

Input: Values of ! over a mini-batch: " # $! %&' (

Parameters to be learned:) *+
Output: $, - # ./ 0*1 2! -3(

Mini-batch mean: 41 5 6
%

'
7 ! -

'
-8 %

Mini-batch variance: 91

: 5 6
%

'
7 2! - ; 41 3:'

-8 %

Normalize !<- 5

=>? @A

BCA
DEF

Scale and shift: , - 5) !<- G +6H ./ 0*1 2! -3

Algorithm 1: Batch Normalization [19]

B. UCF101 dataset
UCF101 is one of the largest datasets in Human Activity

Recognition (HAR) benchmarks. It was introduced by
Khurram Soomro et al. in 2012 [12]. UCF101 contains 13,320
video clips which their lengths are between 1.06 and 71.04
seconds, the resolution is 320 × 240 pixel, and the frame rate
is 25 fps. It consists of 101 activity classes such as Archery,
Basketball, Diving, Playing Piano, and many others. The
footage of this dataset is presented in Fig.1. When the dataset
was first introduced, the performance baseline was 43.9% by
Standard Bag of Words method using the implementation by
Marcin Marszalek, et al. [16]. It implies that UCF101 is one
of the most challenging datasets of HAR tasks. It consists of a
large number of classes, video clips, and the contents of each
video clips are varied.

Fig. 1. Footage of UCF101 benchmark [12]

C. VGG16 – 2D CNN model
VGG16 is a convolutional neural network presented by

Karen Simonyan and Andrew Zisserman in 2015 [11]. The
structure of VGG16 shown in Fig.2 consists of 13
convolutional layers which work to do feature extraction, and
three fully connected neural network layers (FC) to classify
input data. Maxpooling layers are also inserted at the end of
each convolutional layer group. Moreover, Softmax layer is
added at the end of the model to provide a classified result.
VGG16 achieves a high rate of recognition performance at

89.3% of mean Average Precision (mAP) on VOC-2012
dataset which is an image dataset of action classification. The
original VGG16, which is a 2D CNN model, supports only an
image task. Therefore, VGG16 is reinvented to support HAR
video dataset for this study.

Fig. 2. The original VGG16 model [11]

III. EXPERIMENT
 The process of this paper is divided into three sections
such as doing video pre-processing, building 3D CNN models
with and without Batch Normalization, and finally training
both models to compare the accuracy of training and test data.

A. Video Pre-Processing

Even though originally the spatial dimensions of UCF101
are (320, 240, 3) which represent the width, height, and colour
channel respectively for each image frame, they are
compressed to (224, 224, 3) to support the models. In the
temporal term, it is sampled equally 6 frames for each video
clip. Therefore, the input data dimensions after being
processed are (224, 224, 6, 3) which means width, height,
temporal data, and channel respectively for each sample. In
terms of label data, the dimension is (101) for each sample.
This means that there are 101 classes of human activities.
UCF101 contains a total of 13,320 samples. Therefore, the
processed input data and label data dimensions are (13320,
224, 224, 6, 3) and (13320, 101) respectively. Thereafter, the
processed input data and label data are stored and compressed
to a single file as .npz data type to provide a convenient
process for training and testing a DL model. The processed
dataset (.npz file) size is 12.4 GB. Finally, the processed
dataset is randomly separated into two groups for training and
test data. The ratio between training and test data is 80:20. The
Video Pre-Processing method is presented in Fig.3.

Fig. 3. Video Pre-Processing of UCF101 dataset

Input (224, 224) RGB 2D-CNN 512

2D-CNN 64 2D-CNN 512
2D-CNN 64 Maxpooling layer

Maxpooling layer 2D-CNN 512
2D-CNN 128 2D-CNN 512
2D-CNN 128 2D-CNN 512

Maxpooling layer Maxpooling layer
2D-CNN 256 FC 4096
2D-CNN 256 FC 4096
2D-CNN 256 FC 1000

Maxpooling layer Softmax
2D-CNN 512 output

B. Building 3D CNN models with and without BN
 There are two models used for this paper. They are built
by Keras which is one of the most practical frameworks to
build Deep Learning models.

