems with high uncertainty, many studies have confirmed that an indirect

representation of schedules, such as dispatching rules, can produce better solutions

compared to a direct representation of schedules (Lawrence and Sewell, 1997, Matsuura

et al., 1993; 1997; Wan, 1995). In order to show that the predictive-reactive approach

using a direct representation could be better, even when the uncertainty is quite low,

Matsuura et al., (1993) propose a hybrid approach called switching. In such a hybrid

approach, a predictive schedule is created for the shop which uses a periodic

rescheduling policy. If the realised schedule deviates significantly from the predicted

one, the system switches to using a dispatching rule for the remainder of the period.

Another hybrid approach, which includes a global scheduler and a dispatching module

for a job shop with variable processing times, is proposed by Roundy et al., (1991). In

this approach, the dispatching module selects a job, which is based on the outcome of

deriving the costs associated with performing a job at a particular time, from the global

schedule. With increasing shop complexity, this method has been shown to perform

well in comparison to dispatching rules. A similar hybrid approach to the latter, called

SB-DIS, was proposed by Barua et al., (2005). A global schedule is created for the shop

which uses a periodic rescheduling policy. The global schedule is implemented directly,

but serves to provide a priority index for the jobs. Compared to the latter approach, the

global schedule does not need to be feasible, but serves as a priority index for jobs used

by the dispatching procedure. SB-DIS was tested on both a deterministic and a

stochastic, hypothetical multi-stage shop problem and generally showed that it

outperformed different dispatching rules.

Chapter 3 Rescheduling and System Support

47

3.2 The scheduling task

Conway et al., (1967) state that a scheduling problem taken out of its context gains in

generality, since it approximates many situations, but does not represent a solution to

any real-world sequencing problem. This information is only a partial assessment of the

real problem. McKay and Wiers (1999) claim that researchers and real-world schedulers

are not discussing the same problem, since researchers are solving the sequencing

problems and real-world schedulers are faced with day-to-day challenges, such as

communicating with personnel about events of the previous night. A critical task of a

scheduler is also to check the current status of the plant with regard to demand,

machines, material, and personnel. Another task is to anticipate and plan future events,

such as machine maintenance and repair issues, processing changes, and new product

samples. When planning what has to be done, where, and by whom, there is almost

always a compromise, due to the wide range of options faced by the scheduler. This is

why McKay and Wiers (1999) define the scheduling task as: ña dynamic and adaptive

process of iterative decision making and problem solving, involving information

acquisition from a number of sources, and with the decisions affecting a number of

production facets in reaction to immediate or anticipated problemsò, which this work is

based on.

3.2.1 Functions of the production scheduling task

Wiers (1997) proposes that four types of control can be used to further characterise a

scheduling task: Detailed control, Direct control, Restricted control and Sustained

control. In Detailed control, the scheduling is very detailed in order to deal with the

short-term dispatching decisions that determine what to do next (Wiers, 1997). It is

important that a valid schedule for a short-term scheduling horizon is generated,

because there is no intermediate control before the schedule is launched and there is a

risk that the schedules have to be adjusted manually (Stoop and Wiers, 1996).

Direct control means that the scheduler has direct control to answer questions and give

directions, as the schedule has been created without any intermediate control before its

Chapter 3 Rescheduling and System Support

48

launch (Wiers, 1997). Methods such as completely reactive approaches or predictive-

reactive approaches are possible solutions, but in real-world situations these procedures

need to have some system support, in order to be able to provide the direct control

functions.

With regard to Restricted control, schedulers have to deal with the situation at hand,

with material availability and requirements usually beyond their control (Wiers, 1997).

McKay and Wiers (1999) explain that the decisions made regarding various problems

may differ, depending on the kinds of situation, such as the beginning of a day or a

Friday afternoon. The scheduling process needs to be able to answer questions in a

limited amount of time and small changes to the schedule must be made continuously

throughout the day, even if there is not a complete set of data available. Instead of a

complete rescheduling, some sort of partial rescheduling could possibly reduce the risk

of schedule nervousness.

Finally, Sustained control refers to the scheduler that monitors schedule execution and

carries out necessary changes when needed, in order to fulfil scheduling targets (Wiers,

1997). Consequently, a solution for real-world scheduling problems would have to

include detailed monitoring capability.

3.3 System support

As Pinedo (2005) vividly states, ñAnalysing a planning or scheduling problem and

developing a procedure for dealing with it on a regular basis is, in the real world, only

part of the story. The procedure has to be embedded in a system that enables the

decision-maker to actually use it. The system has to be integrated into the information

system of the organization, which can be a formidable taskò. Therefore, in order to be

able to handle the scheduling task that takes uncertainty into account, a scheduling

system, not only a scheduling algorithm is needed. Framinan and Ruiz (2009) believe

that scheduling research needs to increase studies in areas such as user interfaces, data

management, scheduling monitoring, as well as in more tools and methods for the

design and implementation of scheduling systems for manufacturing facilities. Hence,

Chapter 3 Rescheduling and System Support

49

this review identifies important functions and features that need to be handled by a

scheduling system.

3.3.1 User-interfaces and human control

Improvements can usually only be made through the scheduling process in practice

(McKay and Wiers, 1999), and the success of a particular technique is greatly

determined by its human users (Stoop and Wiers, 1996). In the field study of McKay et

al., (1995) at a printed circuit board (PCB) factory, an analysis of a schedulerôs task was

made to find out which decisions were taken due to uncertainty. The analysis indicates

that the scheduler was more of a problem solver and used more than 100 heuristics in

order to take precautionary actions and to anticipate problems. Furthermore, Stoop and

Wiers (1996) rightly note that humans often rely on their own judgement with regard to

the application of techniques and common sense tells them that these techniques are

imperfect. The only way to increase the use of new procedures is to have a great deal of

transparency, i.e., letting the user see what happens and to offer monitoring support.

