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Abstract 

In order to cope with the challenges in industry today, such as changes in product 

diversity and production volume, manufacturing companies are forced to react more 

flexibly and swiftly. Furthermore, in order for them to survive in an ever-changing 

market, they also need to be highly competitive by achieving near optimal efficiency in 

their operations. Production scheduling is vital to the success of manufacturing systems 

in industry today, because the near optimal allocation of resources is essential in 

remaining highly competitive.  

 

The overall aim of this study is the advancement of research in manufacturing 

scheduling through the exploration of more effective approaches to address complex, 

real-world manufacturing flow shop problems. The methodology used in the thesis is in 

essence a combination of systems engineering, algorithmic design and empirical 

experiments using real-world scenarios and data. Particularly, it proposes a new, web 

services-based, industrial scheduling system framework, called OPTIMISE Scheduling 

System (OSS), for solving real-world complex scheduling problems. OSS, as 

implemented on top of a generic web services-based simulation-based optimisation 

(SBO) platform called OPTIMISE, can support near optimal and real-time production 

scheduling in a distributed and parallel computing environment. Discrete-event 

simulation (DES) is used to represent and flexibly cope with complex scheduling 

problems without making unrealistic assumptions which are the major limitations of 

existing scheduling methods proposed in the literature.  At the same time, the research 

has gone beyond existing studies of simulation-based scheduling applications, because 

the OSS has been implemented in a real-world industrial environment at an automotive 

manufacturer, so that qualitative evaluations and quantitative comparisons of scheduling 

methods and algorithms can be made with the same framework.  

 

Furthermore, in order to be able to adapt to and handle many different types of real-

world scheduling problems, a new hybrid meta-heuristic scheduling algorithm that 

combines priority dispatching rules and genetic encoding is proposed. This combination 

is demonstrated to be able to handle a wider range of problems or a current scheduling 
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problem that may change over time, due to the flexibility requirements in the real-

world.  The novel hybrid genetic representation has been demonstrated effective 

through the evaluation in the real-world scheduling problem using real-world data.  
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Chapter 1 

1 Introduction 

The introductory chapter presents the research background (Section 1.1) that motivated 

this research study and thereby the aim and objectives (Section 1.2). The research 

methodology (Section 1.3) used is explained, the scope of the work (Section 1.4) is then 

defined and followed by the organisation of the whole thesis (Section 1.5). 

 

1.1 Research background 

1.1.1 Challenges of manufacturing industry 

Manufacturing organisations are experiencing shortened product life cycles, 

unpredictable customer demands, and fluctuating production volumes. At the same 

time, the level of global competition is becoming much stronger. All these changes are 

forcing manufacturing companies to react more flexibly and swiftly to changes in both 

product diversity and production volume. In order to meet these challenges, the shop 

floor control system of a manufacturing system has to be designed to incorporate a high 

degree of flexibility. Groover (2001) defines different types of flexibility in 

manufacturing systems as follows: 

¶ Machine flexibility means the ability to adapt machines to different production 

operations and parts. 

¶ Production flexibility means the range of different parts that can be produced by 

the system. 

¶ Mix Flexibility means the systemôs ability to maintain production volume 

despite a change of product mix. 

¶ Product flexibility means the systemôs ability to cope with design changes and 

introduction of new products. 

¶ Routing flexibility means the systemôs ability to continue production through 

alternative workstations if machines are subject to interruptions.  

¶ Volume flexibility means the systemôs ability to economically produce parts of 

high and low volumes. 

¶ Expansion flexibility means the ability for a system to expand for a higher 

production volume. 
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In terms of the challenges faced by any manufacturing company, there is no exception 

for high quantity production (mass production) such as that of car manufacturers. In 

order for them to survive in an ever-changing market, they need to be highly 

competitive by achieving near optimal efficiency in their operations. However, with the 

demand for much more flexibility to cope with greater product variety and fluctuating 

production volumes, as mentioned above, industrial manufacturing systems, in general, 

and car manufacturers, in particular, are becoming much more complex, viewed from 

both a technological and management perspective.  

 

In general, scheduling concerns ñthe allocation of resources over time to perform a 

collection of tasksò (Baker and Trietsch, 1974). In practice, scheduling refers to ñthe 

determination of a set of orders, which will be processed by the resources during a 

short-term period (day, week, etc.)ò (Kiran, 1998). For a manufacturing company to 

remain highly competitive, a near optimal allocation of their resources is essential. 

Furthermore, scheduling may also contribute to the flexibility of a firm (De Snoo et al., 

2011). It is therefore not difficult to recognise that efficient scheduling is vital to the 

success of manufacturing systems in industry today. This makes scheduling an 

interesting area that has drawn much attention from both academic researchers and 

industrial practitioners. Nevertheless, with the demand for higher flexibility, the 

efficient scheduling of a production line has become an extremely difficult task, 

especially when day-to-day challenges, such as product or order changes, have to be 

handled efficiently. On a modern manufacturing shop floor, scheduling tasks are 

undertaken by the Enterprise Resource Planning (ERP) system. Unfortunately, the 

existing scheduling modules developed for an ERP system are based on deterministic 

algorithms which are only suitable for operations in a predictable and stable 

environment. This implies that ERP systems in general do not have the capability to 

generate detailed schedules for a complex manufacturing system. Therefore, a 

scheduling decision support that can cope with real-world industrial production systems 

is needed. Consequently, it is necessary for the research community to explore some 

new approaches that can make shop floor scheduling tasks capable of handling the 

complexity and flexibility demands facing todayôs manufacturing companies.  
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1.1.2 State of the art: a brief overview 

The scheduling of a real-world production line may be highly complex; sequence 

dependent setup times, constraints, and long failures could affect the possibility of 

reaching the production target. Many real-world scheduling problems belong to the 

class of NP-complete problems, for which finding the optimal solution within an 

acceptable time period is impossible, due to the size of the problems (Garey and 

Johnson, 1979). To prove that an optimisation problem is as difficult as an NP-complete 

problem, the term NP-hard is useful, because it describes that it is not possible to find 

the optimal solution with available techniques (Baker and Trietsch, 2009). The same 

could be said about scheduling problems with increasing complexity. Trying to compare 

all scheduling problems would not be feasible, simply because the combinations of 

scheduling problems are huge. There are too many different sizes, constraints and 

objectives in order to solve them optimally, which on the other hand can be done for 

smaller scheduling problems. At the same time, trying to simplify complex scheduling 

problems by reducing the number of constraints and characteristics would simply 

transform them into unrealistic textbook problems that may not be acceptable in a real-

world scheduling situation. This claim can be supported by many other researchers. For 

example, Pinedo (2008) states that advances in scheduling theory have only had a 

limited impact on scheduling in practice, although the theoretical research has not been 

a complete waste of time, because it has given insights into the scheduling problem in 

general. Gupta and Stafford (2006) also claim that theoretical flow shop scheduling 

problems remain largely unsolved, when the 50 years of research is considered. They 

state that research within flow shop scheduling seems to have been motivated by what 

the researchers can achieve rather than what is important, and thereby also suffers from 

too much abstraction and too little application.  Future research in flow shop scheduling 

should address real-world problems (Jahangirian et al., 2010), in order to avoid 

spending decades only trying to solve textbook problems. Even though most real-life 

situations are better represented by models with uniform or unrelated machines, most 

research has been done on flow shops with identical machines, which is probably due to 

the fact that identical machines are easier to handle (Ribas et al., 2010). According to 
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Ribas et al., (2010), most research has been carried out with at most one constraint (e.g., 

setups, failures, blocking) at a time being studied and only a few researchers have 

studied all or most of them at the same time. Consequently, in order to diminish the gap 

between theory and real-world scheduling problems, several constraints need to be 

considered.  

 

Simulation modelling, i.e., discrete event simulation (DES), has the capability to 

represent complex real-world systems and their constraints in detail. Simulation-based 

scheduling approaches are derived from dispatching rule-based methods. In a 

simulation-based approach, several dispatching rules might be used at different stages, 

in order to make a decision (Kiran, 1998). Basically, a dispatching rule is a rule of 

thumb that gives priority to a job among other ones at a specific stage, i.e., at a machine. 

This is why dispatching rules can also be called priority dispatching rules (PDRs). 

Generally, a PDR-based approach does not try to find an optimal schedule, but relies on 

knowing that one scheduling rule statistically performs better than another one, which is 

sufficient. In comparison, using a meta-heuristic optimiser, such as a Genetic Algorithm 

(GA), to generate the near optimal schedules directly, may be advantageous if searching 

for ñoptimalò solutions is desired. There are many studies that compare these two 

approaches and some of them provide results showing that the use of GAs to generate 

detailed schedules can obtain better solutions (Sankar et al., 2003; Kim et. al., 2007) 

than those obtained by using PDRs. On the other hand, using a GA to select PDRs has 

shown promising results (Tanev et. al., 2004; Ochoa et al., 2009) compared to 

conventional GA approaches. Furthermore, hybrids that have a combined representation 

of these two approaches have shown good results, when uncertainty is considered 

(Roundy et.al., 1991; Barua et.al., 2005). Robust scheduling (e.g., Leon et al., 1994), 

reactive scheduling, or rescheduling (Church and Uzsoy, 1992) are also some 

methodologies that have been successfully used to address scheduling problems with 

regard to uncertainty. 

 

Regarding uncertainty, McKay and Wiers (1999) claim that researchers and real-world 

schedulers do not discuss the same problem. While researchers are solving deterministic 

sequencing problems, real-world schedulers are faced with day-to-day challenges in 
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which uncertainty is believed to be the key characteristic. McKay and Wiers (1999) 

define a scheduling task as: ña dynamic and adaptive process of iterative decision 

making and problem solving, involving information acquisition from a number of 

sources, and with the decisions affecting a number of production facets in reaction to 

immediate or anticipated problemsò. Wiers (1997) defines production scheduling as a 

task and the following four types of control are used to further characterise the task: 

Detailed control, Direct control, Restricted control, and Sustained control. These 

controls generally mean that the scheduling task deals with short-term decisions 

regarding what to do next and the situation at hand, answering questions and giving 

directions. Furthermore, the scheduler monitors schedule execution and carries out 

necessary changes when needed, in order to fulfil scheduling targets. It is also important 

to generate a valid schedule, since there is no intermediate control before launching the 

schedule and there is a risk that the schedules will be adjusted manually (Stoop and 

Wiers, 1996). Pinedo (2005) also addresses that ñAnalyzing a planning or scheduling 

problem and developing a procedure for dealing with it on a regular basis is, in the real 

world, only part of the story. The procedure has to be embedded in a system that 

enables the decision-maker to actually use it. The system has to be integrated into the 

information system of the organization, which can be a formidable taskò. Jahangirian et 

al., (2010) show that even though scheduling applications have been the most common 

ones among simulation applications in manufacturing and business between 1997 and 

2006, only a small portion of them use both real problems and real data. They also point 

out that papers addressing real-world problems are important to future research. 

According to the review of hybrid flow shops by Ribas et al., (2010), only two papers 

use on-line algorithms for real-time scheduling, when simulation with dispatching rules 

or realistic decision support systems is considered, and indicate this as an interesting 

area for future research.  

 

It is not only the scheduling problem that needs to be considered, but also the 

scheduling task and its integration in the organisation. A real-time scheduling system is 

not only needed to support the work of the production scheduler, but also the operators 

on the shop floor, by re-generating feasible schedules when required. With a real-time 

rescheduling capability, the proposed scheduling system not only solves the sequencing 
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problems, but also provides decision-making support on a day-to-day basis when 

disturbances, such as machine breakdowns, happen. Based on this research background, 

the need of a real-time shop floor scheduling system capable of handling the complexity 

and uncertainty found in real-world problems, when generating near optimal schedules, 

as well as interacting with users, such as production schedulers and shop floor 

operators, is identified as the target of this study.  

 

1.2 Aim and objectives 

The overall aim of this study is the advancement of research in manufacturing 

scheduling through the exploration of more effective approaches to address complex, 

real-world manufacturing flow shop problems. The research hypothesis behind this aim 

is that existing scheduling approaches and algorithms are believed to be inadequate to 

address complex, real-world manufacturing flow shop problems because they lack the 

real-time and reactive support to tackle uncertainty. Therefore, in order to advance the 

research of manufacturing scheduling, a combination of systems engineering and 

algorithmic design is needed to tackle the uncertainty issues in real-world environment.   

The aim of this thesis can be further refined into the following specific objectives: 

¶ Appraise the existing research knowledge and industrial practice to establish the 

understanding of manufacturing systems and explore the requirements of the 

scheduling in real-world complex hybrid flow shops.  

¶ Based on the comprehensive literature review, investigate how simulation tools 

and scheduling techniques can be enhanced to cope with uncertainty, and 

flexibly cope with different scheduling approaches in order to enhance their 

performance. 

¶ To design a system framework with real-time and reactive support and then 

evaluate this framework qualitatively using a real-world industrial case study. 

¶ Design and propose a hybrid meta-heuristic scheduling algorithm for simulation-

based optimisation that can flexibly cope with different scheduling approaches 

in order to be more adaptive to tackle complex hybrid flow shop scheduling 

problems. 
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¶ Validate the performance of the algorithm using empirical experiments based on 

real-world shop-floor data collected through the system framework implemented 

in earlier stages. 

 

1.3 Research methodology 

Real-world research generally refers to applied research which typically uses projects 

that are small in scope and scale. Compared to academic research, where the focus is on 

advancing an academic discipline, real-world research focuses on problems with direct 

relevance to people or the environment, such as child care and climate change. The real-

world researcher needs well-developed social skills and almost always works in the 

field, e.g., industry, compared to the academic researcher that mainly uses laboratories 

of some kind. (Robson, 2011) 

 

1.3.1 Qualitative, quantitative, and multi-method research 

According to Robson (2011), research can be divided into two main groups: qualitative 

or quantitative. Whilst quantitative research makes use of numerical data, qualitative 

data is typically non-numerical (e.g., in the form of words). Myers (1997) defines 

qualitative research as research that ñinvolves the use of qualitative data, such as 

interviews, documents, and participant observation, to understand and explain social 

phenomenaò. Jabar et al., (2009) argue that qualitative research is significant for 

information systems research because of its ability to explain what is going on in a real 

organisation. Quantitative research was, on the other hand, first developed to study 

natural phenomena in natural sciences (Jabar et al., 2009).  Quantitative research 

involves the collection of quantitative data, the design of which typically used is to 

exactly determine at an early stage how to carry out the research project before the data 

is accumulated (Robson, 2011). According to Reswick (1994), the researcher can isolate 

a problem, e.g., using a laboratory, and can therefore with precision and accuracy define 

and measure input and output parameters of the study. However, multi-strategy designs 

have received increased interest because they produce a substantial collection of both 

qualitative and quantitative data in different parts of a research project. (Robson, 2011) 
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1.3.2 Different research strategies 

Depending on the form and context of the research question, as well as control over 

behavioural events and focus on contemporary ones, the research strategy used will 

differ. Yin (2003) defines different types of research strategies: 

Table 1.1 Relevant situations for different research strategies (Yin, 2003) 

Strategy Form of research question Requires control of 

behavioural events? 

Focuses on contemporary 

events? 

Experiment How, why? Yes Yes 

Survey Who, what, where, how 

many, how much? 

No Yes 

Archival 

analysis 

Who, what, where, how 

many, how much? 

No Yes/No 

History How, why? No No 

Case study How, why? No  Yes 

 

The ñwhoò and ñwhereò questions are common in survey or archival analysis in which 

the research goal is to be predictive about specific outcomes or when the prevalence of a 

phenomenon needs to be described. The ñwhatò question is also appropriate in survey or 

archival analysis which, for example, may provide the answer to the outcomes of a 

specific type of managerial restructuring. The ñhowò and ñwhyò questions are typically 

more explanatory and used for the research strategies: case studies, experiment, and 

history. In general, the history research strategy is used when no living persons of 

relevance  can report afterwards and therefore historical data needs to be applied. 