Model 1

3D CNN without BN

 Model 2
3D CNN with BN

3D-CNN 64 3D-CNN 64

Activation(relu) Activation(relu)
3D-CNN 64 3D-CNN 64

Activation(relu) Activation(relu)
3D Max Pooling 3D Max Pooling

 Batch Normalization
3D-CNN 128 3D-CNN 128

Activation(relu) Activation(relu)
3D-CNN 128 3D-CNN 128

Activation(relu) Activation(relu)
3D Max Pooling 3D Max Pooling

 Batch Normalization
3D-CNN 256 3D-CNN 256

Activation(relu) Activation(relu)
3D-CNN 256 3D-CNN 256

Activation(relu) Activation(relu)
3D-CNN 256 3D-CNN 256

Activation(relu) Activation(relu)
3D Max Pooling 3D Max Pooling

 Batch Normalization
3D-CNN 512 3D-CNN 512

Activation(relu) Activation(relu)
3D-CNN 512 3D-CNN 512

Activation(relu) Activation(relu)
3D-CNN 512 3D-CNN 512

Activation(relu) Activation(relu)
3D Max Pooling 3D Max Pooling

 Batch Normalization
3D-CNN 512 3D-CNN 512

Activation(relu) Activation(relu)
3D-CNN 512 3D-CNN 512

Activation(relu) Activation(relu)
3D-CNN 512 3D-CNN 512

Activation(relu) Activation(relu)
3D Max Pooling 3D Max Pooling

 Batch Normalization
Flatten layer Flatten layer

Neural Network 512 nodes
 with Activation(sigmoid)

 Neural Network 512 nodes
 with Activation(sigmoid)

Softmax layer Softmax layer

Fig. 4. 3D CNN models without BN, and with BN

 Model 1 (3D CNN without BN): This model, which the
structure for is shown in Fig. 4 (Model 1), consists of two
sections, feature extraction and classification. The feature
extraction is reinvented from VGG16 which is a 2D CNN
model for image classification. To support video dataset, 2D
Convolutional and 2D Max Pooling layers are replaced by 3D
Convolutional and 3D Max Pooling layers respectively. For
the classification section, there is one layer of neural network
added. It consists of 512 nodes and uses Sigmoid as an
activation function. Softmax is the last layer added at the end
of the model to provide the results of the video classification.

 Model 2 (3D CNN with BN): The second model shown in
Fig.4 (Model 2) is similar to the first model except for adding
Batch Normalization at the end of each Convolutional layer
group. There are five convolutional groups such as 3D-CNN-
64, 3D-CNN-128, 3D-CNN-256, and two 3D-CNN-512. This
means that the input data is normalized before feeding into

four convolutional groups (3D-CNN-128, 3D-CNN-256, and
two 3D-CNN-512) and one neural network. The BN
parameters used for this study are that momentum is 0.99 and
epsilon is 0.001.

Adding BN increases the number of model parameters.
Therefore, there are in total 44,450,085 and 44,455,973
parameters for the model without and with BN respectively.

C. Training the models
 When training the models performed by 16 GB GPU
(NVIDIA Tesla V100), Stochastic Gradient Descent is used to
run as an optimizer. Two models are trained and tested in
every epoch for 100 epochs with the processed data. The
parameters for training both models are that batch size is 16,
and the learning rate is 0.01.

IV. RESULT AND DISCUSSION
A 3D CNN model with and without Batch Normalization

are compared. Three results are presented in this section such
as the results of Loss Function values, model’s accuracy, and
confirming the accuracy of an improved model by a Cross-
Validation method.

A. The results of Loss Function values
One of the most useful measurements of successfully

training a CNN model is a low value of Loss Function which
implies an error in the trained model output compared to the
label data. Fig. 5 and 6 present the Loss Function values of
training and test data respectively. It is clear that a model with
BN provides a lower value than a model without BN at the
starting point. The Loss Function value also drops
dramatically when using BN while the value seems unchanged
for the first five epochs when using no BN. Even though the
Loss Function value of both models continues to decrease, a
model without BN is not able to be trained after epoch 19. It
cannot find a lower Loss Function value, as a result, the model
has trained unsuccessfully. On the other hand, the model with
BN has trained successfully and it reaches a Loss Function
value at nearly zero, from approximately epoch 10 onwards
for the training data.

Fig. 5. Loss Function values of training data by epoch

Fig. 6. Loss Function values of test data by epoch

B. Model’s Accuracy Results
 The accuracy of both models is shown in Fig.7 and Fig.8
for training and test data respectively. The results show that a
model with BN provides a higher rate of model accuracy than
a model without BN. The accuracy of a model using BN
increases dramatically and it reaches a saturation point at
epoch 10 onward of approximately 100% and 90% for training
and test data respectively.

