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Algorithm 1: Batch Normalization [19] 

B. UCF101 dataset 
UCF101 is one of the largest datasets in Human Activity 

Recognition (HAR) benchmarks. It was introduced by 
Khurram Soomro et al. in 2012 [12]. UCF101 contains 13,320 
video clips which their lengths are between 1.06 and 71.04 
seconds, the resolution is 320 × 240 pixel, and the frame rate 
is 25 fps. It consists of 101 activity classes such as Archery, 
Basketball, Diving, Playing Piano, and many others. The 
footage of this dataset is presented in Fig.1. When the dataset 
was first introduced, the performance baseline was 43.9% by 
Standard Bag of Words method using the implementation by 
Marcin Marszalek, et al. [16]. It implies that UCF101 is one 
of the most challenging datasets of HAR tasks. It consists of a 
large number of classes, video clips, and the contents of each 
video clips are varied. 

 

 
Fig. 1. Footage of UCF101 benchmark [12] 

C. VGG16 – 2D CNN model 
VGG16 is a convolutional neural network presented by 

Karen Simonyan and Andrew Zisserman in 2015 [11]. The 
structure of VGG16 shown in Fig.2 consists of 13 
convolutional layers which work to do feature extraction, and 
three fully connected neural network layers (FC) to classify 
input data. Maxpooling layers are also inserted at the end of 
each convolutional layer group. Moreover, Softmax layer is 
added at the end of the model to provide a classified result. 
VGG16 achieves a high rate of recognition performance at 

89.3% of mean Average Precision (mAP) on VOC-2012 
dataset which is an image dataset of action classification. The 
original VGG16, which is a 2D CNN model, supports only an 
image task. Therefore, VGG16 is reinvented to support HAR 
video dataset for this study. 
 

Fig. 2. The original VGG16 model [11] 

III. EXPERIMENT 
 The process of this paper is divided into three sections 
such as doing video pre-processing, building 3D CNN models 
with and without Batch Normalization, and finally training 
both models to compare the accuracy of training and test data. 

A. Video Pre-Processing 

Even though originally the spatial dimensions of UCF101 
are (320, 240, 3) which represent the width, height, and colour 
channel respectively for each image frame, they are 
compressed to (224, 224, 3) to support the models. In the 
temporal term, it is sampled equally 6 frames for each video 
clip. Therefore, the input data dimensions after being 
processed are (224, 224, 6, 3) which means width, height, 
temporal data, and channel respectively for each sample. In 
terms of label data, the dimension is (101) for each sample. 
This means that there are 101 classes of human activities. 
UCF101 contains a total of 13,320 samples. Therefore, the 
processed input data and label data dimensions are (13320, 
224, 224, 6, 3) and (13320, 101) respectively. Thereafter, the 
processed input data and label data are stored and compressed 
to a single file as .npz data type to provide a convenient 
process for training and testing a DL model. The processed 
dataset (.npz file) size is 12.4 GB. Finally, the processed 
dataset is randomly separated into two groups for training and 
test data. The ratio between training and test data is 80:20. The 
Video Pre-Processing method is presented in Fig.3. 

 
Fig. 3. Video Pre-Processing of UCF101 dataset 

 
Input (224, 224) RGB  2D-CNN 512 

2D-CNN 64  2D-CNN 512 
2D-CNN 64  Maxpooling layer 

Maxpooling layer  2D-CNN 512 
2D-CNN 128  2D-CNN 512 
2D-CNN 128  2D-CNN 512 

Maxpooling layer  Maxpooling layer 
2D-CNN 256  FC 4096 
2D-CNN 256  FC 4096 
2D-CNN 256  FC 1000 

Maxpooling layer  Softmax 
2D-CNN 512  output 

 



B. Building 3D CNN models with and without BN 
 There are two models used for this paper. They are built 
by Keras which is one of the most practical frameworks to 
build Deep Learning models.  