However, the case study strategy can be used when contemporary events need to be 

examined. In addition to the historical data method, the case study strategy includes the 

possibilities of interviews with people involved and direct observation of the events 

being studied. The experiment research strategy is carried out when the researcher can 

control behavioural events, i.e., can manipulate them directly, precisely, and 

systematically. (Yin, 2003) 
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A multi-method research strategy is one that combines different research methods 

(qualitative and quantitative), in order to provide a greater understanding of the 

phenomenon of interest and to increase the confidence in the conclusions generated by 

the research study (Johnson et al., 2007). This can also be referred to as triangulation, 

for resolving the inherent biases of one measurement technique (Denzin, 2009). Denzin 

(2009) divides triangulation into four basic categories: 

¶ Data triangulation means using more than one type of data collection method. 

Different sources can be used to collect the data (observation, interviews or 

documents), and the data can be collected at different times and different places. 

¶ Investigator triangulation means using multiple observers rather than single 

observers. For example, different interviewers or data analysts can be used in the 

study to remove the potential bias connected to one person. 

¶ Theoretical triangulation means using multiple perspectives (theories) on a set of 

objects rather than a single perspective. 

¶ Methodological triangulation means within-method triangulation or between-

method triangulation.  

 

Denzin (2009) suggests that using between-class triangulation, i.e., different methods 

and measurement strategies, is preferred in comparison to within-class triangulation, in 

which there are variations of one and the same measurement technique.   

A wide range of research methods may be appropriate for systems engineering because 

it is an interdisciplinary and broad field of engineering dealing with complex projects 

(Ferris, 2009). According to Yin (2003), one reason why a case-based research 

approach is appropriate is when contextual conditions must be covered because they are 

believed to be relevant to the phenomenon of study, which is something that can be 

characterised with qualitative research. At the same time, a case study may be part of a 

multi-method research study (Yin, 2003). Consequently, the research approach adopted 

is a multi-method research strategy in which both theories of current research, 

experiments (quantitative) and case study (qualitative) are used to achieve the research 

objectives. Data was collected from three different sources:  



Chapter 1 Introduction 

 
 

10 

 

¶ Literature review of existing research to establish the understanding of 

manufacturing systems and to explore the requirements of the scheduling in real-

world complex hybrid flow shops (Chapters 2, 3 and the beginning of Chapter 

4). 

¶ Evaluation of the proposed system framework using a real-world industrial case 

study. Chapter 6 begins with the motivation and selection of industrial case 

study, and then continues with the implementation and evaluation of the system 

(proposed in Chapter 4). 

¶ Data generation using simulation-based optimisation with a discrete-event 

simulation model to investigate how the hybrid meta-heuristic scheduling 

algorithm (proposed in Chapter 5) can flexibly cope with different scheduling 

approaches, in order to be more adaptive in tackling complex hybrid flow shop 

scheduling problems (Chapter 7). 

 

Figure 1.1 provides an overview of the research methodology used to realise the 

research objectives of the whole study. 

 

Figure 1.1 Research methodology adopted. 
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1.4 Scope 

Flow shops are generally the type of production lines used for mass production in 

industry (Groover, 2000). In the classical definition of flow shop problems (Baker, 

1974), each production stage consists of only one resource, e.g., machine, and there are 

at least two production stages. All jobs need to go through the production stages in the 

same machine order.  

 

In industry, many companies need to increase their production capacity or balance the 

capacity between different production stages. Companies may also need to manufacture 

new products, which could mean that the new products are produced using the same 

machines in most stages but require new ones in others. Consequently, and for other 

reasons, a flow shop with parallel machines is formed, commonly also known as a 

hybrid flow shop (Ribas, et al., 2010). 

 

Since ña dear child has many namesò, the same scheduling problem could be specified 

by a number of definitions, e.g., flow shop with multiple machines, flexible flow shop, 

multiprocessor flow shop, or modified flow shop. However, the hybrid flow shop 

notation proposed in Ribas et al., (2010) is good for defining real-world scheduling 

problems, since it handles a broad range of flow shop scheduling problems. A hybrid 

flow shop consists of at least two production stages and at least one of these stages 

includes more than one machine (Gupta, 1988). 

 

The scope of this thesis is therefore to address the multi-stage (more than three stages) 

hybrid flow shops with unrelated parallel machines for discrete parts manufacture, 

because most real-world flow shops in industry consist of several production stages. 

Furthermore, in order to diminish the gap between theory and real-world scheduling 

problems and not make unrealistic assumptions, several constraints and multiple 

scheduling objectives are addressed as well. Consequently, a review of flow shop 

scheduling problems and different scheduling methodologies is made. However, the 

review of scheduling methodologies is not limited to hybrid flow shops, since much 
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scheduling research has been conducted on other complex scheduling problems, e.g., 

job shops, which could in fact be useful for hybrid flow shops as well. Nevertheless, in 

the design of the hybrid genetic representation, the focus is only put on hybrid flow 

shops. As mentioned, because uncertainty is a key characteristic in real-world 

scheduling, it needs to be addressed in order to realise a schedule in a production line. 

However, uncertainty is only one part of the scheduling task in which day-to-day 

challenges need to be handled by production schedulers. Consequently, methodologies 

that handle uncertainty as well as scheduling system functions and features, in order to 

support the tasks of the scheduler, are also studied.  

 

1.5 Thesis organisation 

Chapters 2, 3, and parts of Chapter 4 feature the literature review. In short, Chapter 2 

describes the background of scheduling theory and scheduling methodologies. Chapter 

3 reviews rescheduling and identifies the main functions and features to be included in a 

system to support the scheduling task. Chapter 4 begins with a brief introduction and 

literature review of Web-based simulation and some existing platforms found in the 

literature. Furthermore, this chapter describes the overall system architecture of the web 

services-based industrial scheduling system, i.e., OPTIMISE Scheduling System (OSS), 

which is designed to be software architecture to solve the limitations of existing 

scheduling software used in industry. Chapter 5 describes a new novel hybrid genetic 

representation which is based on a mixture of dispatching rules and genetic encoding 

the entire schedule. The design and implementation of the hybrid genetic representation 

into an SBO algorithm for handling various real-world, complex hybrid flow shop 

scheduling problems is then addressed in detail. In order to prove the system 

architecture, optimisation methods and techniques proposed in this thesis, a full -scale 

industrial case study of a machining line was completed in this study and is presented in 

Chapter 6. Chapter 7 presents the experimental results of applying the hybrid genetic 

representation to the real-world case study. All the results in this chapter were obtained 

from the OSS implementation on the real machining line. Finally, the thesis 

conclusions, contributions to knowledge, and identified future research areas are 

presented in Chapter 8. 
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Chapter 2 

2 Hybrid Flow Shop Scheduling Problems and 

Scheduling Methodologies 

 

This chapter describes the background of scheduling theory, classification of scheduling 

problems, and what kinds of assumptions are usually made in scheduling research. 

Furthermore, different approaches to solve scheduling problems and new advances to 

solve complex hybrid flow shop scheduling problems are reviewed. Finally, the review 

is concluded and recommendations regarding how to solve real-world, complex hybrid 

flow shop scheduling problems are proposed. 

 

2.1 The production scheduling problem 

There are many different definitions of scheduling problems from the research 

communities and still they may differ from the understanding of scheduling problems 

faced daily in industry. The classical definition is more limited to ñsequencingò, which 

can be found in Conway et al., (1967), who define sequencing in terms of one machine 

and scheduling as the sequencing of operations on several machines. In general, 

scheduling concerns ñthe allocation of resources over time to perform a collection of 

tasksò (Baker and Trietsch, 1974). In practice, scheduling refers to ñthe determination of 

a set of orders, which will be processed by the resources during a short-term period 

(day, week, etc.)ò (Kiran, 1998). 

 

2.2 Categories of scheduling problems 

Graves (1981) introduced a broad classification that covers the general characteristics of 

both scheduling theory and scheduling practice. The classification divides production 

scheduling problems into the following three dimensions: 

1. Requirements generation 
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2. Processing complexity 

3. Scheduling criteria 

 

The first dimension, requirements generation, means that a manufacturing facility can 

be either an open shop when items are produced to order or a closed shop when orders 

are filled from existing inventory. In an open shop, the scheduling is simply described 

as a sequencing problem in which open orders are sequenced at the production facility. 

In a closed shop, both the sequencing problem and the lot-sizing decisions connected to 

the inventory replenishment process need to be considered. The second dimension, 

processing complexity, refers to the number of production stages and type of flow and 

can be further classified into: 

1. One stage, one processor 

2. One stage, parallel processors 

3. Multistage, flow shop 

4. Multistage, job shop 

 

In a one stage, one processor problem, all jobs require one production stage and only 

one single resource or machine needs to be scheduled.  The one stage, parallel processor 

problem means that all jobs only require a single production stage, but there is more 

than one resource that can process the job. In the multistage, flow shop problem, all jobs 

require processing by the same set of resources and there is a common route for all jobs. 

The multistage, job shop problem means that there are no restrictions on the production 

stages for a job and alternative routes can be chosen for a job. The third dimension, 

scheduling criteria, describes the scheduling objectives. These include, to mention a 

few, to minimise tardiness, minimise work-in-process, maximise production rate, and 

maximise the utilisation level of resources, which are just some of the objectives 

commonly used in production scheduling problems.  

 

According to Graves (1981), there are two additional dimensions that could have been 

included: the requirement specification and the scheduling environment. The 

requirement specification shows the degree of uncertainty of the scheduling problem 

which can be defined as deterministic or stochastic. Stochastic scheduling problems 
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may include random variables such as distributions of processing times, failures, and so 

on. The scheduling environment defines whether the scheduling problem is static or 

dynamic. A static scheduling problem is when the number of jobs and their ready times 

are available, while a dynamic scheduling problem is when the number of jobs and 

related characteristics change over time.  

 

2.3 Hybrid flow shops 

Flow shops are generally the type of production lines used for mass production in 

industry (Groover, 2000). In the classical definition of flow shop problems, each 

production stage consists of only one resource, e.g., machine, and there are at least two 

production stages (Baker, 1974). All jobs need to go through the production stages in 

the same machine order.  

 

In industry, many companies need to increase their production capacity or balance the 

capacity between different production stages. Companies may also need to manufacture 

new products, which could mean the new products are produced using the same 

machines in most stages but require new ones in others. Consequently, a flow shop with 

parallel machines is formed, commonly also known as a hybrid flow shop (Ribas, et al., 

2010). As mentioned earlier in Chapter 1, there are some other names to describe a 

hybrid flow shop: e.g., flow shop with multiple machines, flexible flow shop, 

multiprocessor flow shop, or modified flow shop. In the remainder of this thesis, the 

term hybrid flow shop is continuously used, because its formal definition, as introduced 

in the next section, has captured the essence of the scheduling problems that can be 

found on real-world shop floors. 

 

2.3.1 Description of hybrid flow shop scheduling problem notation: 

A HFS (hybrid flow shop) consists of at least two production stages and at least one of 

these stages includes more than one machine, which has proven to be NP-complete, 

even for this basic HFS case (Gupta, 1988). In the structure | |a b g proposed by 

Graham et al., (1979),  a stands for the machine characteristics, b for the job 
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constraints and g for the objective considered. Ribas et al., (2010) refers to the specific 

notation proposed by Vignier et al., (1999) which follows the same structure proposed 

by Graham et al., (1979), but divides ainto four terms, i.e., ( )2( )(1)

1 2 3 4 3 4,...,
aaa aa aa. 

The first term 1aspecifies the problem considered, i.e., ñHFò for a hybrid flow shop. 

The second term 2a  specifies the number of production stages, while the third term 3a  

specifies the type of machines at a stage, i.e., identical (P), uniform (Q), unrelated (R), 

or one machine (0). Finally, the term 4a specifies the number of machines at a stage. 

Furthermore, when there are several subsequent stages with the same type and number 

of machines, the terms 3a  and 4a can be grouped as ( )( )3 4

k
l

l s

aa
=

, where s stands for the 

first stage in the index and k for the last stage in the index (Ribas et al., 2010). 

 

2.3.2 Machine characteristics 

Identical parallel machines mean that all machines within each production stage are 

considered to be identical, and therefore the processing time of a job does not depend on 

which of the machines it is assigned to. According to Ribas et al., (2010), most research 

focuses on the hybrid flow shop problems with identical machines, e.g., Gupta et al., 

(1997) and Zhang et al., (2005) have studied the 
()( )1

2 ,0HF PM problems, i.e., two-

stage hybrid flow shop problems with several parallel identical machines in the first 

stage and one machine in the second. However, uniform or unrelated machines 

represent real-life situations in a better way. Uniform parallel machines mean that each 

machine within a production stage has its own speed and therefore has an individual 

completion time for a job. However, unrelated parallel machines mean that the 

processing times of a job on a production stage depend on each one of the parallel 

machines. Some of the machines might be better suited to some jobs whilst others are 

not, which may be due to physical differences in the machines, such as old machine 

equipment or newly bought machines. The reason for machine eligibility, i.e., when 

machines are dedicated to certain jobs, can be due to the technological differences 

between machines in the same stage or because some jobs have some special 



Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies 

 
 

17 

 

characteristics. On the other hand, it can also happen that a job can only be assigned to 

machines that are physically nearby. The last cause is still valid for defining a 

production stage with identical parallel machines, but if there are technological 

constraints, the production stage should be defined as a stage with unrelated parallel 

machines (Ribas, et al., 2010). 

 

Ribas et al., (2010) also further categorise scheduling problems according to the 

specifics of the production system. For example,
()( )1

2 ,0HF RM fmachs, means a two 

stage hybrid flow shop with several unrelated parallel machines in the first stage, one 

machine in the second stage, and dedicated machines. Some constraints of production 

systems are: 

¶ fmachs, represents jobs that at some or all stages are dedicated to specific 

machines (machine eligibility).  

¶ nw, stands for ñno waitò which means that the operations of a job have to be 

processed from the start to the end without any interruption on or between 

machines. 

¶ brk , means that unavailability periods (failures) may happen in some or all 

machines in the production system. 

¶ size, stands for multiprocessor task, which means that more than one machine is 

required in order to perform an operation at a certain stage. 

¶ blck, stands for blocking and means that jobs may be blocked for transportation 

to the next production stage. Blocking can occur for several reasons, but 

downstream machine failures with limited buffer capacities are a common cause. 

 

 There is no agreed set of benchmark tests for the standard HFS, which makes it 

difficult to compare different algorithms (Ruiz and Vázquez-Rodríguez, 2010). 

 

2.3.3 Job constraints 

Job constraints can be classified as hybrid-specific or non-hybrid-specific. Hybrid-

specific job constraints are those that are to be found exclusively in a hybrid flow shop. 
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The non-hybrid-specific job constraints are more general ones that can be found in any 

manufacturing environment.  An example of a non-hybrid-specific job constraint is the 

setup time required to be able to process a job. If the setup time is machine dependent, 

i.e., the required time will depend on which machine it is assigned to, the job constraint 

is hybrid-specific. However, the differences between hybrid- and non-hybrid-specific 

job constraints can be quite hard to define, and it is argued in this thesis that the 

distinction between hybrid- and non-hybrid-specific job constraints has made no 

contribution to resolve complex scheduling problems. Therefore, hereafter, job 

constraints will not be distinguished as hybrid- or non-hybrid-specific, but simply as job 

constraints. Some common job constraints and characteristics follow: 

¶ Job pre-emption: this means that a job currently being processed on a machine 

may be put on hold in its processing in favour of another job. When the job that 

had been put on hold continues, it need not restart its entire processing 

operation, but can continue where it left off. (Pinedo, 2008) 

¶ Job precedence: is a predefined sequence or order of jobs that must be preserved. 

The reason for job precedence might be that certain sequences are prohibited due 

to technological constraints or because of a policy decision. An example of 

when job precedence rules are created is when there are long, sequence 

dependent setup times. (Conway, et al., 1967) 

¶ Sequence dependent setup times: this means that a setup on a machine, in order 

to start a job, depends on the differences between the last and the current job 

(Pinedo, 2005). 