 On the other hand, even though the accuracy of a model
without BN increases dramatically since epoch 8, it stops at
epoch 19 which reaches its highest accuracy of 70.36% and
54.01% for training and test data. After that, the accuracy
drops to nearly zero which means that this model is unreliable
to be used for video classification of HAR tasks.

Fig. 7. Model’s accuracy of training data by epochs

Fig. 8. Model’s accuracy of test data by epochs

C. Confirming the accuracy of the improved model by Cross-
Validation method

 According to Fig. 7 and 8 which shows that the 3D CNN
model reinvented from VGG16 with added BN, improved the
model by producing a higher accuracy rate for both training
and test data. However, training and testing a DL model on
different data samples could provide different levels of
accuracy even though doing it with the same dataset.
Therefore, a Cross-Validation method [18] is performed to
confirm model accuracy. For the Cross-Validation method,
UCF101 dataset is duplicated to five groups. Each group is
divided into two sections, training and test data in the ratio
80:20. Each group has a different sequence for training and
test data. Then each data group is trained and tested on the
improved model (the 3D CNN model with BN). The results of
Cross-Validation are shown in Table 1. It found that the
improved model can still achieve a high accuracy rate. The
training and test’s mean accuracy are 100% and 91.17%
respectively.

TABLE I. CROSS-VALIDATION OF THE IMPROVED MODEL

CROSS-VALIDATION
GROUP

ACCURACY (PERCENTAGE)

TRAINING DATA TEST DATA

1 100 90.9534

2 100 90.4279

3 100 91.2162

4 100 92.5675

5 100 90.6906

AVG 100 91.1711

D. Comparing the improved model to state-of-the-art
models

 When comparing the accuracy of the improved model
to state-of-the-art models which Joao Carreira and Andrew
Zisserman study in 2018 [7] on a UCF101 benchmark, it
found that the improved model can be ranked in a group of
state-of-the-art accuracy as presented by Table 2.

TABLE II. STATE-OF-THE-ART MODELS ON THE UCF101 BENCHMARK

MODEL ACCURACY
(PERCENTAGE)

Two-Stream I3D, Imagenet+Kinetics pre-training
[7]

98.0

ST-ResNet + IDT [2] 94.6

Temporal Segment Networks [14] 94.2

Two-Stream Fusion + IDT [1] 93.5

TDD + IDT [15] 91.5

3D CNN reinvented from VGG16 with BN
(the work presented in this paper)

91.2

C3D ensemble + IDT, Sport 1M pre-training [3] 90.1

Dynamic Image Networks + IDT [4] 89.1

Two-Stream [10] 88.0

IDT [5] 86.4

E. Overall work discussion
 There are two main points to present in this paper.
Firstly, this paper suggests using BN to improve model
accuracy when developing a DL model from scratch to make
a DL model achieved a high accuracy rate. Two models are
reinvented from VGG16. The difference between the models
is one has the addition of BN. The model with BN provides a
higher accuracy rate at the same epoch when comparing to the
model without BN. Even though training both models for 100
epochs consumes the same amount of time – estimated at 13
hours, the speed of reaching the saturation point of the model
with BN is also faster. In other words, it requires less epoch to
train than the model without BN. The model with BN requires
10 epochs to reach the saturation point which consumes
training time estimated at 1 hour and 20 minutes while the
model without BN requires 19 epochs which consumes an
estimated 2 hours and 30 minutes.

 Secondly, 3D CNN model reinvented from VGG16
with BN is considered as an improved model. It consists of
44,455,973 parameters which require 178 MB memory (not
include model structure) to store as a .hd5 data format. This
model achieves a high accuracy rate of 91.2% which is within
the state-of-the-art UCF101 benchmark results.

V. CONCLUSION
The results of training a CNN model with and without BN

found that a model with BN provides a lower Loss Function
value than another model for both training and test data. This
results in the higher model accuracy rate. The model with BN
achieves a model accuracy of approximately 100% and 90%
for training and test data respectively, while a model without
BN reaches its highest accuracy of 70.36% and 54.01% for
training and test data. Once the accuracy of a model using BN
reaches its highest point, it continues to remain at this level.
However, the accuracy of a model without BN drops after it
reaches its highest point. This study also observes that a model
with BN requires nearly two times fewer epochs to reach its
highest model accuracy, compared to a model without BN.
Therefore, adding BN is a suggestion to provide a high
accuracy rate of a CNN model especially when building from
scratch.