User interfaces to support both model input manipulation and schedule manipulation are

believed to be an important research area (McKay et al., 2002). Gantt charts are

probably the most common way to present schedule information (e.g., McKay and

Buzacott, 2000) and there are real-world case studies that allow the user to modify the

predictive schedule through a Gantt chart-based interface (McKay and Black, 2007).

Higgins (1996) observes that the jobs screen, which displays the attributes of the

available jobs, is central to the interactive decision-making and thereby presents a

system architecture for human-computer interaction. A jobs screen is both made up of

assigned jobs at machines and unassigned ones. Although this approach is possible

using the dispatching clients or monitoring programs of the proposed system (see

Chapter 6), it is not used in this work because a schedule, generated by the SBO, is used

to suggest jobs for the operators in a production line. Consequently, the scheduling

system will support the operators with a schedule, in contrast to jobs screens (Higgins,

1996) that would leave this decision to the operators themselves. Scheduling

rules/heuristics can be used to test different policies and the knowledge-based adviser

will indicate if any constraints are infringed. Higgins also notes that human decision-

Chapter 3 Rescheduling and System Support

50

making with its ability of pattern recognition and setting things into a context is part of

an interactive process for creating the Gantt chart. In a similar vein, McKay et al.,

(2002) also maintain that the monitoring schedule execution status and evaluation

performance is important. Furthermore, they identify the research opportunity of task

design, i.e., what functions should be automated and what should be left to human

control.

McKay et al., (1999) also rightly point out that disturbances in the process and the

environment can be anticipated, reacted to, and adjusted in the scheduling process. A

manufacturing system is exposed to uncertainty in many forms, i.e., varying machine

processing times, machine failures, quality problems, personnel on sick leave, late

supply deliveries, and so forth. Although some uncertainties cannot be predicted, there

are some ñsurprisesò that can be foreseen. For example, they mention that the humidity

during the summer months is higher and may affect the production line and quality of

products, but can be taken into account since it is known in advance. Therefore, a

resource calendar interface (Pinedo, 2005) can be used for this reason and also for short-

term conditions, such as planned maintenance and shift schedules.

Additionally, Pinedo (2005) provides other examples of various, important user-

interfaces that may be used in a scheduling system: plant layout, routing table, capacity

buckets, and throughput data interfaces. Plant layout and routing table interfaces are

simple user-interfaces for the input data. The capacity buckets interface is used when

the time axis is divided into buckets or periods of time, e.g., days, weeks, or months, in

order to show the utilisation of the line capacity, when jobs are assigned to these

buckets. The benefit of such information is that the decision-maker can be proactive and

make sure that the resources can be utilised efficiently over time, e.g., to avoid

generating schedules that would require additional work on weekends some weeks,

when the extra work could, in fact, be balanced over several weeks of production. The

throughput data interface shows information about material waiting to be processed,

products delivered, WIP-levels, FGI-levels, utilisation of machines, and so forth.

Finally, a column editor could be useful for the scheduler, because it displays lists of

jobs in scheduled order divided over the machines (Pinedo et al., 1994).

Chapter 3 Rescheduling and System Support

51

3.3.2 Flexible objectives over the horizon

McKay et al., (1999) describe that everything changes over time and one day is not like

another, e.g., Monday morning is different to Friday afternoon. Consequently, the

scheduling function must be able to handle both absolute and relative time. Absolute

time is calendar-based information, such as the planned maintenance of machines, while

relative time refers to the decisions on the rolling horizon and affects the level of detail

and type of constraints used to make decisions. For example, in the next few weeks all

the constraints may be relevant when specific, production target levels are to be met, but

since the scheduling strategy might be changed, due to a future machine installation,

infinite loading may be used to enable preparation for production line maintenance.

Stoop and Wiers (1996) state that the scheduling horizon must be determined long

enough, in order to avoid generating sub-optimal schedules due to a too-short

scheduling horizon. Hence, it is natural that the productivity fluctuates over time.

3.3.3 Feasibility check and fault control

McKay and Wiers (2003) observe that checking the consistency of input data is

important, since data may come from many different sources. In addition, Blazewicz et

al., (2001) propose a feasibility analysis to ensure that resources, e.g., machines and raw

material, are available for scheduling the jobs. Framinan and Ruiz (2009) point out that

a standard language, such as XML standard, is needed to facilitate system integration

for scheduling systems. However, it may also be important to control scheduling

dispatching in real-time, similar to the knowledge-based adviser proposed by Higgins

(1996), in order to indicate if any constraints are violated. Hence, breaking soft

constraints could give a warning and breaking hard constraints will be prohibited.

3.3.4 Evaluating scheduling systems

Kempf et al., (2000) conclude that one of the problems with implementing systems in

industry is the difficulty evaluating the effectiveness of production schedules. An

Chapter 3 Rescheduling and System Support

52

absolute measurement may be used to ascertain whether a schedule is good or not on its

own. Furthermore, a benchmark result is needed to be able to obtain an absolute

measurement. Most real-world problems are NP-hard (Garey and Johnson, 1979), i.e.,

finding the optimal solutions for them is computationally difficult or not possible. An

alternative is to theoretically compute a result with regard to a stable state and compare

it against that value. A relative comparison means that two or more schedules are

available and the best among them may be determined. However, if the system is to be

evaluated against a real-world production system, real-world historical data can be used

for the comparison in a relative or an absolute approach. One way could be to use the

historical data as it is and another could be to use the trends of the historical data.

Manufacturing facilities are subject to an ever-changing environment and therefore the

historical data needs to be updated. Static measurement is when the predictive schedule

is measured without considering the dynamics of the real system, while a dynamic

measurement is when the predictive schedule is tested in the real environment with

regard to disturbances. The result of the dynamic test would be the realised schedule. A

schedule measurement is when the schedule itself is evaluated against some objectives,

but a good schedule might still leave a production line in a bad state at the end of the

horizon. For example, leaving a production line in a WIP status that is too low may lead

to a problem later on, and therefore the state measurement is of importance as well

(Kempf et al., 2000).