¶ Transportation times: this means the time it takes to move a job between 

different locations (Pinedo, 2005). 

¶ Missing operations (Ribas, et al., 2010), bypass (Pinedo, 2005), or by-passing 

move (Groover, 2000): all of these refer to the jobs which do not need to go 

through all production stages and can thus disregard some of them. 

¶ Lot splitting means that a lot can be split over parallel machines in at least one 

production stage. If lot splitting is not allowed, it means that a lot cannot be 

started at the next production stage until the whole batch is finished in the 

current production stage.  
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¶ A lot sizing and scheduling problem is common in a closed shop and means that 

not only the sequencing problem is considered, but also the lot-sizing decisions 

associated with the inventory replenishment process (Graves, 1981). 

¶ Re-entrant hybrid flow shop means that some jobs need to revisit some previous 

production stages. 

¶ Rework means that some jobs might need to revisit a previous production stage 

because of quality problems.  

 

2.3.4 Objective function 

The objective function of a scheduling problem is what determines whether a schedule 

is good or bad. The definition of an objective function that represents the scheduling 

and production system goals is crucial in order to find the best schedules. The 

ñminimaxò criteria, simplified as ñmaxò, are frequently used in the literature to denote 

the time of the latest job to some criteria, e.g., the time of the latest job (TôKindt et al., 

2002). In the same manner, the ñminisumò criterion f  designates objectives based on 

all jobs, usually averages or sums of some kind (TôKindt et al., 2002).  Pinedo (2005) 

sorts objectives into three main groups: (1) throughput and makespan objectives; (2) 

due date related objectives, and (3) cost related objectives. In the throughput and 

makespan objectives, the following aims can be included: 

maxC
 Maximum job completion time. The objective is to decrease the 

makespan, i.e., the time required for the last job to be finished. (TôKindt et al., 

2002) 

Th   Throughput rate. The objective is to increase throughput rate (average), 

e.g., throughput per hour. However, the throughput rate is usually unnecessary 

when decreasing the makespan, because maximizing maxC
 tends to increase the 

throughput rate (see Pinedo, 2005). 

C   Average completion time or total completion time of jobs. The objective is 

to decrease the average completion time of all jobs or the total completion time 

of jobs (TôKindt et al., 2002). 
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In the due date related objectives the following aims can be included: 

maxL
 Maximum lateness. The objective is to decrease the lateness of the latest 

job. Lateness can be less than zero and often there are no benefits in finishing 

earlier than the deadline. Therefore, it is often more appropriate to work with 

tardiness instead (see Baker and Trietsch, 2009).  

maxT
 Maximum tardiness. The objective is to decrease the tardiness of the 

tardiest job. Tardiness for each job can be zero (on time) or larger than zero 

(late). Tardiness can never be less than zero (TôKindt et al., 2002). 

T   Average tardiness or total tardiness of jobs. The objective is to decrease 

the average tardiness of the tardy jobs or the total tardiness of the tardy jobs. 

U   Number of late jobs. The objective is to decrease the total number of late 

jobs.  

 

Examples of cost related objectives are setup costs, work-in-process inventory costs, 

finished goods inventory costs and transportation costs. However, there are other costs, 

such as those related to personnel and equipment, which may also depend on the 

schedule, but are perhaps not necessarily proportional to other objectives, e.g., 

makespan.  

 

2.4 Scheduling methodologies 

According to the classical definition of the scheduling problem, the goal is to find the 

best possible schedule (sequences). Makespan is probably the most common objective 

and means the maximum job completion time. However, it has to be clarified that there 

might be several objectives and constraints that make the problem itself difficult. The 

methodology used to solve the problem will differ, depending on what kind of 

scheduling problem it is and the requirements of the solution, e.g., optimality and time 

requirements. 
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Different scheduling methodologies for different scheduling problems are presented in 

this chapter, based on a classical definition of scheduling problems, i.e., sequencing of 

operations on several machines (Conway et al., 1967). When all numeric quantities 

(processing times, due dates etc.) are known in advance, the scheduling problem can be 

classified as a deterministic scheduling problem. In contrast, numerical quantities are 

stochastic in a stochastic scheduling problem. A static problem is when jobs are 

assumed to be available at time 0, and a dynamic problem is when a subset of jobs has a 

non-zero release or ready time. According to Kiran (1998), scheduling problems can be 

defined into four different categories: static stochastic, static deterministic, dynamic 

deterministic and dynamic stochastic and can be addressed by three basic approaches:  

¶ Optimisation-based approaches 

¶ Artificial intelligence-based approaches 

¶ Dispatching rules and simulation-based approaches 

 

2.4.1 Optimisation-based approaches 

Optimisation-based approaches attempt to find the optimal schedule mathematically. 

There are different techniques that may be used according to the problem to be solved. 

Approaches based on optimal scheduling rules create schedules using a set of rules that 

are based on the characteristics of the schedule and mathematical properties of the 

problem. Once it has been proven that a scheduling rule can find optimal solutions for 

most general causes of a scheduling problem, it can be used for all other problems in 

this problem class. Examples are that the priority dispatching ruleôs shortest processing 

time (SPT) and earliest due date (EDD) can prove their optimality for minimising the 

total flow time and the maximum tardiness respectively for the single machine 

sequencing problem (Baker and Trietsch, 2009). Another example is the adjacent 

pairwise interchange technique, which can be used for static deterministic problems, to 

evaluate different sequences by swapping adjacent jobs and checking the objective 

function to find optimal schedules. Compared to a total or complete enumeration, where 

all sequences need to be evaluated, the adjacent pairwise interchange technique has an 

obvious advantage, according to Kiran (1998). 
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While approaches based on optimal scheduling rules might be inappropriate, due to the 

huge solutions space when considering larger problems, or even unfeasible with regard 

to dynamic scheduling problems, implicit enumeration techniques can be used. The 

functionality of enumeration-based approaches is to find optimal schedules faster, by 

reducing the computational burden using mathematical analysis and mathematical 

programming. Implicit enumeration uses the simultaneous evaluation of alternatives 

and, compared to total enumeration, not all possible combinations need to be evaluated, 

because promising solutions are kept and unpromising ones are deleted. These 

algorithms are also called branch and bound, proposed by Land and Doig (1960). 

Implicit enumeration may, on the other hand, not be used for constrained optimisation 

problems.  Mathematical programming, also referred to as linear programming or 

integer programming, can represent many quite different scheduling problems and is 

mainly used to solve constrained optimisation problems. For example, linear 

programming can be used for scheduling optimisation problems, given that the 

objective function and the constraints can be defined as linear equations. Another major 

drawback with the mathematical approaches is that they take a long time to solve even 

moderately sized problems.  

 

As Laguna and Marti (2003) put it, ñMany real world optimization problems in 

business, engineering and science are too complex to be given tractable mathematical 

formulationsò. Furthermore, Kempf et al., (2000) also conclude that using a 

mathematical model with abstractions of the problem directly in a production line and 

expecting it to work is unrealistic. Accordingly, complex real-world scheduling 

problems would be impossible to solve using mathematical programming without 

making huge simplifications, and with these simplifications it may not provide valid 

solutions.  

 

2.4.2 Artificial intelligence-based approaches 

Artificial intelligence (AI)-based approaches are used to generate schedules that satisfy 

the constraints, so called constraint-based scheduling. AI-based approaches can be 

divided into three main groups:  
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¶ Rule/knowledge-based approaches. 

¶ Artificial Neural Networks (ANNs). 

¶ Meta-heuristic approaches, such as using Tabu Search (TS), Simulated 

Annealing (SA), or Genetic Algorithms (GA). 

 

Rule/knowledge-based approaches, also called expert systems, rely on rules that 

evaluate and develop schedules in a manner similar to human experts. These systems 

need to have input-output components that have information regarding orders, 

applicable rules stored in a database and a logic component that processes the data by 

using the rules in the database. There might be rule conflicts that different systems 

handle differently, e.g., by weighing up the importance of the rules (Kiran, 1998).  

 

According to Jones (2009), these systems can successfully cope with both quantitative 

and qualitative knowledge. They can handle complex heuristics, cope with huge 

amounts of information that may directly or indirectly affect the scheduling problem, 

capture complex relationships in new data structures, and create algorithms that can 

manipulate those data structures in new and novel ways. The drawbacks are that they 

can be difficult to build and manage and they become tied to the system for which they 

are built.  Furthermore, they only generate feasible solutions, making it hard to know 

how close to the optimum any given solution is.  

 

The basic idea of using ANNs for scheduling relies on their power of pattern 

recognition in ñgoodò schedules. An ANN is trained by feeding data to it from a set of 

training problems and their acceptable solutions. The trained network can then be 

presented to a new problem and, depending on how it is built, can generate the answer 

of a recommended solution. However, using ANNs would be difficult with regard to 

more complex scheduling problems. 

 

Neighbourhood search techniques mainly consist of the following steps: (1) create an 

initial solution and evaluate it according to the objective, (2) generate new solutions in 

the neighbourhood and evaluate them, and (3) select the best solution in the 
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neighbourhood and let it be the new ñseedò or terminate the search, if there are no 

solutions better than the previous best solution. The generating mechanism uses the seed 

solution to create new solutions according to a predefined pattern, e.g., the adjacent 

pairwise interchange technique could be used to generate neighbourhood solutions. 

Examples of widely used neighbourhood search methods are some of the meta-heuristic 

algorithms introduced earlier, such as TS, SA and GA (Baker and Trietsch, 2009). 

 

TS can be regarded as a modified form of neighbourhood search in its basic form. 

Stopping at local optima is a well-known problem of neighbourhood search and TS tries 

to avoid that by occasionally moving to worse solutions. A number of already evaluated 

solutions are stored in a ñtabu listò which makes sure that the same sequences are not re-

evaluated. The method used for selecting the neighbourhood solutions and the size of 

the neighbourhood seems to have a major influence on the quality of the solution 

obtained (Kiran, 1998; Baker and Trietsch, 2009).  

 

SA selects neighbouring solutions randomly, whilst TS selects the best non-taboo 

solution in the neighbourhood. The better the value of a neighbouring solution, the 

higher the probability it will be chosen as the next starting solution. Annealing comes 

from the physical process of cooling down material slowly. At the beginning of the 

optimisation process, the value of the objective function tends to fluctuate quite a lot, 

but at the end the value does not fluctuate significantly (Kiran, 1998; Baker and 

Trietsch, 2009). Since a GA-based approach is adopted in this thesis, GA is described in 

more detail. 

 

2.4.3 Genetic algorithms 

Genetic algorithms (GAs), originally described by Holland (1962, 1975), may be 

viewed as a neighbourhood search procedure (Baker and Trietsch, 2009). It can also be 

classified as a population-based meta-heuristic and belongs to the class of evolutionary 

algorithms.  GAs are based on the Darwinian theory of natural selection, i.e., the 

survival of the fittest. The first initial solutions are usually randomly generated into a 

population of solutions. Each of the solutions is then evaluated, after which a new 
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population is generated. The new population is based on current solutions and in the 

selection strategy a good solution usually has a higher probability of being chosen as the 

parent to form new solutions. The new solutions called children or offspring of the 

parent solutions are formed through reproduction, i.e., crossover and mutation. This 

process is discontinued when the stopping criterion is met, e.g., time or number of 

iterations. The success of the search for optimal or near optimal solutions is largely 

determined by the problem structure and the design of the genetic algorithm (Kiran, 

1998; Talbi, 2009). GAs can be used for both manufacturing design and planning 

decisions, such as decisions concerning aggregate planning, material requirements 

planning, assembly line balancing and facilities layout, as reviewed and tested in 

Stockton et al., (2004a, 2004b). Khalil et al., (2012) proposed a framework with 

discrete-event simulation, drum-buffer-rope and GA, and demonstrated an improvement 

when simultaneously changing the buffer sizes and batch sizes for a multi-objective 

optimisation problem, i.e., maximising the throughput and minimising the queue length. 

However, in this review of GA, the focus is on solving scheduling problems which 

include changing batch sizes, but exclude design parameters such as buffer sizes. 

 

2.4.3.1 Population 

A GA is a population-based algorithm and in the conventional GA a generation-based 

approach is used where the entire population is replaced simultaneously (Rogers and 

Prugel-Bennet, 1999). A shortcoming of this method is that if several computers are 

being used in parallel all the computers may not be utilised if the population size is not 

divisible by the number of computers or if there are more computers than the size of the 

population. On the other hand, a steady state GA can utilise parallel evaluations in a 

better way, because the populations overlap.  

 

2.4.3.2 Representation 

A permutation is the arrangement of jobs into a row, hence there are n! permutations 

totally out of n unique jobs (Whitley, 1997). A permutation representation can be used 

for resource scheduling where the permutation represents a priority queue of jobs. The 
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classical GAs called canonical GAs use a binary string representing the decision 

variables (Bäck, 1997b), although a real number representation is possible and is 

probably more intuitive (Davis, 1991). For example, a permutation representation can 

be used for an actual sequence, and a vector of real values could be used for the capacity 

size of a buffer. The former is the focus of the review in the following sub-sections on 

the two most important GA operators: crossover and mutation. 

 

2.4.3.3 Initialisation 

The task of the initialisation process is to create an initial population of solutions. This 

is usually done randomly, but domain-specific knowledge or other information can be 

used to create the initial solutions (Sastry et al., 2005).  

 

2.4.3.4 Selection 

The main task of the selection process is to select parents for mating, in order to 

generate new offspring. A main feature of this process is to let a better solution obtain a 

higher probability of being chosen as parent. A common method is the roulette wheel 

selection that uses a biased roulette wheel which is proportional to the fitness of the 

different solutions. However, a conventional roulette wheel method may get a 

premature convergence at the beginning of the search process and, therefore, methods 

such as tournament selection may be used (Talbi, 2009). Tournament selection simply 

selects a number of individuals and the best one of these is chosen as a parent. 

 

2.4.3.5 Crossover operators 

A well-known scheduling problem is that of the travelling salesman (TSP), which is 

NP-complete. In short, TSP represents a problem in which a salesman starts at a given 

city and has to visit each of n cities only once while making a round trip. The target is to 

find the shortest possible path for the salesman. This problem has similarities to other 

scheduling issues, such as the job shop scheduling problem, and many of its 

applications can be used for production scheduling as well. The partially mapped 
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crossover (PMX) was introduced by Goldberg and Linge (1985) for the TSP and has 

been compared to other crossover operators in various GA scheduling studies (Kellegöz 

et al., 2008; Engin et al., 2011). A great review of crossover operators applied to GAs 

for scheduling problems can be found in Aytug et al., (2003). A popular crossover 

operator in scheduling is the linear order crossover (LOX) (Falkenauer and Bouffouix, 

1991), which can be applied to both simple and complex scheduling problems (Pinedo, 

2008). The LOX is a modified version of the order crossover (OX) (Davis, 1985) and is 

quite similar to both OX and PMX. However, it maintains the relative order of the 

positions that need to move due to the insertion of new genetic material. The LOX 

works in the following way, redrawn from Pinedo (2008) which is based on Liaw 

(2000) in Figure 2.1:  

 

 

Figure 2.1 linear order crossover. 

Basically it works in the following way: a range or a substring is selected from one of 

the parents, exact positions of which are transferred to the offspring solution, and then 

the remaining solutions are transferred to the offspring from the other parent. The LOX 

keeps the internal order of the parent two numbers: 8, 9, 2, 1, 10 and 3 in Figure 2.1, 

which is different when compared to the OX and PMX, where this internal order could 

vary. 
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2.4.3.6 Mutation operators 

Mutation operators are used to provide a random diversity in the population of 

solutions. According to Deep and Thakur (2007), the proportion of the population 

undergoing the mutation and the strength of the mutation is of great importance when 

applying a mutation operator. According to Talbi (2009), there are three points that 

must be taken into account when designing or using a mutation operator: 

¶ Ergodicity: all solutions of the search space should be able to be reached by the 

mutation operator.  