 
Model 1 

3D CNN without BN 
 

 Model 2 
3D CNN with BN 

 
3D-CNN 64  3D-CNN 64 

Activation(relu)  Activation(relu) 
3D-CNN 64  3D-CNN 64 

Activation(relu)  Activation(relu) 
3D Max Pooling  3D Max Pooling 

  Batch Normalization 
3D-CNN 128  3D-CNN 128 

Activation(relu)  Activation(relu) 
3D-CNN 128  3D-CNN 128 

Activation(relu)  Activation(relu) 
3D Max Pooling  3D Max Pooling 

  Batch Normalization 
3D-CNN 256  3D-CNN 256 

Activation(relu)  Activation(relu) 
3D-CNN 256  3D-CNN 256 

Activation(relu)  Activation(relu) 
3D-CNN 256  3D-CNN 256 

Activation(relu)  Activation(relu) 
3D Max Pooling  3D Max Pooling 

  Batch Normalization 
3D-CNN 512  3D-CNN 512 

Activation(relu)  Activation(relu) 
3D-CNN 512  3D-CNN 512 

Activation(relu)  Activation(relu) 
3D-CNN 512  3D-CNN 512 

Activation(relu)  Activation(relu) 
3D Max Pooling  3D Max Pooling 

  Batch Normalization 
3D-CNN 512  3D-CNN 512 

Activation(relu)  Activation(relu) 
3D-CNN 512  3D-CNN 512 

Activation(relu)  Activation(relu) 
3D-CNN 512  3D-CNN 512 

Activation(relu)  Activation(relu) 
3D Max Pooling  3D Max Pooling 

  Batch Normalization 
Flatten layer  Flatten layer 

Neural Network 512 nodes 
 with Activation(sigmoid) 

 Neural Network 512 nodes 
 with Activation(sigmoid) 

Softmax layer  Softmax layer 
 

Fig. 4. 3D CNN models without BN, and with BN 

 Model 1 (3D CNN without BN): This model, which the 
structure for is shown in Fig. 4 (Model 1), consists of two 
sections, feature extraction and classification. The feature 
extraction is reinvented from VGG16 which is a 2D CNN 
model for image classification. To support video dataset, 2D 
Convolutional and 2D Max Pooling layers are replaced by 3D 
Convolutional and 3D Max Pooling layers respectively. For 
the classification section, there is one layer of neural network 
added. It consists of 512 nodes and uses Sigmoid as an 
activation function. Softmax is the last layer added at the end 
of the model to provide the results of the video classification.  

 Model 2 (3D CNN with BN): The second model shown in 
Fig.4 (Model 2) is similar to the first model except for adding 
Batch Normalization at the end of each Convolutional layer 
group. There are five convolutional groups such as 3D-CNN-
64, 3D-CNN-128, 3D-CNN-256, and two 3D-CNN-512. This 
means that the input data is normalized before feeding into 

four convolutional groups (3D-CNN-128, 3D-CNN-256, and 
two 3D-CNN-512) and one neural network. The BN 
parameters used for this study are that momentum is 0.99 and 
epsilon is 0.001.  

Adding BN increases the number of model parameters. 
Therefore, there are in total 44,450,085 and 44,455,973 
parameters for the model without and with BN respectively.  

C. Training the models 
 When training the models performed by 16 GB GPU 
(NVIDIA Tesla V100), Stochastic Gradient Descent is used to 
run as an optimizer. Two models are trained and tested in 
every epoch for 100 epochs with the processed data. The 
parameters for training both models are that batch size is 16, 
and the learning rate is 0.01. 

 

IV. RESULT AND DISCUSSION 
A 3D CNN model with and without Batch Normalization 

are compared. Three results are presented in this section such 
as the results of Loss Function values, model’s accuracy, and 
confirming the accuracy of an improved model by a Cross-
Validation method. 

A. The results of Loss Function values  
One of the most useful measurements of successfully 

training a CNN model is a low value of Loss Function which 
implies an error in the trained model output compared to the 
label data. Fig. 5 and 6 present the Loss Function values of 
training and test data respectively. It is clear that a model with 
BN provides a lower value than a model without BN at the 
starting point. The Loss Function value also drops 
dramatically when using BN while the value seems unchanged 
for the first five epochs when using no BN. Even though the 
Loss Function value of both models continues to decrease, a 
model without BN is not able to be trained after epoch 19. It 
cannot find a lower Loss Function value, as a result, the model 
has trained unsuccessfully. On the other hand, the model with 
BN has trained successfully and it reaches a Loss Function 
value at nearly zero, from approximately epoch 10 onwards 
for the training data.   

 

 
Fig. 5. Loss Function values of training data by epoch 



 
Fig. 6. Loss Function values of test data by epoch 

 

B. Model’s Accuracy Results 
 The accuracy of both models is shown in Fig.7 and Fig.8 
for training and test data respectively. The results show that a 
model with BN provides a higher rate of model accuracy than 
a model without BN. The accuracy of a model using BN 
increases dramatically and it reaches a saturation point at 
epoch 10 onward of approximately 100% and 90% for training 
and test data respectively. 

 On the other hand, even though the accuracy of a model 
without BN increases dramatically since epoch 8, it stops at 
epoch 19 which reaches its highest accuracy of 70.36% and 
54.01% for training and test data. After that, the accuracy 
drops to nearly zero which means that this model is unreliable 
to be used for video classification of HAR tasks. 