When comparing the results of different optimisation methods, one replication is not

enough, if the model or the algorithm is stochastic, such as GAs. Comparing average

results between various optimisation methods will almost always generate different

outcomes, and it may be tempting to proclaim that the method with the better average

results is the better one. However, it may be an erroneous conclusion, because there is a

risk that the randomness is the cause of the difference between them. A common

method is to use a hypothesis test for testing claims:

¶ H0: Optimisation method A (OMA) is not better than optimisation method B

(OMB).

¶ H1: OMA is better (lower) than OMB.

Chapter 3 Rescheduling and System Support

53

The hypothesis H1 is the hypothesis an experimenter wants to prove correct, but

hypothesis H0 cannot be rejected until H1 has been proven statistically correct. Two

common statistic methods that can prove whether hypothesis H1 is true are the t-test and

the Mann-Whitney test. An unpaired t-test is based on the difference between the

averages of the two groups divided by the standard deviation of the two populations,

and if this fractional number is large it is possible to reject hypothesis H0 and state that

hypothesis H1 is true. Observe that the t-test assumes the data sets in comparison are

normally distributed (Lövås, 2006).

The Mann-Whitney test is called a non-parametric test, since it does not need any

parameters, such as standard deviation and average, and hence does not assume the data

sets are normally distributed (Lowry, 2012). Hypothesis tests, i.e., Mann-Whitney test

and unpaired t-test, for the experimental results in Chapter 7 have been used in this

work and can be found in Appendix F.

3.3.5 Commercial software and real-world case studies

3.3.5.1 Commercial software

A generic job shop scheduling system named ñLEKINò is presented in Pinedo (2005).

Built mainly for education and research, it has also been used in real-world

implementations. The system is able to handle many different environments from single

machine to flexible flow- and job shops. The machine environment is modelled directly

in the software which guides the user to set the necessary settings. Different predefined

algorithms as well as user-developed algorithms can be used. A problem with using this

software which is related to the validity of the schedule is that the constraints necessary

for many real-world scheduling problems cannot be modelled, due to the fact that no

real, discrete-event simulation software or language is used. Furthermore, it is not

designed to be part of an on-line reactive scheduling system and would need to be re-

designed (if possible), in order to handle on-line data. Another type of software which is

also used mainly for learning scheduling and comparing algorithms is ñParsifalò

Chapter 3 Rescheduling and System Support

54

(Morton and Pentico, 1993). However, the software seems to be outdated as it runs only

on MS-DOS. A commercial scheduling tool that has the possibility to use discrete event

simulation is Delfoi Planner (Delfoi, 2012). The simulation-based version, Delfoi

Planner Simu, is a web-based scheduling software primarily used for the analysis of a

scheduling situation and possibly also to generate detailed schedules, but without the

possibility of on-line scheduling and monitoring. The other version, Delfoi Planner Lite,

is without discrete event simulation support, focuses more on the integration with other

systems, and only supports a simple, finite capacity planning function. The two systems

together could possibly support on-line and reactive scheduling, but it is not possible at

this time. Furthermore, no information is available about the optimisation algorithms

used to generate schedules, so its capability of handling complex scheduling problems is

uncertain.

ILOG (2012) is the name used for an umbrella of products supplied by IBM, and the

ILOG solver is the most common commercial tool for constraints programming

(Gusikhin et al., 2007). For example, a system based on products within ILOG, called

Centralized Vehicle Scheduler (CVS), was developed for the sequencing in a paint shop

at DaimlerChrysler (CVS, 2012). Many real-world applications use ILOG products

(ILOG, 2012), but the main problem is that the system is primarily based on

mathematical programming techniques.

3.3.5.2 Real-world case studies

In a statistical review of flow shop scheduling research between 1952 and 1994

(Reisman et al., 1997), it has been shown that only 5 out of 184 papers dealt with true

applications, which is much less compared to other areas within the science of

operations research/management. The study carried out by Jahangirian et al., (2010)

illustrates that even though scheduling applications have been the most common ones

among simulation applications in manufacturing and business between 1997 and 2006,

only a small portion of them use both real problems and real data. They also point out

that papers addressing real-world problems are important future research. On the other

hand, Kumar and Nottestad (2006) present a real-world, decision support system for the

Chapter 3 Rescheduling and System Support

55

scheduling of a plastic parts manufacturing line, using discrete event simulation. The

application uses the discrete-event simulation software WITNESS and a heuristics to

generate job allocation for two different lanes in a manufacturing line for plastic parts.

The heuristics used in the simulation includes many different constraints, although the

model itself is deterministic. It seems that a predictive-reactive approach is used in

which a manual periodic and event-driven rescheduling strategy is applied.

Furthermore, Excel, Microsoft Access, and Visual Basic for Applications (VBA) are

used to present input and output data for decision support. The result of a scheduling

cycle is the output data report which can be printed and delivered to the shop floor.

Dangelmaier et al., (2006; 2007) present a simulation-based scheduling system with

real-time control. Although the experiments in their research are not based on real-

world data, the system idea of online reactive scheduling is based on a realistic problem.

The system is divided into two parts: predictive scheduling and reactive scheduling. In

the predictive scheduling part, the schedules are generated in two steps. In the first step,

an optimisation algorithm generates a semi-feasible schedule, because not all constraints

are considered, e.g., buffer sizes. A simple heuristics sequences each job with the

longest tail order at the earliest available machine based on the bottleneck stage and

then applied for all the stages. The schedule generated from the optimisation algorithm

is simulated in a discrete event simulation model in order to obtain a valid schedule.