¶ Validity: valid solutions must be generated by the mutation operator. 

¶ Locality: a small change should be generated by the mutation operator. 

There are different types of mutation operators applied to different types of problem 

representations. Furthermore, there are different techniques when mutation is applied to 

binary strings, real-valued vectors, permutations, finite-state machines, parse trees and 

other representations such as hybrid representations. A mutation applied to a 

permutation must result in a solution that represents a permutation. Most mutation 

operators for permutations are related to and can be applied for local neighbourhood 

search strategies (Bäck et al., 1997a). 

 

The 2-opt, 3-opt and k-opt mutation operators generally mean that cut points are 

selected, between which the sequence is reversed. The following is an example of a 

sequence of ten elements [A, B, C, D, E, F, G, H, I, J] in which a 2-opt mutation 

operator is used. If the segment [D, E, F, G], i.e., two cut points, is selected this would 

result in the complete sequence [A, B, C, G, F, E, D, H, I, J], which would be a minimal 

change with regard to the TSP, but a larger change for resource scheduling where the 

permutation represents a priority queue of jobs. Therefore, in order to make a smaller 

change when considering a resource scheduling problem, it is possible to use insert, 

swap or scramble. Insert simply means to select a job and insert it at a random position 

in the list of jobs. A similar approach, position-based mutation, describes a variant of 

this mutation that randomly selects two jobs and allows the second job to be inserted 

before the first one (Syswerda, 1991). Another way is to select two jobs and swap their 

positions (Bäck et al., 1997a) or, in other words, order-based mutation described by 



Chapter 2 Hybrid Flow Shop Scheduling Problems and Scheduling Methodologies 

 
 

29 

 

Syswerda (1991). Syswerda (1991) also defines a scramble mutation operator that 

randomly re-orders jobs in a sub-list of jobs (Bäck et al., 1997a). 

 

To further distinguish the different types of mutation operators, there is also adjacent 

exchange mutation, displacement mutation and inversion/displacement mutation 

(Nearchou, 2004). The adjacent exchange mutation, also described as swap of adjacent 

elements in (Bäck et al., 1997a), means that two consecutive jobs swap their positions. 

A variant of the insert mutation is the displacement mutation that takes a range of 

subsequent jobs and inserts them into a new position. The inversion/displacement 

mutation is similar to the latter, but uses the reversion/inversion for the subsequent 

range of jobs being inserted into a new position.  

However, some of the more conventional mutation operators may not be suitable for 

real-world scheduling problems in which several constraints may make it difficult for 

them to create valid solutions. To prevent previously good solutions being cast into 

unfeasible regions of the search space, a domain-specific directed mutation operator that 

follows the rules of the constraints can be used. Berry and Vamplew (2004) propose 

Pointed Directed (PoD) mutation in which each gene is tightly coupled to a bit that 

decides the mutation direction possible for that gene. Korejo et al., (2010) propose a 

similar approach in which the directed mutation makes an individual shifting based on 

statistical information, in order to guide the search into a promising area.  

 

2.4.4 Dispatching rules approaches 

When it takes longer to actually solve a scheduling problem optimally than to actually 

execute the work in the shop with any given sequence, there is an NP-hard situation 

(Baker and Trietsch, 2009). Therefore, in practice, using heuristics such as dispatching 

rules is often the rule rather than the exception (Baker and Trietsch, 2009). According to 

Kiran (1998), the scheduling objective is not directly considered when using a 

dispatching rule. Basically, a dispatching rule is a rule of thumb that gives priority to a 

job among other jobs at a specific stage, i.e., at a machine. This is why dispatching rules 

can also be called priority dispatching rules (PDRs). Generally, a PDR-based approach 

does not try to find an optimal schedule, but relying on knowing that one scheduling 
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rule statistically performs better than another one is sufficient. According to Panwalkar 

and Iskander (1977), PDRs can be classified into: 

¶ Simple priority rules: simple dispatching rules, combinatorial dispatching rules, 

weighted priority rules. 

¶ Heuristic scheduling rules. 

¶ Other rules. 

 

Simple dispatching rules, such as shortest processing time (SPT), earliest due date 

(EDD), first come, first served (FCFS), among others, are quite simple and intuitive 

rules. When using combinatorial dispatching rules, also referred to as composite 

dispatching rules (CDR), a ranking expression is used to create a function of attributes 

of jobs and/or machines (Pinedo, 2005). An example of this approach can be found in 

(Tay and Ho, 2008), in which CDRs are generated by genetic programming (GP). In 

their simulation study they found that CDRs generated by GP outperformed several 

simple PDRs, when minimising tardiness and makespan objectives.  A similar approach 

is the weighted priority indexes that use a combination of PDRs with assigned weights 

to each PDR, e.g., Jayamohan and Rajendran (2004) who assign specific weights 

according to the importance of different objectives. They also take the weighted priority 

rules one step further, when the weighted dispatching rules have different weights due 

to more important jobs.  

 

Heuristic scheduling rules are rules that may use human experience expertise together 

with both simple PDRs and CDRs (Panwalkar and Iskander, 1977).  

 

Other scheduling rules may be those designed for a specific shop, rules based on 

mathematical functions, and so on. Barman (1997) reveals that combining different 

priority rules at different production stages is appealing, because it is more practicable 

and less complex than many of the combinatorial rules. Furthermore, he points out that 

it is an excellent strategy for achieving better results, when several performance 

measures are considered. They claim that the consensus of researchers is that in some 

way a combination of dispatching rules is better than using simple dispatching rules. 
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The main disadvantage of PDRs is their myopic nature (Tanev et. al., 2004; Tay and 

Ho, 2008), because local PDRs, at a stage, are far from optimal and no single PDR is 

likely to perform highly on a range of complex scheduling problems (Pierreval and 

Mebarki, 1997). In order to improve overall performance, both combined dispatching 

rules at different stages, CDRs and combined GA with PDRs, e.g., approaches found in 

Tanev et al., (2004) and Ochoa et al., (2009) have been demonstrated to perform better 

than simple PDRs.  

 

2.4.5 Simulation-based approaches 

A complex real-world scheduling problem comes with many constraints that cannot be 

ignored if a valid schedule is to be created. To find a good and feasible schedule is 

much more important than attempting to find a mathematical optimal schedule for nearï

term production scheduling practice (Sivakumar and Gupta, 2006). At the same time, 

production facilities tend to exist in an ever-changing environment which also affects 

the problem structure of the scheduling problem, while at the same time, flexibility is 

the key to the success of any production system (Groover, 2000). McKay et al., (2002) 

conclude that flexible and configurable algorithms need to be researched further.  

 

Simulation modelling has the capability to represent complex real world systems in 

detail, which is its main advantage compared to other methods. It is also very useful for 

communicating details, such as a scheduling situation, due to the visual aids provided 

by most simulation software. According to Koh et al., (1996), a simulation model built 

for scheduling is quite different compared to an ordinary simulation model which is 

generally used for the design and analysis of an existing or proposed system. 

Simulation-based scheduling, on the other hand, is used for the on-going operation and 

control of the system, and the ultimate output is a detailed operation plan. Hence, 

models built for simulation-based scheduling need to be more detailed compared to 

typical simulation models. Typical simulation models are usually stochastic when 

analysing design, and so on, whilst scheduling simulation models are usually 

deterministic. Koh et al., (1996) also identifies a number of important requirements for 

discrete event, simulation models used for scheduling, namely, flexibility, speed, and 
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details. A model needs to be flexible enough to cope with changes in the physical 

configuration, fast enough so a schedule can be generated in an acceptable time, and 

detailed enough with an appropriate level of simplification. 

 

Simulation-based scheduling approaches are derived from the group of dispatching rule-

based approaches. In a simulation-based approach several dispatching rules might be 

used at different stages, in order to make a decision (Kiran, 1998). Many real-world 

optimisation problems can only be treated by simulation models (Laguna and Marti, 

2003), but the problem is that simulation is not an optimisation in itself (Law and 

McComas, 2000). Therefore, simulation-based scheduling may include much user 

intervention, in order to manually test different schedules, which would be unfeasible 

with regard to larger optimisation problems. In order to automatically search for near 

optimal solutions, a scheduling problem can be solved by using the simulation-based 

optimisation (SBO) approach in which the simulation model is integrated with meta-

heuristic search methods, such as TS or GA (Laguna and Marti, 2003).  

 

In this approach the simulation model is viewed as a black box function evaluator which 

evaluates a set of input parameters generated by the meta-heuristic optimiser. The 

response or output is used by the meta-heuristic optimiser to generate new values of the 

inputs. Simulated annealing may be viewed as a sort of random search procedure, but its 

main disadvantage is the computational time it takes to find a good solution. The main 

advantage of evolutionary approaches, such as GAs, compared to those that use 

neighbourhood search-based methods on a single solution, e.g., simulated annealing, is 

that fewer evaluations are needed in order to search a larger area of the solution space. 

Finding good solutions early in the search process is particularly important regarding 

SBO (April et al., 2003). 

  

The weakness of simulation is that it is time consuming, which can be somewhat 

compensated by SBO, because it does not try to evaluate all solutions, but rather a 

fraction of the whole search space. Furthermore, it is possible to parallelise the 

simulation evaluations (e.g., Li and Wang, 2008) and to use a steady state GA (Rogers 

and Prugel-Bennet, 1999) in order to speed up the optimisation process. The weakness 
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of GAs and other meta-heuristic search methods is that they may not find the optimal 

solution for larger scheduling problems. On the other hand, the question is whether any 

method would find an optimal solution in an acceptable period of time for an NP-hard, 

complex real-world scheduling problem? It is important to note that an optimal solution 

is usually not the target in a complex real-world scheduling problem; it is instead to 

achieve a relatively high performance for many problems, which is a characteristic of 

GA (Sankar et al., 2003). 

 

2.4.6 GA or dispatching rules for simulation 

In the last decade, there has been extensive research in the field of production 

scheduling using simulation. Simulation modelling has the capability to represent 

complex real-world systems in detail, and several dispatching rules can be used at 

different stages to make decisions about what parts to select for the next scheduling 

period. The number of rules can be infinite, because it is possible to define new 

scheduling rules as the combinations of several other dispatching rules (Holtaus, 1997). 

Generally speaking, a PDR-based simulation scheduling approach does not attempt to 

find an ñoptimalò schedule, but relies on knowing that one rule, or a combination of 

rules, performs better than another one. In comparison, using a meta-heuristic optimiser, 

such as a Genetic Algorithm (GA), to generate the near optimal schedules directly, 

which is referred to as a direct approach in this thesis, may be advantageous if searching 

for ñoptimalò solutions is desired. Nevertheless, to generate a complete schedule using a 

GA-based SBO may require very long computing time. This is usually impractical or 

even unacceptable, if the result is needed to control the system in ñreal-timeò.  

 

There are many studies that compare these two approaches and some of them provide 

results showing that the use of GAs to generate detailed schedules can obtain better 

solutions than those obtained by using PDRs. For example, Sankar et al., (2003) use a 

GA for the scheduling of a job shop with five production stages, parallel machines in 

each stage and 43 jobs to be scheduled. Several objectives, including customer 

satisfaction, machine utilisation and total elapsed time, are integrated into a single 

combined objective function. A GA is coded in such a way that the chromosomes 
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represent the job sequences which the manufacturing system has to follow in order to 

achieve the best schedule. The results obtained with the GA are then compared with the 

results obtained using six different dispatching rules including SPT, LPT, EDD, largest 

batch quantity (LBT), smallest batch quantity (SBQ), and highest penalty (HP). It has 

been found that the solutions generated by GA outperform the solutions obtained by 

using PDRs, for this specific production system. 

 

The most common form of hybridisation is combining a GA with local search 

procedures or using domain specific knowledge. Hybrid genetic algorithm and memetic 

approaches have achieved good results in complex real-world application areas, but 

there has been limited work developing a theoretical basis for genetic algorithm 

hybridisation (Sastry et al., 2005). Kim et al., (2007) made a comparison between the 

use of PDRs and GAs for solving the scheduling problem in a real factory that 

manufactures standard hydraulic cylinders. More specifically, it was a job shop of six 

machines and nine jobs. Different dispatching rules were used in this study, namely 

SPT, LPT, most work remaining (MWKR), and least work remaining (LWKR). When 

using GAs, different jobs to be performed by different machines are codified into an 

individual chromosome, and then the different individuals are selected following the 

ñnatural selectionò, in order to minimise makespan. Again in this study, the researchers 

found that the GA-based approach outperforms the PDR-based one. At the same time, 

the researchers state in their conclusion that better results could be found if the two 

techniques for the scheduling of orders are used in combination. An example is Kianfar 

et al. (2012) that propose a hybrid GA procedure that uses PDRs to generate initial 

solutions. Overall, the algorithm was shown to be better than some common dispatching 

rules, when compared in four flow shop scheduling scenarios.  

 

A method that combines GA and PDR can be found in Tanev et al., (2004), where a 

hybrid evolutionary algorithm for the scheduling of a plastic injection machines factory 

was developed. The system was a job shop with four machines and 50-400 jobs. In their 

approach, the researchers proposed a hybrid GA combined with the use of PDRs; a GA 

was used to evolve the different combinations of dispatching rules and to finally find 

which one provides the best schedule. The solutions were then evaluated by means of a 
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fitness function conformed by the different parameters (flow times, setups, makespan, 

tardiness, etc.) to be optimised. They found that letting the GA select PDRs generated 

better solutions compared to a conventional GA, in a shorter time period. At the same 

time, the computational effort/job to be scheduled seems to decrease with an increasing 

number of jobs, making it particularly appropriate for complex real-world problems 

compared to a conventional GA. Another study has been carried out by Ochoa et al., 

(2009), in which the hybrid flow shop was considered as( )
1

k
l

l
HFk QM

=
, where k is 5-30 

stages and M is four to five machines. A conventional GA creating a permutation 

schedule was compared to a GA that selected dispatching rules, and the latter approach 

was demonstrated to be advantageous compared to the conventional GA.  

 

These methodologies that use some sort of meta-heuristic, e.g., GA, in order to select 

other heuristics, e.g., PDRs, may also be referred to as a hyper-heuristic approach, in 

which some meta-heuristics are used to select the appropriate heuristics (Burke at al., 

2003). This kind of approach in which a GA chromosome is used to represent different 

combination of PDRs, is referred to as the indirect approach in this thesis. The reason is 

that the actual sequence itself is only indirectly handled by the GA using the PDRs. 

Burke at al., (2003) reveal that current meta-heuristic search methods tend to solve and 

be customised for a particular problem type, whilst hyper-heuristics are able to handle a 

wider range of problems and may lead to more general systems. Algorithmsô ability to 

adapt and learn has been identified as future research issues (McKay et al., 2002). 

2.5 Assumptions usually made in scheduling research 

Even moderately sized scheduling problems tend to become complex. Gupta and 

Stafford (2006) state that research within flow shop scheduling seems to have been 

motivated by what the researchers can achieve rather than what is important, and 

thereby also suffers from too much abstraction and too little application. According to 

Pinedo (2008), advances in scheduling theory have only had a limited impact on 

scheduling in practice, but the theoretical research has not been a complete waste of 

time, because it has given insights into the scheduling problem. Still, looking at 50 years 

of research, theoretical flow shop scheduling problems remain largely unsolved (Gupta 
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and Stafford, 2006). Generally, scheduling problems include many restrictive 

assumptions to be solved (Kiran, 1998). Many of these assumptions are valid for 

different scheduling problems, but it would not be true to say that these assumptions can 

be used for all different kinds of scheduling problems. Assumptions are usually made 

about scheduling problems and some of the most general ones include the following 

(e.g., Baker and Trietsch, 1974; Ramasesh, 1990; Kiran, 1998; Baker and Trietsch, 

2009): 

¶ All jobs to be scheduled are available at time zero. 

¶ Machines can only process one job at a time. 

¶ Setup times are sequence independent, i.e., there are no sequence dependent 

setup times. 

¶ Setup times are included in the processing times. 