In addition to these, it also finds that the improved model
(3D CNN reinvented from VGG16 with BN) can achieve a
high model accuracy of 91.17% after confirmation by the
Cross-Validation method. This level of accuracy is in the
range of state-of-the-art UCF101 benchmark results.
However, the accuracy of training data is higher than test data,
this means that the model is still confronting an overfitting
problem [6]. There is room for model accuracy improvement
in the future, by adding L1 and L2 regularization [9], adding
dropout [17], or using more data to train the model.

REFERENCES
[1] C. Feichtenhofer, A. Pinz, A. Zisserman, "Convolutional two-stream

network fusion for video action recognition," in IEEE International
Conference on Computer Vision and Pattern Recognition CVPR, Las
Vegas, NV, USA, 2016, pp.1933-1941.

[2] C. Feichtenhofer, A. Pinz, R. P. Wildes, “Spatiotemporal residual
networks for video action recognition,” arXiv.org [Online], November
7 2016. Available: https://arxiv.org/abs/1611.02155

[3] D. Tran, et al., "Learning spatiotemporal features with 3d convolutional
networks," in IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 2015, pp.4489–4497.

[4] H. Bilen, et al., "Dynamic image networks for action recognition," in
IEEE International Conference on Computer Vision and Pattern
Recognition CVPR, Las Vegas, NV, USA, 2016, pp.3034-3042.

[5] H. Wang, C. Schmid, “Action recognition with improved trajectories,”
in IEEE International Conference on Computer Vision, Sydney, NSW,
Australia, 2013, pp.3551-3558.

[6] I. Bilbao, J. Bilbao, “Overfitting problem and the over-training in the
era of data: Particularly for Artificial Neural Networks,” in Eighth
International Conference on Intelligent Computing and Information
Systems (ICICIS), Cairo, Egypt, 2007, pp.173-177.

[7] J. Carreira, A. Zisserman, “Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset,” arXiv.org [Online], February 12
2018. Available: https://arxiv.org/abs/1705.07750

[8] J. Johnson, “Lecture 2 Image Classification,” Stanford University
School of Engineering [Online], August 11 2017. Available:
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture2.pdf

[9] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for Deep
Learning: A Taxonomy,” arXiv.org [Online], October 29 2017.
Available: https://arxiv.org/abs/1710.10686

[10] K. Simonyan, A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” arXiv.org [Online], November 12 2014.
Available: https://arxiv.org/abs/1406.2199

[11] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv.org [Online], April 10 2015.
Available: https://arxiv.org/abs/1409.1556

[12] K. Soomro, A.R. Zamir, M. Shah, “UCF101: A Dataset of 101 Human
Actions Classes From Videos in The Wild,” University of Central
Florida [Online], November 2012. Available:

https://www.crcv.ucf.edu/wp-
content/uploads/2019/03/UCF101_CRCV-TR-12-01.pdf

[13] L. Chen, et al., “Why batch normalization works? a buckling
perspective,” in IEEE International Conference on Information and
Automation (ICIA), Macau, China, 2017, pp.1184-1189.

[14] L. Wang, et al., "Temporal segment networks: towards good practices
for deep action recognition," in European Conference on Computer
Vision, Amsterdam, Netherlands, 2016, pp.20-30.

[15] L. Wang, Y. Qiao, X. Tang, "Action recognition with trajectory-pooled
deep-convolutional descriptors," in IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, USA, 2015, pp.4305–
4314.

[16] M. Marszalek, I. Laptev, C. Schmid, “Actions in context,” in IEEE
Conference on Computer Vision and Pattern Recognition, Miami, FL,
USA, 2009, pp. 2929-2936.

[17] N. Srivastava, et al., “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” Journal of Machine Learning Research
15, pp.1929-1958, 2014

[18] P. Refaeilzadeh, L. Tang, H. Liu, “Cross-Validation,” Arizona State
University [Online]. Available: http://leitang.net/papers/ency-cross-
validation.pdf

[19] S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv.org
[Online], May 2 2015. Available: https://arxiv.org/abs/1502.03167