Another simulation is started with the activated Flow Analyzer Module that may

override the current schedule, by using rules mostly based on the waiting times of jobs

in the system. The schedule from the predictive phase is executed on the manufacturing

floor. Once there is a process disturbance, the rescheduling mechanism is activated. The

real-time monitoring and control module starts the simulation evaluation function when

a disturbance occurs. In order to generate a new schedule, two algorithms are used: an

optimisation rescheduling algorithm that reschedules as few jobs as possible and the

match-up rescheduling algorithm which tries to get the current schedule back on track.

Thereafter, a simulation is started together with the Flow Analyzer, and the user may

decide whether to apply the new schedule or whether the current one is preferred. The

proposed system was implemented in the discrete event simulation software

Tecnomatix eM-Plant (Plant Simulation) and partly tested in Dangelmaier et al., (2006)

Chapter 3 Rescheduling and System Support

56

for a hypothetical flexible flow shop with parallel and identical machines at three stages.

The results show that the combination of simulation and optimisation is better than only

using optimisation or random scheduling alone, when the number of jobs increases. The

system proposed by Dangelmaier et al., (2006; 2007) has only been tested for

theoretical problems and uses simple optimisation heuristics. Furthermore, the ñsystemò

is implemented as a module inside discrete event simulation software, which would

limit its general use in other applications. However, to our best knowledge, it is one of

few simulation-based scheduling systems that deal with online reactive scheduling.

McKay and Buzacott (2000) describe two different, industrial real-world case studies,

one with a high volume low product mix and the other with a low volume high product

mix. The first case study revealed that the decisions of the scheduler were too difficult

to handle in computerised scheduling software, which was therefore stopped before

implementation. However, if the product mix had been higher, the need for scheduling

software would have been desirable. In the second case study, a production planning

system using an evolutionary approach was implemented. The tool was built in Excel

with VBA and produced Gantt charts. In addition, the necessary reports were printed

and delivered to the shop floor. The scheduling tool generates schedules in a short

horizon of two days, but deals with various real-world constraints.

McKay and Black (2007) describe the evolution of a real-world scheduling system that

supports the tasks of the scheduler in a job shop environment. In some ways, the shop

may be defined as a re-configurable flow shop, since several machines were put

together in order to form a line without intermediate inventory between production

stages. Initially, a two-week cyclic schedule was desired, and one of the key issues was

setup reduction and workforce constraints. A first prototype was built in Excel and

VBA, used simple heuristics and presented the result in a Gantt chart. However, the

system has been developed over a ten year period into to a small mini-MRP system with

finite capacity. The scheduling or sequencing task has been divided into two parts,

namely, scheduler and dispatcher. The scheduler handles the long-term (weeks)

scheduling and the dispatcher handles the short-term (two days) reactive dispatching

using heuristics. The scheduling system has a number of different functionalities to

Chapter 3 Rescheduling and System Support

57

support the work of the scheduler, such as user interface for modifying the predictive

schedule through a Gantt chart and various kinds of output reports.

3.3.6 Proposed architectures

To briefly summarise the above detailed review, company confidence in existing

software tools is reduced, because most tools do not provide a fair representation of a

companyôs scheduling problems, due to the vast simplifications (Tolio, et al., 2010).

Furthermore, Pinedo (2005) also states that many of the commercial systems claim that

their systems can be used with only minor modifications, however, in reality, the

changes required are often substantial. Nonetheless, if a system were designed to be

highly modular, it would increase the possibility for the users to expand their

functionality and save development time. Framinan and Ruiz (2010) present a system

architecture with such a modular attribute that entails both production scheduling and

shop floor control, as shown in Figure 3.1 which illustrates a simplified version of their

proposed architecture.

Figure 3.1 Extended modular architecture (Framinan, Ruiz 2010)

The first module, Business Logic/Data Abstraction Management Module, makes sure

that data needed is at the required abstraction level. The second, the Database

Chapter 3 Rescheduling and System Support

58

Management Module, stores the data and handles the import/export of data and

production monitoring data from the business information system. The third, the User

Interface Module, handles the necessary user-interfaces, while the fourth one, the

Schedule Generator Module, handles the functions in order to generate schedules.

The user-interface module consists of five parts, of which the first is the output sub-

module that presents necessary Gantt charts and other information. The second part is

the scenario management sub-module which can answer what-if questions that may

arise, e.g., what happens when the night shift is cancelled? The third part is the system

maintenance sub-module which handles the shop configuration and product

information. The fourth part is the scheduling control sub-module that handles real-time

data from the production. It checks feasibility and input data with each new scenario

and warns the user when needed. The fifth part is the algorithm generator interface that

allows users to create new algorithms through a user-friendly interface.

The schedule generator module consists of an algorithm library, algorithm generator,

scheduler & dispatcher, and pre-processor. The algorithm library contains the different

optimisation algorithms, while the algorithm generator sub-module is mainly an object

that generates algorithms, based on information in the algorithm generator interface in

the user interface module. The Scheduler & Dispatcher use algorithms from the library.

In addition, a two-step schedule generation is proposed in which the schedule(s) from

the first step takes major constraints into consideration and the second step also

incorporates those minor constraints that have been ignored in the first step. The main

task of the pre-processor sub-module is to find out which algorithms are suitable for the

scheduling problem at hand.

Framinan and Ruiz (2010) further claim that the ñnon-essential constraintsò could be

separated from the schedule generation process and used when the actual schedule is

constructed. This is due to the fact that the architectureôs purpose is mainly to use

mathematical optimisation methods and meta-heuristics and there is no support for

discrete-event simulation. To exclude some ñnon-essentialò constraints is common

when building a discrete-event simulation model, but a simulation model may include

Chapter 3 Rescheduling and System Support

59

many more constraints. In fact, the effect of excluding different constraints can be tested

in the simulation model by some validation and sensitivity tests.