¶ There are not any breakdowns of machines, i.e., the machines are continuously 

available for production. 

¶ Jobs are processed without any disruptions. 

¶ There is no alternative routing of jobs, i.e., jobs have strictly ordered operation 

sequences. 

¶ No parallel machines can do the same type of operation. 

¶ An operation may not start before the preceding ones are finished. 

¶ There is no pre-emption of jobs, i.e., once started jobs must be processed until 

completion. 

¶ A job may not be started before it is finalised in previous operations. 

¶ There is no variation of processing times. 

¶ Jobs are moved directly between production stages, i.e., there are no transfer 

times between machines. 

¶ Buffer sizes (queue lengths) are not limited. 

¶ There are no assembly operations. 

¶ Jobs are carried out on a machine only once. 

¶ There is no rework of jobs. 
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When considering complex, real-world production scheduling problems, only a few of 

these assumptions can possibly be made without changing the original issue into a 

completely different scheduling problem, i.e., a theoretical scheduling problem that is 

not of much use in practice. In a review of flow shop scheduling research, Ribas et al., 

(2010) states that even though most real-life situations are better represented by models 

with uniform or unrelated machines, most research has been done on flow shops with 

identical machines, which is probably due to the fact that identical machines are easier 

to handle. According to Allahverdi et al., (2008) who reviewed 300 papers on 

scheduling with setup times, between 1999 and 2008, there has been a significant 

increase in scheduling problems involving setup times. The reason is that substantial 

savings can be made, when setup times are considered for real-world industries. The 

majority of papers dealt with sequence independent setup times, because this is easier to 

handle compared to sequence dependent setup times. Again, according to Ribas et al., 

(2010), most research has been carried out with, at most, one constraint (e.g., setups, 

failures, blocking) being studied at a time and only a few studies dealt with all or most 

constraints at the same time. Consequently, in order to diminish the gap between theory 

and real-world scheduling problems, several constraints need to be considered 

simultaneously. 

 

2.6 Scheduling objectives in real-world problems 

Most real-world scheduling problems have more than one objective of interest (Gary et 

al., 1995; Yang and Chang, 1998), commonly defined as multi-objective scheduling 

problems. However, most of the theoretical literature addresses single objectives only 

(Graves, 1981; Allahverdi et al., 2008; Ribas et al., 2010). 

 

There are different ways to address multi-objective scheduling problems, of which some 

can be found in Kempf et al., (2000). One way is to use the primary objective as the one 

to optimise and a secondary objective as a constraint. Another strategy is to use a multi-

objective approach and let the user decide from a set of Pareto (non-dominated) 

solutions. For example, when using the Elitist non-dominated sorting genetic algorithm 

(NSGA-II), the Pareto front consists of all the solutions that are not dominated by other 
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solutions of at least one objective (Deb et al., 2000). Another common approach is to 

combine different objectives into a single one by using weights for the different 

objectives of interest (Kempf et al., 2000). Finally, a similar approach to the latter one is 

to use a cost-based objective (see Section 2.3.4) where all the objectives are measured in 

cost (Kempf et al., 2000). Real-world scheduling problems usually have multiple 

objectives. Whilst a Pareto set of solutions of multiple objectives may be beneficial 

when analysing a production system, it would require much time from the production 

scheduler and is probably better suited for other types of SBO problems, such as 

optimal buffer allocation ones. A weight-based objective function was adopted in the 

thesis, because the production scheduler needed to obtain the result quite quickly and 

the user had no time to study separate sub-targets. 

 

Regarding real-world problems, different organisations have different objectives and 

therefore the scheduling metrics will vary from case to case. At a higher company level, 

profit is the important long-term objective, along with customer satisfaction; however, 

the importance of customers may vary depending on the customer. As a matter of fact, 

on the production floor, the supervisor might want high overall machine utilisation and 

throughput rate by having bigger batch sizes, as demonstrated in Stockton et al., (2012), 

and an operator might want homogenous batches, in order to avoid setups on a certain 

machine.  

 

2.7 Concluding remarks 

In summary, it has been emphasised in this chapter that even a moderately sized 

scheduling problem tends to be too complex to solve by any analytical approaches and 

many real-world problems, such as the hybrid flow shop, belong to the class of NP-

complete problems. In other words, it could be possible to solve real-world scheduling 

problems using mathematical programming, but it would require huge simplifications, 

as reviewed in this chapter. Flow shop scheduling seems to have been motivated by 

what the researchers can achieve rather than what is important, and thereby also suffers 

from too much abstraction and too little application. Discrete event simulation has the 

capability to represent complex real-world systems in detail, as well as cope with 
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several constraints and multiple objectives, which have been identified as important 

factors. By using the simulation-based optimisation (SBO) approach in which the 

simulation model is integrated with meta-heuristic search methods, such as genetic 

algorithms, the search for optimal or near optimal solutions can be done automatically. 

A main advantage of using genetic algorithms is that quite a few evaluations are needed, 

in order to search a large area of the solution space. Furthermore, combining GA with 

dispatching rules (hyper-heuristics) seems to be a promising research direction, 

according to several researchers reviewed in this chapter. Therefore, a hybrid genetic 

representation is proposed in this study and presented in Chapter 5. The scheduling 

problem from the perspective of uncertainty is dealt with in Chapter 3. 
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Chapter 3 

3 Rescheduling and System Support 

This chapter describes the functions and features needed in order to support production 

scheduling in real-world problems which are subjected to disturbances such as machine 

breakdowns. It begins with a brief introduction of how uncertainty affects the execution 

of a schedule and continues with rescheduling methods and policies to handle 

uncertainty. Furthermore, functions of the scheduling task are presented, which is 

followed by a review of important scheduling system functions identified in the 

research society. Finally, based on the literature reviews in chapters 2 and 3, a summary 

of the most important functions of a production scheduling system is presented.  

 

3.1 Uncertainty and rescheduling 

In the research of the higher levels of production control, there have been successful 

practical implementations of research, such as Enterprise Resource Planning (ERP) 

systems used more often nowadays by companies in industry (McKay and Wiers, 

1999). However, there have been very few successful practical implementations or 

usable optimisation methods in dynamic job shops and detailed dispatching (McKay 

and Wiers, 1999; Stoop and Wiers, 1996). In fact, McKay and Wiers (1999) depict that 

the underlying principles of scheduling research are insufficient and should be 

reassessed. A common opinion is however that the theoretical techniques are actually 

applicable, but people in industry do not use them, because they do not know how to 

apply them or simply because they are not aware of their existence (McKay and Wiers, 

1999). The traditional definition of scheduling is more about sequencing, while the 

impact of uncertainty is systematically underestimated by academic research. Frequent 

schedule interruptions may occur during the execution of a schedule in a production 

system, due to the variability present in these systems (Stockton et al., 2012). According 

to McKay and Wiers (1999), a common approach to uncertainty is to react and 

reschedule. In some way, it is possible to reduce uncertainty by taking precautionary 

actions, such as preventive maintenance, but it is hard to remove uncertainty 



Chapter 3 Rescheduling and System Support 

 
 

41 

 

completely. Some researchers who address specific scheduling problems do include 

uncertainty in the scheduling problem with stochastic arrival and/or processing times, 

e.g., Daniels and Kouvelis (1995) and Leon et al., (1994). However, with regard to 

hybrid flow shop scheduling problems, most research papers do not consider 

uncertainty or other related constraints, or they simply handle only one constraint at a 

time (Ribas et al., 2010).  

 

Graves (1981) identified that scheduling robustness is an important area of future 

research and vividly stated that ñA frequent comment heard in many scheduling shops is 

that there is no scheduling problem but rather a rescheduling problemò. Production 

scheduling research can be divided into two groups, namely, deterministic scheduling 

research, in which the problems are defined with deterministic terms, and stochastic 

scheduling research, whereby at least some randomness is modelled for the problems. 

Aytug et al., (2005) reveal that many of the stochastic scheduling research efforts have 

focused on local control policies, such as priority dispatching rules, aimed at 

minimising some measure of performance. Most of these methods do not use any 

information about the global state of the shop floor and create the schedules during 

executions. The deterministic scheduling research is more focused on creating an 

optimal or near-optimal schedule, according to a single or multiple objectives, usually 

with regard to a single or multiple machines. The problem with the deterministic 

solutions obtained is that it is assumed they can be exactly executed in the real 

machine/line/shop for which they are created. However, many researchers have 

recognised that uncertainty is always part of the problem and therefore put effort into 

extending the deterministic approaches to enable them to handle some form of 

uncertainty.  

 

The predictive schedule could be described as the forecasted ñoptimalò schedule found 

by the scheduling approach used and may be updated with a new predictive schedule 

when required. When this predictive schedule is used in the real world, very often with 

regard to disturbances, it is called the realised schedule. Stoop and Wiers (1996) have 

found that the expected performance of a (predictive) schedule often deviates from the 

(realised) actual performance which, in most cases, is worse than the expected 
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performance. Three categories of disturbances that cause these performance deviations 

have been classified (Stoop and Wiers, 1996): (1) capacity disturbances, such as 

machine breakdowns; (2) order disturbances, such as rush orders; (3) relates to the 

measurement of data, such as estimated processing times used in the scheduling 

process. The quality of data affects the uncertainty and is very important, but a high 

quality measurement of data could be difficult to obtain in some production systems. 

Therefore, these three types of uncertainties are included in the reactive scheduling 

experiments presented in Section 7.4. Viera et al., (2003) further present a framework to 

classify rescheduling research in which uncertainty plays some key role. Such a 

rescheduling framework includes rescheduling environments, rescheduling strategies, 

rescheduling policies and rescheduling methods, which is discussed in more detail in 

the following sub-sections. 

  

3.1.1 Rescheduling environments 

The rescheduling environment refers to the problem instance to be rescheduled, i.e., 

whether it is a finite set of jobs (static) or an infinite set of jobs (dynamic). In a static 

and deterministic environment (instance), nothing is unknown and a rescheduling is not 

necessary. In a static and stochastic environment, there is a finite set of jobs but some 

uncertain variables exist, such as the processing times of the jobs. When there is no 

arrival variability of the jobs in a dynamic environment, a cyclic schedule that is 

executed repeatedly could be used. On the other hand, when there is an arrival 

variability of the jobs, but all the jobs have the same route, the sequence cannot be 

reused if a direct representation of the schedule is used.  Finally, process flow 

variability and arrival variability of the jobs may co-exist, which is mostly characterised 

in job shops, where a great variability of job arrivals is very common. 

 

In terms of rescheduling strategies, two common categories of approaches can be 

identified: (1) dynamic - completely reactive approaches, and (2) predictive-reactive 

approaches, which are discussed below.  
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3.1.2 Completely reactive approaches 

In a dynamic approach, the schedule itself is not generated beforehand, but jobs are 

dispatched at the machines in real-time. Dispatching rules, or other types of heuristics or 

control policies, characterise dynamic scheduling (Viera et al., 2003). This group is also 

called completely reactive approaches (McKay and Wiers, 1999), as the dispatching 

rules actually react to the events that are taking place and dynamically generate the 

sequences. Different approaches using dispatching rules are reviewed in Chapter 2, such 

as simple priority dispatching rules (PDRs) (Panwalkar and Iskander, 1977), combined 

dispatching rules at different stages (Barman, 1997), composite dispatching rules (Tay 

and Ho, 2008), and combined GA with PDRs (Tanev et. al., 2004; Ochoa et al., 2009). 

Dispatching rules have the capability to keep the machines utilised, as long as there is 

material waiting in the queue, but it is nonetheless hard to know the performance of the 

realised sequence order in the presence of uncertainty. The realised sequence order may 

have a significant impact on the performance of the schedule, if  sequence-dependent 

setup times are present (Allahverdi et al., 2008).  

 

3.1.3 Predictive-reactive rescheduling policies 

When the schedule is generated beforehand, i.e., direct representation of the schedule, 

there are different policies to decide when to reschedule, in order to update the 

predictive schedule. Church and Uzsoy (1992) present a rough taxonomy of the existing 

approaches, namely: periodic, continuous, and event-driven rescheduling. Periodic 

rescheduling is when rescheduling takes place periodically with a predetermined time 

interval. The event-driven rescheduling is triggered as soon as a ñbig enoughò 

disruption occurs. In other words, if the realised schedule deviates too much from the 

predictive schedule by some measure, then a rescheduling will be executed. An example 

is Kianfar et al. (2012) that use an event-driven triggering based on the arrival of new 

jobs and reschedules if the number of jobs or time elapsed since last rescheduling is big 

enough. Continuous rescheduling is an extreme case in which each event starts a new 

rescheduling. Periodic rescheduling may also be seen as a form of event-driven 

rescheduling policy. Additionally, in hybrid rescheduling policies, periodic rescheduling 
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is combined with event-driven rescheduling (Herrmann, 2006). Church and Uzsoy 

(1992) studied one stage, one machine and a parallel machinesô problem with dynamic 

job arrivals, for the purpose of decreasing maximum lateness, and show how the 

rescheduling frequency affects the schedule performance. Suwa and Fujiwara (2007) 

propose a new hybrid rescheduling policy based on the cumulative delay of jobs, i.e., 

differences between the predictive and realised schedule that outperform a combined 

periodic and event-driven rescheduling policy for a single machine scheduling problem 

and a parallel machinesô scheduling problem, which showed positive results. Actually, 

periodic and hybrid rescheduling policies seem to be the most common ones in practice 

(Herrmann, 2006). Since the main approach used in this thesis is react and reschedule, a 

hybrid rescheduling policy has been adopted, as described in Section 4.4.4.  

  

3.1.4 Rescheduling methods 

While a predetermined sequence created by a direct approach could be re-sequenced 

when a disruption occurs, a more novel approach is to generate the sequences to be 

robust enough to handle uncertainties. Robust scheduling approaches, also called 

proactive approaches, focus on creating a schedule that, when implemented, will be 

robust enough to handle different disruptions and minimise their effects with respect to 

some performance measure. These approaches can be further classified: (1) optimising 

the worst possible scenario; (2) minimising differences in objective function, subject to 

disturbances, and (3) to include the effects of machine failures, subject to a given 

rescheduling method. Daniels and Kouvelis (1995) develop a procedure for creating 

robust schedules, by analysing worst case scenarios. Leon et al., (1994) create a 

schedule approach that shows robustness for processing time variability and machine 

failures with makespan as the minimisation objective. Leon et al., (1994) develop 

robustness measures that are used with a GA to find robust schedules. Another approach 

to optimise buffer allocation in a job shop was proposed by Al-Aomar (2002). In this 

method, the author achieves robustness by integrating it into the GA search engine 

through assigning a Signal-to-Noise ratio (S/N) to each simulation outcome. The 

method has been applied to a hypothetical job shop example with buffer sizes as the 

discrete factors (Al -Aomar, 2006). 
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When rescheduling is necessary, e.g., due to the deviations of the initial plan, there are 

different ways of repairing a schedule.  According to Herrmann (2006) and Viera et al., 

(2003), there are three ways to reschedule: (1) complete regeneration, (2) right-shift 

scheduling, and (3) match-up scheduling or so called partial rescheduling. Complete 

regeneration means that the whole schedule is regenerated, i.e., all the jobs that have not 

been executed by the time of rescheduling will be rescheduled. A complete rescheduling 

may lead to schedule nervousness (Stoop and Wiers, 1996), which, according to McKay 

and Wiers (1999), can be overcome in most real-world situations, if small changes are 

continuously updated and only partial solutions are generated. Right-shift scheduling 

means that the remaining jobs are postponed by the time needed to obtain a feasible 

schedule. Right shift scheduling may be seen as a simple form of match-up scheduling, 

since the jobs are shifted to the right in the Gantt chart, without any re-sequencing being 

done. Match-up scheduling means the necessary actions to be able to get ñback on 

trackò with the predetermined schedule. The match-up point indicates what part of the 

schedule has to be rescheduled. Bean et al., (1991) propose a match-up heuristic method 

that begins with incrementally searching for the appropriate match-up point with regard 

to machine disruption. Jobs are rescheduled for the machine, or machines, with the 

disruption, using several dispatching rules. If jobs can be rescheduled without exceeding 

the threshold for the tardiness costs, the search stops. If a schedule cannot be found for a 

given, maximum match-up time point for the machine(s), then the search is extended by 

scheduling several machines. Akturk and Gorgulu (1999) propose a match-up heuristic 

procedure that determines the match-up point and does the rescheduling for a modified 

flow shop. Since both the match-up point and the new schedule for that period are 

determined simultaneously, a heuristic procedure was chosen, involving different 

dispatching rules, in the creation of a new schedule. In this thesis, all three ways to 

reschedule have been adopted, as described in Section 4.4.4.  