 

 
Fig. 7. Model’s accuracy of training data by epochs 

 
Fig. 8. Model’s accuracy of test data by epochs 

 

C. Confirming the accuracy of the improved model by Cross- 
Validation method 

 According to Fig. 7 and 8 which shows that the 3D CNN 
model reinvented from VGG16 with added BN, improved the 
model by producing a higher accuracy rate for both training 
and test data. However, training and testing a DL model on 
different data samples could provide different levels of 
accuracy even though doing it with the same dataset. 
Therefore, a Cross-Validation method [18] is performed to 
confirm model accuracy. For the Cross-Validation method, 
UCF101 dataset is duplicated to five groups. Each group is 
divided into two sections, training and test data in the ratio 
80:20. Each group has a different sequence for training and 
test data. Then each data group is trained and tested on the 
improved model (the 3D CNN model with BN). The results of 
Cross-Validation are shown in Table 1. It found that the 
improved model can still achieve a high accuracy rate. The 
training and test’s mean accuracy are 100% and 91.17% 
respectively.  

TABLE I.  CROSS-VALIDATION OF THE IMPROVED MODEL 

 

CROSS-VALIDATION 
GROUP 

ACCURACY (PERCENTAGE) 

TRAINING DATA TEST DATA 

1 100 90.9534 

2 100 90.4279 

3 100 91.2162 

4 100 92.5675 

5 100 90.6906 

AVG 100 91.1711 



D. Comparing the improved model to state-of-the-art 
models 

 When comparing the accuracy of the improved model 
to state-of-the-art models which Joao Carreira and Andrew 
Zisserman study in 2018 [7] on a UCF101 benchmark, it 
found that the improved model can be ranked in a group of 
state-of-the-art accuracy as presented by Table 2. 

TABLE II.  STATE-OF-THE-ART MODELS ON THE UCF101 BENCHMARK 

MODEL ACCURACY 
(PERCENTAGE) 

Two-Stream I3D, Imagenet+Kinetics pre-training 
[7] 

98.0 

ST-ResNet + IDT [2] 94.6 

Temporal Segment Networks [14] 94.2 

Two-Stream Fusion + IDT [1] 93.5 

TDD + IDT [15] 91.5 

3D CNN reinvented from VGG16 with BN  
(the work presented in this paper) 

91.2 

C3D ensemble + IDT, Sport 1M pre-training [3] 90.1 

Dynamic Image Networks + IDT [4] 89.1 

Two-Stream [10] 88.0 

IDT [5] 86.4 

 

E. Overall work discussion 
 There are two main points to present in this paper. 
Firstly, this paper suggests using BN to improve model 
accuracy when developing a DL model from scratch to make 
a DL model achieved a high accuracy rate. Two models are 
reinvented from VGG16. The difference between the models 
is one has the addition of BN. The model with BN provides a 
higher accuracy rate at the same epoch when comparing to the 
model without BN. Even though training both models for 100 
epochs consumes the same amount of time – estimated at 13 
hours, the speed of reaching the saturation point of the model 
with BN is also faster. In other words, it requires less epoch to 
train than the model without BN. The model with BN requires 
10 epochs to reach the saturation point which consumes 
training time estimated at 1 hour and 20 minutes while the 
model without BN requires 19 epochs which consumes an 
estimated 2 hours and 30 minutes. 

 Secondly, 3D CNN model reinvented from VGG16 
with BN is considered as an improved model. It consists of 
44,455,973 parameters which require 178 MB memory (not 
include model structure) to store as a .hd5 data format. This 
model achieves a high accuracy rate of 91.2% which is within 
the state-of-the-art UCF101 benchmark results.   

V. CONCLUSION 
The results of training a CNN model with and without BN 

found that a model with BN provides a lower Loss Function 
value than another model for both training and test data. This 
results in the higher model accuracy rate. The model with BN 
achieves a model accuracy of approximately 100% and 90% 
for training and test data respectively, while a model without 
BN reaches its highest accuracy of 70.36% and 54.01% for 
training and test data. Once the accuracy of a model using BN 
reaches its highest point, it continues to remain at this level. 
However, the accuracy of a model without BN drops after it 
reaches its highest point. This study also observes that a model 
with BN requires nearly two times fewer epochs to reach its 
highest model accuracy, compared to a model without BN. 
Therefore, adding BN is a suggestion to provide a high 
accuracy rate of a CNN model especially when building from 
scratch. 

In addition to these, it also finds that the improved model 
(3D CNN reinvented from VGG16 with BN) can achieve a 
high model accuracy of 91.17% after confirmation by the 
Cross-Validation method. This level of accuracy is in the 
range of state-of-the-art UCF101 benchmark results. 
However, the accuracy of training data is higher than test data,  
this means that the model is still confronting an overfitting 
problem [6]. There is room for model accuracy improvement 
in the future, by adding L1 and L2 regularization [9], adding 
dropout [17], or using more data to train the model.   
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