Li et al., (2012) propose a new modular design for a simulation-based scheduling

system for semiconductor manufacturing lines. The architecture is divided into a

software layer, a simulation layer, and a data layer. They use a modular approach in

which simulation models, algorithms, etc., are divided into different modules. Both

predictive (dispatching rules) and reactive algorithms are used, but the main focus is on

the automatic generation of simulation models based on the integrated and modular

approach of simulation data. Furthermore, there is no information whether on-line

reactive scheduling is possible, when integrated into a real-world system. A similar

approach of automatically generating discrete-event simulation models is proposed by

Horn et al., (2006). A successful implementation in a real-world system employed a

five-step, simulation-based optimisation procedure using different heuristics, allowing

the user to modify the schedule and finally generating a detailed operational plan, i.e., a

Gantt chart. Sivakumar and Gupta (2006) propose an ñimplementation conceptò for

another similar system using the automatic generation of simulation models. They state

that a simulation model would require much maintenance, as the circumstances change

if the model itself is not generated automatically. The system includes the generation of

schedules in a predictive-reactive manner, but the output reports produced appear to be

static, i.e., not updated until a rescheduling is carried out. The system was implemented

at a real-world facility and it allows the user to use both the ñwhat-ifò scenario

experiments and the scheduling function.

Son et al., (2003) describe the structure and architecture of a simulation-based real-time

shop floor control system for discrete part manufacturing. Discrete-event simulation

models in ARENA are automatically generated, by using a model generator and a

resource model, i.e., the database in MS Access 97, and a Message-based Part State

Graph (MPSG) shop level execution model. Most of the software tool has been

developed in VBA. The control system can be used for either flow shops or job shops

and its purpose is to work on automatic systems, but it may also operate at manual

workstations, as long as feedback is sent back to the system. The simulation

Chapter 3 Rescheduling and System Support

60

communicates with a shop level executor and interacts with different external databases,

such as master production schedule. The scheduling function is similar to other hybrid

methods (e.g., Matsuura et al., 1993; Barua et al., 2005). A commercial scheduler was

used to find good schedules without employing any simulation-based optimisation

technique. Each resource, e.g., machine to be scheduled, is associated with a dispatch

list which is a sequence of jobs to be scheduled in the order which is to be kept, but the

simulation model is able to run in a FCFS mode as well. The real- time simulation is

used as the central controller that keeps track of the current status of the system and

sends required messages. The simulation sends messages to the lower level controllers

and then receives feedback from the system.

3.4 Identified functions to include in a system architecture

Following the comprehensive literature review presented in chapters 2 and 3, a

complete list of the necessary functions that can be included in the architecture of a

scheduling system capable of handling real-world production scheduling problems is

provided, in Table 3.1.

Table 3.1 The main areas of modular scheduling system architecture

Identified main areas Identified functions

Discrete-event simulation

(DES)

DES for complex problems (Laguna and Marti, 2003): multiple

constraints (Ribas et al., 2010), uniform or unrelated machines (Ribas

et al., 2010) multiple objectives (Gary et al., 1995).

Automatic model generation (Sivakumar and Gupta, 2006).

Model properties: Flexibility, Speed, Details (Koh et al., 1996).

Simulation-based optimisation

Genetic Algorithms (GA) + DES (April et al., 2003).

Steady state GA (Rogers and Prugel-Bennet, 1999) and parallel

evaluations (Li and Wang, 2008).

Scheduling

Schedule representation: Global scheduling (direct) (Sankar et al.,

2003; Kim et. al., 2007), Dispatching rules (Baker and Trietsch, 2009)

and other heuristics (indirect) (McKay and Wiers, 1999), Hybrid

solutions (Roundy et al., 1991; Barua et al., 2005).

Algorithm generator (Framinan and Ruiz, 2010).

Automatic algorithm selection (Framinan and Ruiz, 2010).

Meta-heuristics (Laguna and Marti, 2003).

Hyper-heuristics (Burke at al., 2003).

Setup-time reduction (Allahverdi et al., 2008).

Flexible and configurable algorithms (McKay et al., 2002).

Adaptive and learning by algorithms (McKay et al., 2002).

Chapter 3 Rescheduling and System Support

61

Dispatching (on-line)

List of jobs to be dispatched (Son et al., 2003).

Switching (Matsuura et al., 1993)

Priority index hybrids (Roundy et al., 1991; Barua et al., 2005)

Rescheduling

Rescheduling policies: Periodic rescheduling, Event-driven

rescheduling, Hybrid rescheduling (Church and Uzsoy, 1992;

Herrmann, 2006)

Rescheduling methods: Robust schedules , Complete regeneration,

Right-shift scheduling, Match-up scheduling (Viera et al., 2003).

Scheduling algorithms Scheduling algorithms library (Framinan and Ruiz, 2010).

Objectives
Multiple objectives (Gary et al., 1995).

Flexible objectives (McKay et al., 1999).

Experimentation module

Validation experiments (Kempf et al., 2000).

What-if scenarios (Framinan and Ruiz, 2010; Sivakumar and Gupta,

2006).

Integration with other systems
Integration and import/export (Pinedo, 2005; Framinan and Ruiz,

2010)

Database

Input data (Framinan and Ruiz, 2010).

Output data (Framinan and Ruiz, 2010).

Monitoring data (Framinan and Ruiz, 2010).

Fault control

Data feasibility (Blazéwicz et al, 2001) and consistency (McKay and

Wiers, 2003) check.

Real-time dispatching fault control: Soft constraints, Hard constraints

(Higgins, 1996)

User-interfaces

Model input data: Plant layout (Pinedo, 2005), Shop configuration

(Framinan and Ruiz, 2010), Routing table (Pinedo, 2005), Product

information (Framinan and Ruiz, 2010).

Scheduling input data: Scheduling horizon (Stoop and Wiers, 1996),

User interactivity (Higgins, 1996; McKay and Black, 2007), Resource

calendar (Pinedo, 2005; McKay and Wiers, 1999), e.g., Planned

maintenance, Machine repairs, Product samples.