 

3.1.5 Direct, indirect and hybrid representation of schedules 

Several researchers, e.g., Sankar et al., (2003) and Kim et al., (2007), have shown that 

global scheduling, i.e., a direct representation of schedules, using GA, has the potential 
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to improve the performance of complex shops, compared to dispatching rules. Lawrence 

and Sewell (1997) also compare dynamic heuristics, e.g., dispatching rules, with static 

algorithms such as shifting bottleneck heuristic, for several job shop scheduling 

problems with makespan objective and different degrees of processing time variability. 

They found that simple dynamic (real-time/on-line) scheduling heuristics yield equally 

good or better results compared to complex static (off-line) algorithms, especially when 

complexity and uncertainty are increased. Wan (1995) shows similar results to the latter, 

in which a dynamic dispatching rule yields equally good or better results compared to 

static methods, when subjected to processing time variability. Regarding scheduling 

problems with high uncertainty, many studies have confirmed that an indirect 

representation of schedules, such as dispatching rules, can produce better solutions 

compared to a direct representation of schedules (Lawrence and Sewell, 1997, Matsuura 

et al., 1993; 1997; Wan, 1995). In order to show that the predictive-reactive approach 

using a direct representation could be better, even when the uncertainty is quite low, 

Matsuura et al., (1993) propose a hybrid approach called switching. In such a hybrid 

approach, a predictive schedule is created for the shop which uses a periodic 

rescheduling policy. If the realised schedule deviates significantly from the predicted 

one, the system switches to using a dispatching rule for the remainder of the period. 

Another hybrid approach, which includes a global scheduler and a dispatching module 

for a job shop with variable processing times, is proposed by Roundy et al., (1991). In 

this approach, the dispatching module selects a job, which is based on the outcome of 

deriving the costs associated with performing a job at a particular time, from the global 

schedule. With increasing shop complexity, this method has been shown to perform 

well in comparison to dispatching rules. A similar hybrid approach to the latter, called 

SB-DIS, was proposed by Barua et al., (2005). A global schedule is created for the shop 

which uses a periodic rescheduling policy. The global schedule is implemented directly, 

but serves to provide a priority index for the jobs. Compared to the latter approach, the 

global schedule does not need to be feasible, but serves as a priority index for jobs used 

by the dispatching procedure. SB-DIS was tested on both a deterministic and a 

stochastic, hypothetical multi-stage shop problem and generally showed that it 

outperformed different dispatching rules.  
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3.2 The scheduling task 

Conway et al., (1967) state that a scheduling problem taken out of its context gains in 

generality, since it approximates many situations, but does not represent a solution to 

any real-world sequencing problem. This information is only a partial assessment of the 

real problem. McKay and Wiers (1999) claim that researchers and real-world schedulers 

are not discussing the same problem, since researchers are solving the sequencing 

problems and real-world schedulers are faced with day-to-day challenges, such as 

communicating with personnel about events of the previous night. A critical task of a 

scheduler is also to check the current status of the plant with regard to demand, 

machines, material, and personnel. Another task is to anticipate and plan future events, 

such as machine maintenance and repair issues, processing changes, and new product 

samples. When planning what has to be done, where, and by whom, there is almost 

always a compromise, due to the wide range of options faced by the scheduler. This is 

why McKay and Wiers (1999) define the scheduling task as: ña dynamic and adaptive 

process of iterative decision making and problem solving, involving information 

acquisition from a number of sources, and with the decisions affecting a number of 

production facets in reaction to immediate or anticipated problemsò, which this work is 

based on. 

 

3.2.1 Functions of the production scheduling task 

Wiers (1997) proposes that four types of control can be used to further characterise a 

scheduling task: Detailed control, Direct control, Restricted control and Sustained 

control. In Detailed control, the scheduling is very detailed in order to deal with the 

short-term dispatching decisions that determine what to do next (Wiers, 1997). It is 

important that a valid schedule for a short-term scheduling horizon is generated, 

because there is no intermediate control before the schedule is launched and there is a 

risk that the schedules have to be adjusted manually (Stoop and Wiers, 1996).  

 

Direct control means that the scheduler has direct control to answer questions and give 

directions, as the schedule has been created without any intermediate control before its 
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launch (Wiers, 1997). Methods such as completely reactive approaches or predictive-

reactive approaches are possible solutions, but in real-world situations these procedures 

need to have some system support, in order to be able to provide the direct control 

functions.  

 

With regard to Restricted control, schedulers have to deal with the situation at hand, 

with material availability and requirements usually beyond their control (Wiers, 1997). 

McKay and Wiers (1999) explain that the decisions made regarding various problems 

may differ, depending on the kinds of situation, such as the beginning of a day or a 

Friday afternoon. The scheduling process needs to be able to answer questions in a 

limited amount of time and small changes to the schedule must be made continuously 

throughout the day, even if there is not a complete set of data available. Instead of a 

complete rescheduling, some sort of partial rescheduling could possibly reduce the risk 

of schedule nervousness.  

 

Finally, Sustained control refers to the scheduler that monitors schedule execution and 

carries out necessary changes when needed, in order to fulfil scheduling targets (Wiers, 

1997).  Consequently, a solution for real-world scheduling problems would have to 

include detailed monitoring capability.  

  

3.3 System support 

As Pinedo (2005) vividly states, ñAnalysing a planning or scheduling problem and 

developing a procedure for dealing with it on a regular basis is, in the real world, only 

part of the story. The procedure has to be embedded in a system that enables the 

decision-maker to actually use it. The system has to be integrated into the information 

system of the organization, which can be a formidable taskò. Therefore, in order to be 

able to handle the scheduling task that takes uncertainty into account, a scheduling 

system, not only a scheduling algorithm is needed. Framinan and Ruiz (2009) believe 

that scheduling research needs to increase studies in areas such as user interfaces, data 

management, scheduling monitoring, as well as in more tools and methods for the 

design and implementation of scheduling systems for manufacturing facilities. Hence, 



Chapter 3 Rescheduling and System Support 

 
 

49 

 

this review identifies important functions and features that need to be handled by a 

scheduling system. 

  

3.3.1 User-interfaces and human control 

Improvements can usually only be made through the scheduling process in practice 

(McKay and Wiers, 1999), and the success of a particular technique is greatly 

determined by its human users (Stoop and Wiers, 1996). In the field study of McKay et 

al., (1995) at a printed circuit board (PCB) factory, an analysis of a schedulerôs task was 

made to find out which decisions were taken due to uncertainty. The analysis indicates 

that the scheduler was more of a problem solver and used more than 100 heuristics in 

order to take precautionary actions and to anticipate problems. Furthermore, Stoop and 

Wiers (1996) rightly note that humans often rely on their own judgement with regard to 

the application of techniques and common sense tells them that these techniques are 

imperfect. The only way to increase the use of new procedures is to have a great deal of 

transparency, i.e., letting the user see what happens and to offer monitoring support. 

User interfaces to support both model input manipulation and schedule manipulation are 

believed to be an important research area (McKay et al., 2002). Gantt charts are 

probably the most common way to present schedule information (e.g., McKay and 

Buzacott, 2000) and there are real-world case studies that allow the user to modify the 

predictive schedule through a Gantt chart-based interface (McKay and Black, 2007). 

Higgins (1996) observes that the jobs screen, which displays the attributes of the 

available jobs, is central to the interactive decision-making and thereby presents a 

system architecture for human-computer interaction. A jobs screen is both made up of 

assigned jobs at machines and unassigned ones. Although this approach is possible 

using the dispatching clients or monitoring programs of the proposed system (see 

Chapter 6), it is not used in this work because a schedule, generated by the SBO, is used 

to suggest jobs for the operators in a production line. Consequently, the scheduling 

system will support the operators with a schedule, in contrast to jobs screens (Higgins, 

1996) that would leave this decision to the operators themselves. Scheduling 

rules/heuristics can be used to test different policies and the knowledge-based adviser 

will indicate if any constraints are infringed. Higgins also notes that human decision- 
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making with its ability of pattern recognition and setting things into a context is part of 

an interactive process for creating the Gantt chart. In a similar vein, McKay et al., 

(2002) also maintain that the monitoring schedule execution status and evaluation 

performance is important. Furthermore, they identify the research opportunity of task 

design, i.e., what functions should be automated and what should be left to human 

control. 

 

McKay et al., (1999) also rightly point out that disturbances in the process and the 

environment can be anticipated, reacted to, and adjusted in the scheduling process. A 

manufacturing system is exposed to uncertainty in many forms, i.e., varying machine 

processing times, machine failures, quality problems, personnel on sick leave, late 

supply deliveries, and so forth. Although some uncertainties cannot be predicted, there 

are some ñsurprisesò that can be foreseen. For example, they mention that the humidity 

during the summer months is higher and may affect the production line and quality of 

products, but can be taken into account since it is known in advance. Therefore, a 

resource calendar interface (Pinedo, 2005) can be used for this reason and also for short-

term conditions, such as planned maintenance and shift schedules. 

 

Additionally, Pinedo (2005) provides other examples of various, important user-

interfaces that may be used in a scheduling system: plant layout, routing table, capacity 

buckets, and throughput data interfaces. Plant layout and routing table interfaces are 

simple user-interfaces for the input data. The capacity buckets interface is used when 

the time axis is divided into buckets or periods of time, e.g., days, weeks, or months, in 

order to show the utilisation of the line capacity, when jobs are assigned to these 

buckets. The benefit of such information is that the decision-maker can be proactive and 

make sure that the resources can be utilised efficiently over time, e.g., to avoid 

generating schedules that would require additional work on weekends some weeks, 

when the extra work could, in fact, be balanced over several weeks of production. The 

throughput data interface shows information about material waiting to be processed, 

products delivered, WIP-levels, FGI-levels, utilisation of machines, and so forth. 

Finally, a column editor could be useful for the scheduler, because it displays lists of 

jobs in scheduled order divided over the machines (Pinedo et al., 1994). 
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3.3.2 Flexible objectives over the horizon 

McKay et al., (1999) describe that everything changes over time and one day is not like 

another, e.g., Monday morning is different to Friday afternoon. Consequently, the 

scheduling function must be able to handle both absolute and relative time. Absolute 

time is calendar-based information, such as the planned maintenance of machines, while 

relative time refers to the decisions on the rolling horizon and affects the level of detail 

and type of constraints used to make decisions. For example, in the next few weeks all 

the constraints may be relevant when specific, production target levels are to be met, but 

since the scheduling strategy might be changed, due to a future machine installation, 

infinite loading may be used to enable preparation for production line maintenance. 

Stoop and Wiers (1996) state that the scheduling horizon must be determined long 

enough, in order to avoid generating sub-optimal schedules due to a too-short 

scheduling horizon. Hence, it is natural that the productivity fluctuates over time.  

 

3.3.3 Feasibility check and fault control 

McKay and Wiers (2003) observe that checking the consistency of input data is 

important, since data may come from many different sources. In addition, Blazewicz et 

al., (2001) propose a feasibility analysis to ensure that resources, e.g., machines and raw 

material, are available for scheduling the jobs. Framinan and Ruiz (2009) point out that 

a standard language, such as XML standard, is needed to facilitate system integration 

for scheduling systems. However, it may also be important to control scheduling 

dispatching in real-time, similar to the knowledge-based adviser proposed by Higgins 

(1996), in order to indicate if any constraints are violated. Hence, breaking soft 

constraints could give a warning and breaking hard constraints will be prohibited.  

 

3.3.4 Evaluating scheduling systems 

Kempf et al., (2000) conclude that one of the problems with implementing systems in 

industry is the difficulty evaluating the effectiveness of production schedules. An 
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absolute measurement may be used to ascertain whether a schedule is good or not on its 

own. Furthermore, a benchmark result is needed to be able to obtain an absolute 

measurement. Most real-world problems are NP-hard (Garey and Johnson, 1979), i.e., 

finding the optimal solutions for them is computationally difficult or not possible. An 

alternative is to theoretically compute a result with regard to a stable state and compare 

it against that value. A relative comparison means that two or more schedules are 

available and the best among them may be determined. However, if the system is to be 

evaluated against a real-world production system, real-world historical data can be used 

for the comparison in a relative or an absolute approach. One way could be to use the 

historical data as it is and another could be to use the trends of the historical data. 

Manufacturing facilities are subject to an ever-changing environment and therefore the 

historical data needs to be updated. Static measurement is when the predictive schedule 

is measured without considering the dynamics of the real system, while a dynamic 

measurement is when the predictive schedule is tested in the real environment with 

regard to disturbances. The result of the dynamic test would be the realised schedule. A 

schedule measurement is when the schedule itself is evaluated against some objectives, 

but a good schedule might still leave a production line in a bad state at the end of the 

horizon. For example, leaving a production line in a WIP status that is too low may lead 

to a problem later on, and therefore the state measurement is of importance as well 

(Kempf et al., 2000). 

 

When comparing the results of different optimisation methods, one replication is not 

enough, if the model or the algorithm is stochastic, such as GAs. Comparing average 

results between various optimisation methods will almost always generate different 

outcomes, and it may be tempting to proclaim that the method with the better average 

results is the better one. However, it may be an erroneous conclusion, because there is a 

risk that the randomness is the cause of the difference between them. A common 

method is to use a hypothesis test for testing claims:  

¶ H0: Optimisation method A (OMA) is not better than optimisation method B 

(OMB). 

¶ H1: OMA is better (lower) than OMB. 
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The hypothesis H1 is the hypothesis an experimenter wants to prove correct, but 

hypothesis H0 cannot be rejected until H1 has been proven statistically correct. Two 

common statistic methods that can prove whether hypothesis H1 is true are the t-test and 

the Mann-Whitney test. An unpaired t-test is based on the difference between the 

averages of the two groups divided by the standard deviation of the two populations, 

and if this fractional number is large it is possible to reject hypothesis H0 and state that 

hypothesis H1 is true. Observe that the t-test assumes the data sets in comparison are 

normally distributed (Lövås, 2006). 

 

The Mann-Whitney test is called a non-parametric test, since it does not need any 

parameters, such as standard deviation and average, and hence does not assume the data 

sets are normally distributed (Lowry, 2012). Hypothesis tests, i.e., Mann-Whitney test 

and unpaired t-test, for the experimental results in Chapter 7 have been used in this 

work and can be found in Appendix F. 

 

3.3.5 Commercial software and real-world case studies 

3.3.5.1 Commercial software 

A generic job shop scheduling system named ñLEKINò is presented in Pinedo (2005). 

Built mainly for education and research, it has also been used in real-world 

implementations. The system is able to handle many different environments from single 

machine to flexible flow- and job shops. The machine environment is modelled directly 

in the software which guides the user to set the necessary settings. Different predefined 

algorithms as well as user-developed algorithms can be used. A problem with using this 

software which is related to the validity of the schedule is that the constraints necessary 

for many real-world scheduling problems cannot be modelled, due to the fact that no 

real, discrete-event simulation software or language is used. Furthermore, it is not 

designed to be part of an on-line reactive scheduling system and would need to be re-

designed (if possible), in order to handle on-line data. Another type of software which is 

also used mainly for learning scheduling and comparing algorithms is ñParsifalò 
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(Morton and Pentico, 1993). However, the software seems to be outdated as it runs only 

on MS-DOS. A commercial scheduling tool that has the possibility to use discrete event 

simulation is Delfoi Planner (Delfoi, 2012). The simulation-based version, Delfoi 

Planner Simu, is a web-based scheduling software primarily used for the analysis of a 

scheduling situation and possibly also to generate detailed schedules, but without the 

possibility of on-line scheduling and monitoring. The other version, Delfoi Planner Lite, 

is without discrete event simulation support, focuses more on the integration with other 

systems, and only supports a simple, finite capacity planning function. The two systems 

together could possibly support on-line and reactive scheduling, but it is not possible at 

this time. Furthermore, no information is available about the optimisation algorithms 

used to generate schedules, so its capability of handling complex scheduling problems is 

uncertain.  

 

ILOG (2012) is the name used for an umbrella of products supplied by IBM, and the 

ILOG solver is the most common commercial tool for constraints programming 

(Gusikhin et al., 2007). For example, a system based on products within ILOG, called 

Centralized Vehicle Scheduler (CVS), was developed for the sequencing in a paint shop 

at DaimlerChrysler (CVS, 2012). Many real-world applications use ILOG products 

(ILOG, 2012), but the main problem is that the system is primarily based on 

mathematical programming techniques.  

 

3.3.5.2 Real-world case studies 

In a statistical review of flow shop scheduling research between 1952 and 1994 

(Reisman et al., 1997), it has been shown that only 5 out of 184 papers dealt with true 

applications, which is much less compared to other areas within the science of 

operations research/management. The study carried out by Jahangirian et al., (2010) 

illustrates that even though scheduling applications have been the most common ones 

among simulation applications in manufacturing and business between 1997 and 2006, 

only a small portion of them use both real problems and real data. They also point out 

that papers addressing real-world problems are important future research. On the other 

hand, Kumar and Nottestad (2006) present a real-world, decision support system for the 
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scheduling of a plastic parts manufacturing line, using discrete event simulation. The 

application uses the discrete-event simulation software WITNESS and a heuristics to 

generate job allocation for two different lanes in a manufacturing line for plastic parts. 

The heuristics used in the simulation includes many different constraints, although the 

model itself is deterministic. It seems that a predictive-reactive approach is used in 

which a manual periodic and event-driven rescheduling strategy is applied. 

Furthermore, Excel, Microsoft Access, and Visual Basic for Applications (VBA) are 

used to present input and output data for decision support. The result of a scheduling 

cycle is the output data report which can be printed and delivered to the shop floor.  

 

Dangelmaier et al., (2006; 2007) present a simulation-based scheduling system with 

real-time control. Although the experiments in their research are not based on real-

world data, the system idea of online reactive scheduling is based on a realistic problem. 

The system is divided into two parts: predictive scheduling and reactive scheduling. In 

the predictive scheduling part, the schedules are generated in two steps. In the first step, 

an optimisation algorithm generates a semi-feasible schedule, because not all constraints 

are considered, e.g., buffer sizes. A simple heuristics sequences each job with the 

longest tail order at the earliest available machine based on the bottleneck stage and 

then applied for all the stages. The schedule generated from the optimisation algorithm 

is simulated in a discrete event simulation model in order to obtain a valid schedule. 

Another simulation is started with the activated Flow Analyzer Module that may 

override the current schedule, by using rules mostly based on the waiting times of jobs 

in the system. The schedule from the predictive phase is executed on the manufacturing 

floor. Once there is a process disturbance, the rescheduling mechanism is activated. The 

real-time monitoring and control module starts the simulation evaluation function when 

a disturbance occurs. In order to generate a new schedule, two algorithms are used:  an 

optimisation rescheduling algorithm that reschedules as few jobs as possible and the 

match-up rescheduling algorithm which tries to get the current schedule back on track. 

Thereafter, a simulation is started together with the Flow Analyzer, and the user may 

decide whether to apply the new schedule or whether the current one is preferred. The 

proposed system was implemented in the discrete event simulation software 

Tecnomatix eM-Plant (Plant Simulation) and partly tested in Dangelmaier et al., (2006) 
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for a hypothetical flexible flow shop with parallel and identical machines at three stages. 

The results show that the combination of simulation and optimisation is better than only 

using optimisation or random scheduling alone, when the number of jobs increases. The 

system proposed by Dangelmaier et al., (2006; 2007) has only been tested for 

theoretical problems and uses simple optimisation heuristics. Furthermore, the ñsystemò 

is implemented as a module inside discrete event simulation software, which would 

limit its general use in other applications. However, to our best knowledge, it is one of 

few simulation-based scheduling systems that deal with online reactive scheduling. 

 

McKay and Buzacott (2000) describe two different, industrial real-world case studies, 

one with a high volume low product mix and the other with a low volume high product 

mix. The first case study revealed that the decisions of the scheduler were too difficult 

to handle in computerised scheduling software, which was therefore stopped before 

implementation. However, if the product mix had been higher, the need for scheduling 

software would have been desirable. In the second case study, a production planning 

system using an evolutionary approach was implemented. The tool was built in Excel 

with VBA and produced Gantt charts. In addition, the necessary reports were printed 

and delivered to the shop floor. The scheduling tool generates schedules in a short 

horizon of two days, but deals with various real-world constraints.  

 

McKay and Black (2007) describe the evolution of a real-world scheduling system that 

supports the tasks of the scheduler in a job shop environment. In some ways, the shop 

may be defined as a re-configurable flow shop, since several machines were put 

together in order to form a line without intermediate inventory between production 

stages. Initially, a two-week cyclic schedule was desired, and one of the key issues was 

setup reduction and workforce constraints. A first prototype was built in Excel and 

VBA, used simple heuristics and presented the result in a Gantt chart. However, the 

system has been developed over a ten year period into to a small mini-MRP system with 

finite capacity. The scheduling or sequencing task has been divided into two parts, 

namely, scheduler and dispatcher. The scheduler handles the long-term (weeks) 

scheduling and the dispatcher handles the short-term (two days) reactive dispatching 

using heuristics. The scheduling system has a number of different functionalities to 
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support the work of the scheduler, such as user interface for modifying the predictive 

schedule through a Gantt chart and various kinds of output reports. 

  

3.3.6 Proposed architectures 

To briefly summarise the above detailed review, company confidence in existing 

software tools is reduced, because most tools do not provide a fair representation of a 

companyôs scheduling problems, due to the vast simplifications (Tolio, et al., 2010). 

Furthermore, Pinedo (2005) also states that many of the commercial systems claim that 

their systems can be used with only minor modifications, however, in reality, the 

changes required are often substantial. Nonetheless, if a system were designed to be 

highly modular, it would increase the possibility for the users to expand their 

functionality and save development time. Framinan and Ruiz (2010) present a system 

architecture with such a modular attribute that entails both production scheduling and 

shop floor control, as shown in Figure 3.1 which illustrates a simplified version of their 

proposed architecture. 

 

Figure 3.1 Extended modular architecture (Framinan, Ruiz 2010) 

The first module, Business Logic/Data Abstraction Management Module, makes sure 

that data needed is at the required abstraction level. The second, the Database 



Chapter 3 Rescheduling and System Support 

 
 

58 

 

Management Module, stores the data and handles the import/export of data and 

production monitoring data from the business information system. The third, the User 

Interface Module, handles the necessary user-interfaces, while the fourth one, the 

Schedule Generator Module, handles the functions in order to generate schedules.  

 

The user-interface module consists of five parts, of which the first is the output sub-

module that presents necessary Gantt charts and other information. The second part is 

the scenario management sub-module which can answer what-if questions that may 

arise, e.g., what happens when the night shift is cancelled? The third part is the system 

maintenance sub-module which handles the shop configuration and product 

information. The fourth part is the scheduling control sub-module that handles real-time 

data from the production. It checks feasibility and input data with each new scenario 

and warns the user when needed. The fifth part is the algorithm generator interface that 

allows users to create new algorithms through a user-friendly interface.  

 

The schedule generator module consists of an algorithm library, algorithm generator, 

scheduler & dispatcher, and pre-processor. The algorithm library contains the different 

optimisation algorithms, while the algorithm generator sub-module is mainly an object 

that generates algorithms, based on information in the algorithm generator interface in 

the user interface module. The Scheduler & Dispatcher use algorithms from the library.  

In addition, a two-step schedule generation is proposed in which the schedule(s) from 

the first step takes major constraints into consideration and the second step also 

incorporates those minor constraints that have been ignored in the first step. The main 

task of the pre-processor sub-module is to find out which algorithms are suitable for the 

scheduling problem at hand. 

 

Framinan and Ruiz (2010) further claim that the ñnon-essential constraintsò could be 

separated from the schedule generation process and used when the actual schedule is 

constructed. This is due to the fact that the architectureôs purpose is mainly to use 

mathematical optimisation methods and meta-heuristics and there is no support for 

discrete-event simulation. To exclude some ñnon-essentialò constraints is common 

when building a discrete-event simulation model, but a simulation model may include 
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many more constraints. In fact, the effect of excluding different constraints can be tested 

in the simulation model by some validation and sensitivity tests.  

 

Li et al., (2012) propose a new modular design for a simulation-based scheduling 

system for semiconductor manufacturing lines. The architecture is divided into a 

software layer, a simulation layer, and a data layer. They use a modular approach in 

which simulation models, algorithms, etc., are divided into different modules. Both 

predictive (dispatching rules) and reactive algorithms are used, but the main focus is on 

the automatic generation of simulation models based on the integrated and modular 

approach of simulation data. Furthermore, there is no information whether on-line 

reactive scheduling is possible, when integrated into a real-world system. A similar 

approach of automatically generating discrete-event simulation models is proposed by 

Horn et al., (2006). A successful implementation in a real-world system employed a 

five-step, simulation-based optimisation procedure using different heuristics, allowing 

the user to modify the schedule and finally generating a detailed operational plan, i.e., a 

Gantt chart. Sivakumar and Gupta (2006) propose an ñimplementation conceptò for 

another similar system using the automatic generation of simulation models. They state 

that a simulation model would require much maintenance, as the circumstances change 

if the model itself is not generated automatically. The system includes the generation of 

schedules in a predictive-reactive manner, but the output reports produced appear to be 

static, i.e., not updated until a rescheduling is carried out. The system was implemented 

at a real-world facility and it allows the user to use both the ñwhat-ifò scenario 

experiments and the scheduling function.  

 

Son et al., (2003) describe the structure and architecture of a simulation-based real-time 

shop floor control system for discrete part manufacturing. Discrete-event simulation 

models in ARENA are automatically generated, by using a model generator and a 

resource model, i.e., the database in MS Access 97, and a Message-based Part State 

Graph (MPSG) shop level execution model.  Most of the software tool has been 

developed in VBA. The control system can be used for either flow shops or job shops 

and its purpose is to work on automatic systems, but it may also operate at manual 

workstations, as long as feedback is sent back to the system. The simulation 
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communicates with a shop level executor and interacts with different external databases, 

such as master production schedule. The scheduling function is similar to other hybrid 

methods (e.g., Matsuura et al., 1993; Barua et al., 2005). A commercial scheduler was 

used to find good schedules without employing any simulation-based optimisation 

technique. Each resource, e.g., machine to be scheduled, is associated with a dispatch 

list which is a sequence of jobs to be scheduled in the order which is to be kept, but the 

simulation model is able to run in a FCFS mode as well. The real- time simulation is 

used as the central controller that keeps track of the current status of the system and 

sends required messages. The simulation sends messages to the lower level controllers 

and then receives feedback from the system.  

 

3.4 Identified functions to include in a system architecture 

Following the comprehensive literature review presented in chapters 2 and 3, a 

complete list of the necessary functions that can be included in the architecture of a 

scheduling system capable of handling real-world production scheduling problems is 

provided, in Table 3.1.  

 

Table 3.1 The main areas of modular scheduling system architecture 

Identified main areas Identified functions 

Discrete-event simulation 

(DES) 

DES for complex problems (Laguna and Marti, 2003): multiple 

constraints (Ribas et al., 2010), uniform or unrelated machines (Ribas 

et al., 2010) multiple objectives (Gary et al., 1995). 

Automatic model generation (Sivakumar and Gupta, 2006). 

Model properties: Flexibility, Speed, Details (Koh et al., 1996). 

Simulation-based optimisation 

Genetic Algorithms (GA) + DES (April et al., 2003). 

Steady state GA (Rogers and Prugel-Bennet, 1999) and parallel 

evaluations (Li and Wang, 2008). 

Scheduling 

Schedule representation: Global scheduling (direct) (Sankar et al., 

2003; Kim et. al., 2007), Dispatching rules (Baker and Trietsch, 2009) 

and other heuristics (indirect) (McKay and Wiers, 1999), Hybrid 

solutions (Roundy et al., 1991; Barua et al., 2005). 

Algorithm generator (Framinan and Ruiz, 2010). 

Automatic algorithm selection (Framinan and Ruiz, 2010). 

Meta-heuristics (Laguna and Marti, 2003). 

Hyper-heuristics (Burke at al., 2003). 

Setup-time reduction (Allahverdi et al., 2008). 

Flexible and configurable algorithms (McKay et al., 2002). 

Adaptive and learning by algorithms (McKay et al., 2002). 
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Dispatching (on-line) 

List of jobs to be dispatched (Son et al., 2003). 

Switching (Matsuura et al., 1993)  

Priority index hybrids (Roundy et al., 1991; Barua et al., 2005)  

Rescheduling 

Rescheduling policies: Periodic rescheduling, Event-driven 

rescheduling, Hybrid rescheduling (Church and Uzsoy, 1992; 

Herrmann, 2006) 

Rescheduling methods: Robust schedules , Complete regeneration, 

Right-shift scheduling, Match-up scheduling (Viera et al., 2003). 

Scheduling algorithms Scheduling algorithms library (Framinan and Ruiz, 2010). 

Objectives 
Multiple objectives (Gary et al., 1995). 

Flexible objectives (McKay et al., 1999). 

Experimentation module 

Validation experiments (Kempf et al., 2000). 

What-if scenarios (Framinan and Ruiz, 2010; Sivakumar and Gupta, 

2006). 

Integration with other systems 
Integration and import/export (Pinedo, 2005; Framinan and Ruiz, 

2010) 

Database 

Input data (Framinan and Ruiz, 2010). 

Output data (Framinan and Ruiz, 2010). 

Monitoring data (Framinan and Ruiz, 2010). 

Fault control 

Data feasibility (Blazéwicz et al, 2001) and consistency (McKay and 

Wiers, 2003) check. 

Real-time dispatching fault control: Soft constraints, Hard constraints 

(Higgins, 1996)  

User-interfaces 

Model input data: Plant layout (Pinedo, 2005), Shop configuration 

(Framinan and Ruiz, 2010), Routing table (Pinedo, 2005), Product 

information (Framinan and Ruiz, 2010). 

Scheduling input data: Scheduling horizon (Stoop and Wiers, 1996), 

User interactivity (Higgins, 1996; McKay and Black, 2007), Resource 

calendar (Pinedo, 2005; McKay and Wiers, 1999), e.g., Planned 

maintenance, Machine repairs, Product samples. 

Scheduling output data: Capacity buckets (Pinedo, 2005), Gantt charts 

(McKay and Buzacott, 2000), Column editor (Pinedo et al., 1994), 

output reports (Kumar and Nottestad, 2006). 

On-line data: Schedule execution status, Production status, 

Performance measures (McKay et al., 2002), WIP levels (Pinedo, 

2005), User interactivity (Higgins, 1996). 

Algorithm generator (Framinan and Ruiz, 2010). 