Scheduling output data: Capacity buckets (Pinedo, 2005), Gantt charts

(McKay and Buzacott, 2000), Column editor (Pinedo et al., 1994),

output reports (Kumar and Nottestad, 2006).

On-line data: Schedule execution status, Production status,

Performance measures (McKay et al., 2002), WIP levels (Pinedo,

2005), User interactivity (Higgins, 1996).

Algorithm generator (Framinan and Ruiz, 2010).

3.5 Concluding remarks

As a general conclusion, the impact of uncertainty is systematically underestimated by

academic research and a common approach to uncertainty is to react and reschedule

(McKay and Wiers, 1999). Different methods with which to react and reschedule and

create schedules that are robust or reactive to real-world disturbances have been

identified in this chapter. However, solving the sequencing problems is not enough,

since real-world schedulers are faced with day-to-day challenges. In order to handle the

Chapter 3 Rescheduling and System Support

62

scheduling task including uncertainty, an integrated scheduling system and not only an

intelligent algorithm is needed. This review has identified the most important functions

and features that need to be handled by such an integrated scheduling system, such as

simulation-based optimisation, flexible algorithms, system integration capability, within

a modular architecture. Chapters 4 and 5 further address the internal details of such

scheduling system architecture for handling most of the important functions identified.

Chapter 4 A Web services-based Architecture for Industrial Scheduling

63

Chapter 4

4 A Web Services-based Architecture for Industrial

Scheduling

This chapter describes the overall system architecture of the Web services-based

industrial scheduling system, which is designed to be a software architecture to solve

the limitations of existing scheduling software used in industry. This architecture is

based on the generic simulation-based optimisation platform, OPTIMISE, introduced in

(Ng et al., 2008), and is customised and extended for industrial scheduling. Hence, the

architecture is called OPTIMISE Scheduling System, or OSS. Since a Web services-

based simulation system like OSS is closely related to Web-based simulation

applications, this chapter begins with a brief introduction and literature review of Web-

based simulation (Section 4.1), as well as some existing platforms found in the literature

(Section 4.2). A short introduction of the OPTIMISE architecture is presented in

Section 4.3, after which the chapter focuses on OSS and its core components (Section

4.4).

4.1 Web-based simulation

The internet has grown considerably in the last two decades and it is not only a platform

for information sharing, but also for new applications within many different areas.

Simulation applications have started using the concept of Web-based simulation (WBS)

moving from more traditional local desktop solutions. Fishwick (1996) states that WBS

ñrepresents the connection between the web and the field of simulationò, and Byrne et

al., (2010) define WBS as ñthe use of resources and technologies offered by the World-

Wide-Web (WWW) for interaction with client and server modelling and simulation

toolsò. Compared to desktop systems, some advantages can be identified when a Web-

based system approach is used:

Chapter 4 A Web services-based Architecture for Industrial Scheduling

64

¶ Accessibility: A Web-based system enables users at different locations to access

the data from any computer that has internet available. Furthermore, a Web-

based system is also accessible off-hours (Veith et al., 1999).

¶ Cross-platform capability: Such a solution is flexible because the web

applications can be independent of computer type or operating system (Jin et al.,

2010; Byrne et al., 2010).

¶ Controlled access: A Web-based system can use passwords and user-accounts to

restrict the access of the system. (Veith et al., 1999)

¶ Licensing: The cost of simulation software and computer hardware can be high

for a company (Fishwick, 1996), especially if there are requirements for parallel

or distributed evaluations. Using a Web-based approach means licenses can be

used when these are required from within a company or an external service

provider. The total cost of simulation projects can be substantially reduced

(Wiedemann, 2001).

¶ Maintenance: The maintenance is carried out on the server and the changes take

effect without needing to involve actual client applications. (Byrne et al., 2010)

However, there are drawbacks to Web-based systems, some of which follow:

¶ Graphical user interface limitations: Interfaces supported by the web are limited

(Suh, 2005), and it may require too much effort (Wiedemann, 2001) creating

complex Web-based interfaces compared to desktop-based interfaces.

¶ Security vulnerability: Web-based applications are vulnerable to malicious

Internet attacks (Suh, 2005).

¶ Licensing: Some software vendors may only allow a single place usage

(Wiedemann, 2001).

¶ Network traffic delays: Luo et al., (2000) state that distributed simulation clients

may take longer to execute compared to local simulation because of network

traffic delays.

Byrne et al., (2010) claim that the research within WBS is still in its infancy and the

number of real-world applications is still low. When it comes to Web-based SBO

Chapter 4 A Web services-based Architecture for Industrial Scheduling

65

systems, there are only a few publications, which are briefly reviewed in the following

sub-section.

4.2 Existing Web-based systems for SBO

Luo et al., (2000) describe a Web-based distributed SBO system that is based on Java.

The system consists of three parts: a management console, a web server and central

controller, and the simulation clients, see Figure 4.1 freely redrawn from Lou et al.,

(2000).

Figure 4.1 Web-based distributed simulation system.

A Web-browser is used to start a java application, i.e. the management console which is

used to set up and start experiments for real-time monitoring of the clients and to show

the simulation results of present and past optimisations. The web server and the central

controller handle the assignment of jobs to be evaluated by the clients and use a

sequential optimisation algorithm for Optimal Computing Budget Allocation (OCBA).

The clients are the computing resources used for the simulation evaluations.

Another Web-based SBO system has been proposed by Yoo et al., (2009). Their

framework for Web-based SBO uses a distributed platform, Parallel Replicated

Discrete-Event Simulation (PRDES), to execute the simulation evaluations, see Figure

4.2 freely redrawn from Yoo et al., (2009).

Chapter 4 A Web services-based Architecture for Industrial Scheduling

66

Figure 4.2 Web-based SBO framework.

A Web-page is used as a user interface, making it accessible through a Web-browser.

The optimisation service uses an optimisation engine based on an NP-algorithm and,

when a promising solution is found, it is sent to the simulation service through the

repository. The simulation service is not entirely an evaluative client, since it uses a

variant of the OCBA algorithm called EOCBA, which takes the computing power into

account as well. The results are stored in the repository, i.e., database.

4.3 OPTIMISE: A web services-based SBO platform

OPTIMISE (OPTIMisation using Intelligent Simulation and Experimentation) is

conceived as a generic Internet computing platform that tightly integrates different

Discrete-Event Simulation (DES) systems with Artificial Intelligence-based

optimisation tools in a Web services-based platform that can be integrated with other

industrial/business information systems for valid simulation and optimisation runs (Ng

et al., 2008). By generic, it is designed to be a computing platform that can be used to:

(1) address a wide range of real-world optimisation problems commonly found in

manufacturing and logistic applications; (2) facilitate the combined use of various

search algorithms (e.g., Genetic Algorithms (GA) and local search); (3) be able to

connect to different types of simulators and Discrete-Event Simulation (DES) packages

through the Sim-Agent concept (see Figure 4.4), and (4) support inherently parallel and

distributed simulation to significantly reduce the time spent on simulation evaluations.

The platform is designed to be multi-tier client/server based in which all complex

components, including various meta-heuristic search algorithms, neural network-based

meta-models, deterministic/stochastic simulation systems and the corresponding

database management system are integrated in a parallel and distributed platform and

Chapter 4 A Web services-based Architecture for Industrial Scheduling

67

made available to general users for easy access, anytime, anywhere, through Web

Services technology (Ng et al., 2007).

Even though the term cloud computing was not in popular use when OPTIMISE started

to be implemented in 2006, it actually bears many common features that a cloud

infrastructure should provide. Particularly, the concept of dual parallelism in cloud

computing is supported by OPTIMISE, because it supports (1) multiple users from

several companies/institutions that may be geographically distributed; and (2) running

multiple simulations for different simulation models developed using various simulation

languages/packages.

To support these goals, OPTIMISE was designed with the following important features:

¶ Web services: using a Web page inside a Web browser as user interface, which

Yoo et al., (2009) adopt, is advantageous with regard to accessibility and cross-

platform capability. Although, approaches using client applications, e.g., .NET-

applications are supported as well.

¶ Distributed simulations: distributed simulations facilitate the simulation

evaluations that are to be run in parallel on different computing nodes/cores,

which is important to reduce the total execution time for SBO. Network traffic

delays, identified by Luo et al., (2000), are believed not to cause any problems,

due to the improvements in the network technologies over the years.

¶ Remote database ï using a database to store optimisation results similar to Lou

et al., (2000) supports the storage and access to experimental data.

¶ Modularity: The system is designed to be highly modular, since it would

increase the possibility to expand the functionality and save development time

(Pinedo, 2005).

¶ Security: The security is taken into account in order to avoid unauthorized

access, e.g., by using security certificates.

¶ Users: Different user accounts are needed in order to handle usersô privileges,

so that an ordinary user does not have administrator privileges. Furthermore, it is

important that multiple users can use the system at the same time.

Chapter 4 A Web services-based Architecture for Industrial Scheduling

68

¶ Research ï to facilitate further research on SBO using hybrid search methods for

real-time decision making and/or weekly/daily scheduling.

Resembling the system architecture commonly used for cloud computing, the

OPTIMISE systems architecture (Figure 4.3) is composed of multiple server

components (cloud components) communicating with each other over a loose coupling

mechanism such as a messaging queue. OPTIMISE fulfils the definition of cloud

computing, as it incorporates the ideas of virtualisation and distributed computing using

Web services technologies. With the XML Web services platform, OPTIMISE can be

deployed as a three-tier architecture that consists of the following three layers: 1)

OPTIMISE client; 2) OPTIMISE server; 3) data sources. This is a highly flexible and

scalable solution and the separation is intended to support industrial IT service

providers in delivering and supporting both computing services and technical

consultancies to a wide range of industries, national and global, from SMEs to multi-

national enterprises.

Figure 4.3 With XML Web services, OPTIMISE can be deployed with high flexibility

and scalability.

http://en.wikipedia.org/wiki/Systems_architecture
http://en.wikipedia.org/wiki/Loose_coupling

Chapter 4 A Web services-based Architecture for Industrial Scheduling

69

For example, as illustrated in Figure 4.3a, a SME that does not possess its own

simulation resources and required computing capacity can run the OPTIMISE client and

data sources layer locally and connect to a remote OPTIMISE server that houses the

DES systems and optimisation engines, by contracting an Optimisation Services

Provider (OSP). The same kind of configuration can also be applied to a multi-national

enterprise in which multiple OPTIMISE clients can connect to the optimisation services

supplied by a central IT department, which acts as an internal OSP (Figure 4.3c).

As shown in Figure 4.4, the OPTIMISE architecture consists of a number of

optimisation engines, surrounded by a set of OPTIMISE Server Components divided

into three tiers: (1) Web Server; (2) Optimisation, and (3) Simulation subsystem. The

optimisation engine (OptEngine) in the optimisation tier is the most important

component for an SBO application, because it provides the core functionality for a

optimisation/experiment and acts as the hub for coordinating other functions.

Figure 4.4 The generic OPTIMISE system architecture.

The web services function, hosted by the Webserver, listens to the XML requests from

the client tier, such as start an SBO (through OptManager) or read data from the

optimisation database (OptDB). The implementation of OPTIMISE started in 2006.

While several extensions to support new technologies and applications have been made

over the years, the core components have not been changed. Since these core

Chapter 4 A Web services-based Architecture for Industrial Scheduling

70

components are used or extended in OSS, they are briefly introduced in this section and

described in detail in the following sub-sections.