 

3.5 Concluding remarks 

As a general conclusion, the impact of uncertainty is systematically underestimated by 

academic research and a common approach to uncertainty is to react and reschedule 

(McKay and Wiers, 1999). Different methods with which to react and reschedule and 

create schedules that are robust or reactive to real-world disturbances have been 

identified in this chapter. However, solving the sequencing problems is not enough, 

since real-world schedulers are faced with day-to-day challenges. In order to handle the 
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scheduling task including uncertainty, an integrated scheduling system and not only an 

intelligent algorithm is needed. This review has identified the most important functions 

and features that need to be handled by such an integrated scheduling system, such as 

simulation-based optimisation, flexible algorithms, system integration capability, within 

a modular architecture. Chapters 4 and 5 further address the internal details of such 

scheduling system architecture for handling most of the important functions identified.  
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Chapter 4 

4 A Web Services-based Architecture for Industrial 

Scheduling  

This chapter describes the overall system architecture of the Web services-based 

industrial scheduling system, which is designed to be a software architecture to solve 

the limitations of existing scheduling software used in industry. This architecture is 

based on the generic simulation-based optimisation platform, OPTIMISE, introduced in 

(Ng et al., 2008), and is customised and extended for industrial scheduling. Hence, the 

architecture is called OPTIMISE Scheduling System, or OSS. Since a Web services-

based simulation system like OSS is closely related to Web-based simulation 

applications, this chapter begins with a brief introduction and literature review of Web-

based simulation (Section 4.1), as well as some existing platforms found in the literature 

(Section 4.2). A short introduction of the OPTIMISE architecture is presented in 

Section 4.3, after which the chapter focuses on OSS and its core components (Section 

4.4). 

 

4.1 Web-based simulation 

The internet has grown considerably in the last two decades and it is not only a platform 

for information sharing, but also for new applications within many different areas. 

Simulation applications have started using the concept of Web-based simulation (WBS) 

moving from more traditional local desktop solutions. Fishwick (1996) states that WBS 

ñrepresents the connection between the web and the field of simulationò, and Byrne et 

al., (2010) define WBS as ñthe use of resources and technologies offered by the World-

Wide-Web (WWW) for interaction with client and server modelling and simulation 

toolsò. Compared to desktop systems, some advantages can be identified when a Web-

based system approach is used: 
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¶ Accessibility: A Web-based system enables users at different locations to access 

the data from any computer that has internet available. Furthermore, a Web-

based system is also accessible off-hours (Veith et al., 1999). 

¶ Cross-platform capability: Such a solution is flexible because the web 

applications can be independent of computer type or operating system (Jin et al., 

2010; Byrne et al., 2010).  

¶ Controlled access: A Web-based system can use passwords and user-accounts to 

restrict the access of the system. (Veith et al., 1999) 

¶ Licensing: The cost of simulation software and computer hardware can be high 

for a company (Fishwick, 1996), especially if there are requirements for parallel 

or distributed evaluations. Using a Web-based approach means licenses can be 

used when these are required from within a company or an external service 

provider. The total cost of simulation projects can be substantially reduced 

(Wiedemann, 2001). 

¶ Maintenance: The maintenance is carried out on the server and the changes take 

effect without needing to involve actual client applications. (Byrne et al., 2010) 

 

However, there are drawbacks to Web-based systems, some of which follow: 

¶ Graphical user interface limitations: Interfaces supported by the web are limited 

(Suh, 2005), and it may require too much effort (Wiedemann, 2001) creating 

complex Web-based interfaces compared to desktop-based interfaces. 

¶ Security vulnerability: Web-based applications are vulnerable to malicious 

Internet attacks (Suh, 2005). 

¶ Licensing: Some software vendors may only allow a single place usage 

(Wiedemann, 2001). 

¶ Network traffic delays: Luo et al., (2000) state that distributed simulation clients 

may take longer to execute compared to local simulation because of network 

traffic delays. 

 

Byrne et al., (2010) claim that the research within WBS is still in its infancy and the 

number of real-world applications is still low. When it comes to Web-based SBO 
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systems, there are only a few publications, which are briefly reviewed in the following 

sub-section.  

 

4.2 Existing Web-based systems for SBO 

Luo et al., (2000) describe a Web-based distributed SBO system that is based on Java. 

The system consists of three parts: a management console, a web server and central 

controller, and the simulation clients, see Figure 4.1 freely redrawn from Lou et al., 

(2000). 

 

Figure 4.1 Web-based distributed simulation system. 

A Web-browser is used to start a java application, i.e. the management console which is 

used to set up and start experiments for real-time monitoring of the clients and to show 

the simulation results of present and past optimisations. The web server and the central 

controller handle the assignment of jobs to be evaluated by the clients and use a 

sequential optimisation algorithm for Optimal Computing Budget Allocation (OCBA). 

The clients are the computing resources used for the simulation evaluations.  

 

Another Web-based SBO system has been proposed by Yoo et al., (2009). Their 

framework for Web-based SBO uses a distributed platform, Parallel Replicated 

Discrete-Event Simulation (PRDES), to execute the simulation evaluations, see Figure 

4.2 freely redrawn from Yoo et al., (2009). 
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Figure 4.2 Web-based SBO framework. 

A Web-page is used as a user interface, making it accessible through a Web-browser. 

The optimisation service uses an optimisation engine based on an NP-algorithm and, 

when a promising solution is found, it is sent to the simulation service through the 

repository.  The simulation service is not entirely an evaluative client, since it uses a 

variant of the OCBA algorithm called EOCBA, which takes the computing power into 

account as well. The results are stored in the repository, i.e., database.  

 

4.3 OPTIMISE: A web services-based SBO platform 

OPTIMISE (OPTIMisation using Intelligent Simulation and Experimentation) is 

conceived as a generic Internet computing platform that tightly integrates different 

Discrete-Event Simulation (DES) systems with Artificial Intelligence-based 

optimisation tools in a Web services-based platform that can be integrated with other 

industrial/business information systems for valid simulation and optimisation runs (Ng 

et al., 2008). By generic, it is designed to be a computing platform that can be used to: 

(1) address a wide range of real-world optimisation problems commonly found in 

manufacturing and logistic applications; (2) facilitate the combined use of various 

search algorithms (e.g., Genetic Algorithms (GA) and local search); (3) be able to 

connect to different types of simulators and Discrete-Event Simulation (DES) packages 

through the Sim-Agent concept (see Figure 4.4), and (4) support inherently parallel and 

distributed simulation to significantly reduce the time spent on simulation evaluations. 

The platform is designed to be multi-tier client/server based in which all complex 

components, including various meta-heuristic search algorithms, neural network-based 

meta-models, deterministic/stochastic simulation systems and the corresponding 

database management system are integrated in a parallel and distributed platform and 
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made available to general users for easy access, anytime, anywhere, through Web 

Services technology (Ng et al., 2007).  

 

Even though the term cloud computing was not in popular use when OPTIMISE started 

to be implemented in 2006, it actually bears many common features that a cloud 

infrastructure should provide. Particularly, the concept of dual parallelism in cloud 

computing is supported by OPTIMISE, because it supports (1) multiple users from 

several companies/institutions that may be geographically distributed; and (2) running 

multiple simulations for different simulation models developed using various simulation 

languages/packages. 

 

To support these goals, OPTIMISE was designed with the following important features:  

¶ Web services: using a Web page inside a Web browser as user interface, which 

Yoo et al., (2009) adopt, is advantageous with regard to accessibility and cross-

platform capability.  Although, approaches using client applications, e.g., .NET-

applications are supported as well. 

¶ Distributed simulations: distributed simulations facilitate the simulation 

evaluations that are to be run in parallel on different computing nodes/cores, 

which is important to reduce the total execution time for SBO. Network traffic 

delays, identified by Luo et al., (2000), are believed not to cause any problems, 

due to the improvements in the network technologies over the years.  

¶ Remote database ï using a database to store optimisation results similar to Lou 

et al., (2000) supports the storage and access to experimental data.  

¶ Modularity: The system is designed to be highly modular, since it would 

increase the possibility to expand the functionality and save development time 

(Pinedo, 2005).  

¶ Security: The security is taken into account in order to avoid unauthorized 

access, e.g., by using security certificates.  

¶ Users:  Different user accounts are needed in order to handle usersô privileges, 

so that an ordinary user does not have administrator privileges. Furthermore, it is 

important that multiple users can use the system at the same time.  
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¶ Research ï to facilitate further research on SBO using hybrid search methods for 

real-time decision making and/or weekly/daily scheduling.  

 

Resembling the system architecture commonly used for cloud computing, the 

OPTIMISE systems architecture (Figure 4.3) is composed of multiple server 

components (cloud components) communicating with each other over a loose coupling 

mechanism such as a messaging queue. OPTIMISE fulfils the definition of cloud 

computing, as it incorporates the ideas of virtualisation and distributed computing using 

Web services technologies. With the XML Web services platform, OPTIMISE can be 

deployed as a three-tier architecture that consists of the following three layers: 1) 

OPTIMISE client; 2) OPTIMISE server; 3) data sources. This is a highly flexible and 

scalable solution and the separation is intended to support industrial IT service 

providers in delivering and supporting both computing services and technical 

consultancies to a wide range of industries, national and global, from SMEs to multi-

national enterprises.  

 

Figure 4.3 With XML Web services, OPTIMISE can be deployed with high flexibility 

and scalability. 

http://en.wikipedia.org/wiki/Systems_architecture
http://en.wikipedia.org/wiki/Loose_coupling
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For example, as illustrated in Figure 4.3a, a SME that does not possess its own 

simulation resources and required computing capacity can run the OPTIMISE client and 

data sources layer locally and connect to a remote OPTIMISE server that houses the 

DES systems and optimisation engines, by contracting an Optimisation Services 

Provider (OSP). The same kind of configuration can also be applied to a multi-national 

enterprise in which multiple OPTIMISE clients can connect to the optimisation services 

supplied by a central IT department, which acts as an internal OSP (Figure 4.3c).  

 

As shown in Figure 4.4, the OPTIMISE architecture consists of a number of 

optimisation engines, surrounded by a set of OPTIMISE Server Components divided 

into three tiers: (1) Web Server; (2) Optimisation, and (3) Simulation subsystem. The 

optimisation engine (OptEngine) in the optimisation tier is the most important 

component for an SBO application, because it provides the core functionality for a 

optimisation/experiment and acts as the hub for coordinating other functions.  

 

 

Figure 4.4 The generic OPTIMISE system architecture. 

The web services function, hosted by the Webserver, listens to the XML requests from 

the client tier, such as start an SBO (through OptManager) or read data from the 

optimisation database (OptDB). The implementation of OPTIMISE started in 2006. 

While several extensions to support new technologies and applications have been made 

over the years, the core components have not been changed. Since these core 
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components are used or extended in OSS, they are briefly introduced in this section and 

described in detail in the following sub-sections.  

 

4.3.1 Optimisation manager and database 

The Optimisation Manager (OptManager) is a Windows process that listens to the 

request from the Web Server to launch different OptEngines, according to the settings 

specified in the client applications. Data required to start an SBO procedure may 

include: (1) simulation settings (e.g., warm-up time, simulation horizon, number of 

replications and production line configuration), (2) objective function, (3) list of input 

variables, (4) list of output variables, (4) constraints to input variables, (5) choice of 

optimisation algorithm, and (6) optimisation parameters (e.g., population size, crossover 

rate, and stop criterion). Currently, OPTIMISE supports several optimisation 

algorithms, such as meta model-assisted hill climbing and evolutionary algorithms. 

However, meta model-assisted hill climbing algorithms are not used in the 

implementation of OSS (Chapter 6) or in the genetic algorithm (Chapter 5). 

Furthermore, new algorithms can be added easily, by compiling the modified algorithm 

core with the Object-Oriented libraries which OPTIMISE supplies. Generic algorithm 

software or templates needs research in its own area (Voß and Woodruff 2000). 

OPTIMISE has an Object-Oriented class library that allows new algorithms to inherit or 

override class methods for selection, crossover, and mutation operations which are 

commonly used in any evolutionary algorithms. There are also common function 

libraries for training meta-models, data normalisations, and communication with other 

components. These enable new algorithms to be quickly developed or customised and 

fit into the OPTIMISE framework by reuse. Such generic support of SBO algorithmsô 

development and ease of launch during optimisation runs is a very important feature for 

the experiments in comparing different genetic representations (Chapter 5) and have 

generated the experiment results presented in Chapter 7. 

 

By letting all OptEngines save their optimisation settings and other experiment results 

in a central database, i.e., OptDB, OPTIMISE supports the following features: 
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¶ Initial solutions, their quality and diversity, have a huge impact on the 

performance of an optimisation run, especially when a GA or other population 

based algorithms are used. All the experiment results are stored in the OptDB, to 

enable a user to choose the set of initial solutions from previous experiments, 

when starting a new optimisation run. This can also be used in combination with 

other experimental designs, e.g., Design of Experiments (DoE), provided in the 

OPTIMISE client applications. However, DoE is not used in the implementation 

of OSS (Chapter 6) or in the genetic algorithm (Chapter 5). 

¶ Dynamical changes to meta-heuristic algorithms during the optimisation run are 

especially useful when global search methods, e.g., GAs, are used for 

exploration in a first stage followed by local search methods, e.g., hill-climbing 

algorithms, in order to further improve the optimisation result. However, local 

search methods are not used in the implementation of OSS (Chapter 6) or in the 

genetic algorithm (Chapter 5). 

¶ Fault tolerance ï Faults in a simulation evaluation can easily be detected and 

recovered by re-starting the run with another SimAgent using time-outs for the 

communication. If a simulation model returns invalid results, due to model 

deficiencies, it will be shown in OPTIMISE Browser, with which it is possible 

to browse new and historical optimisation data from OptDB. If the OptEngine 

crashes due to software faults, OPTIMISE indirectly facilitates error-recovery, 

by allowing a user to start an OptEngine and re-load the previous simulation 

records saved in OptDB.    

 

4.3.2 Simulation components 

Parallel simulation evaluations may be needed to speed up the SBO process. Therefore, 

the simulation components are located in a tier of their own, decoupled from the server 

components, to offer a modular solution that enables them to be widely distributed.  

Different simulation systems, e.g., commercial software or developed .Net applications, 

are connected to SimManager homogenously by using SimAgents in the SimAgent tier. 

To launch the simulation software used in a particular optimisation run, the SimAgents 

use the software specific BackEnd objects that support Distributed Component Object 
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Model (DCOM) and Socket communications for connecting to different simulation 

systems.  Furthermore, BackEnd protocols are used to be able to communicate with the 

simulation software, e.g., load model, start simulation run, and collect output data. A 

standard format, XML, is used to return the output data via SimManager, to the 

OptEngine for evaluation and storage.  

 

Unlike the SimManager described in Biles and Kleijnen (2005), which needs the 

software for the statistical methodology and optimisation techniques to be able to 

analyse the simulation results, the SimManager in OPTIMISE is a generic and light-

weighted job dispatcher. Several SimAgents can be started at the same computer, 

depending on the computing capacity, i.e., number of processor cores. The SimManager 

registers all of the SimAgents that have been started, which means that it can dispatch 

several jobs received from OptEngines to multiple simulation systems running in 

parallel. The SimManager will send a job that is pending in the message queue to the 

first available SimAgents that fulfil the correct software requirements. The SimAgent 

will be marked as busy until the result is sent back to SimManager.  

 

Any applications that use the Web services provided by OPTIMISE can be called an 

OPTIMISE client application. In order to supply the data needed to run SBO for the 

industrial scheduling problems, the GUI was extended to connect to the OPTIMISE 

Web services to launch SBO for industrial scheduling applications. On the other hand, 

there are some generic applications which have been developed for the 

monitoring/control of the OPTIMISE Server Components and management of 

optimisation project data. With generic, it means that they have not been specifically 

developed for a particular application. OPTIMISE Browser is useful for many 

optimisation projects and is an example of such a generic application. OPTIMISE 

Browser reads the data from OptDB, presents the data in tables and graphs, and can be 

used to analyse the data.  How the OPTIMISE framework and client applications are 

customised for industrial production scheduling is the topic of the next section. 
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4.4 OPTIMISE Scheduling System (OSS) 

The architecture of the OPTIMISE Scheduling System (OSS) (Frantzén et al., 2010; 

Frantzén et al., 2011) can be seen in Figure 4.5.  

 

Figure 4.5 Architecture of OPTIMISE Scheduling System (see also Figure 4.6 for the 

information exchanges between the modules). 
































































































































































































































































































































