4.3.1 Optimisation manager and database

The Optimisation Manager (OptManager) is a Windows process that listens to the

request from the Web Server to launch different OptEngines, according to the settings

specified in the client applications. Data required to start an SBO procedure may

include: (1) simulation settings (e.g., warm-up time, simulation horizon, number of

replications and production line configuration), (2) objective function, (3) list of input

variables, (4) list of output variables, (4) constraints to input variables, (5) choice of

optimisation algorithm, and (6) optimisation parameters (e.g., population size, crossover

rate, and stop criterion). Currently, OPTIMISE supports several optimisation

algorithms, such as meta model-assisted hill climbing and evolutionary algorithms.

However, meta model-assisted hill climbing algorithms are not used in the

implementation of OSS (Chapter 6) or in the genetic algorithm (Chapter 5).

Furthermore, new algorithms can be added easily, by compiling the modified algorithm

core with the Object-Oriented libraries which OPTIMISE supplies. Generic algorithm

software or templates needs research in its own area (Voß and Woodruff 2000).

OPTIMISE has an Object-Oriented class library that allows new algorithms to inherit or

override class methods for selection, crossover, and mutation operations which are

commonly used in any evolutionary algorithms. There are also common function

libraries for training meta-models, data normalisations, and communication with other

components. These enable new algorithms to be quickly developed or customised and

fit into the OPTIMISE framework by reuse. Such generic support of SBO algorithmsô

development and ease of launch during optimisation runs is a very important feature for

the experiments in comparing different genetic representations (Chapter 5) and have

generated the experiment results presented in Chapter 7.

By letting all OptEngines save their optimisation settings and other experiment results

in a central database, i.e., OptDB, OPTIMISE supports the following features:

Chapter 4 A Web services-based Architecture for Industrial Scheduling

71

¶ Initial solutions, their quality and diversity, have a huge impact on the

performance of an optimisation run, especially when a GA or other population

based algorithms are used. All the experiment results are stored in the OptDB, to

enable a user to choose the set of initial solutions from previous experiments,

when starting a new optimisation run. This can also be used in combination with

other experimental designs, e.g., Design of Experiments (DoE), provided in the

OPTIMISE client applications. However, DoE is not used in the implementation

of OSS (Chapter 6) or in the genetic algorithm (Chapter 5).

¶ Dynamical changes to meta-heuristic algorithms during the optimisation run are

especially useful when global search methods, e.g., GAs, are used for

exploration in a first stage followed by local search methods, e.g., hill-climbing

algorithms, in order to further improve the optimisation result. However, local

search methods are not used in the implementation of OSS (Chapter 6) or in the

genetic algorithm (Chapter 5).

¶ Fault tolerance ï Faults in a simulation evaluation can easily be detected and

recovered by re-starting the run with another SimAgent using time-outs for the

communication. If a simulation model returns invalid results, due to model

deficiencies, it will be shown in OPTIMISE Browser, with which it is possible

to browse new and historical optimisation data from OptDB. If the OptEngine

crashes due to software faults, OPTIMISE indirectly facilitates error-recovery,

by allowing a user to start an OptEngine and re-load the previous simulation

records saved in OptDB.

4.3.2 Simulation components

Parallel simulation evaluations may be needed to speed up the SBO process. Therefore,

the simulation components are located in a tier of their own, decoupled from the server

components, to offer a modular solution that enables them to be widely distributed.

Different simulation systems, e.g., commercial software or developed .Net applications,

are connected to SimManager homogenously by using SimAgents in the SimAgent tier.

To launch the simulation software used in a particular optimisation run, the SimAgents

use the software specific BackEnd objects that support Distributed Component Object

Chapter 4 A Web services-based Architecture for Industrial Scheduling

72

Model (DCOM) and Socket communications for connecting to different simulation

systems. Furthermore, BackEnd protocols are used to be able to communicate with the

simulation software, e.g., load model, start simulation run, and collect output data. A

standard format, XML, is used to return the output data via SimManager, to the

OptEngine for evaluation and storage.

Unlike the SimManager described in Biles and Kleijnen (2005), which needs the

software for the statistical methodology and optimisation techniques to be able to

analyse the simulation results, the SimManager in OPTIMISE is a generic and light-

weighted job dispatcher. Several SimAgents can be started at the same computer,

depending on the computing capacity, i.e., number of processor cores. The SimManager

registers all of the SimAgents that have been started, which means that it can dispatch

several jobs received from OptEngines to multiple simulation systems running in

parallel. The SimManager will send a job that is pending in the message queue to the

first available SimAgents that fulfil the correct software requirements. The SimAgent

will be marked as busy until the result is sent back to SimManager.

Any applications that use the Web services provided by OPTIMISE can be called an

OPTIMISE client application. In order to supply the data needed to run SBO for the

industrial scheduling problems, the GUI was extended to connect to the OPTIMISE

Web services to launch SBO for industrial scheduling applications. On the other hand,

there are some generic applications which have been developed for the

monitoring/control of the OPTIMISE Server Components and management of

optimisation project data. With generic, it means that they have not been specifically

developed for a particular application. OPTIMISE Browser is useful for many

optimisation projects and is an example of such a generic application. OPTIMISE

Browser reads the data from OptDB, presents the data in tables and graphs, and can be

used to analyse the data. How the OPTIMISE framework and client applications are

customised for industrial production scheduling is the topic of the next section.

Chapter 4 A Web services-based Architecture for Industrial Scheduling

73

4.4 OPTIMISE Scheduling System (OSS)

The architecture of the OPTIMISE Scheduling System (OSS) (Frantzén et al., 2010;

Frantzén et al., 2011) can be seen in Figure 4.5.

Figure 4.5 Architecture of OPTIMISE Scheduling System (see also Figure 4.6 for the

information exchanges between the modules).

