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Abstract 

The aim of this study was to enhance the kinetic solubility and dissolution rate of ibuprofen by 

co-milling with different excipients and to establish the underlying mechanism(s) for such 

enhancement. In the first-part, two excipients (HPMC and soluplus) were selected from seven, 

and the optimal ball-milling parameters of speed and time (18 Hz, 15 min) determined based on 

solubility-enhancement and flow-ability criteria. In the second-part, co-milling of different 

weight-ratios of ibuprofen-to-excipient was carried out and solubility and dissolution rates 

determined. Mechanisms of biopharmaceutical enhancement were studied by SEM, laser 

diffraction, DSC, and FTIR analysis of the co-mixtures. Ibuprofen solubility (0.09 mg/mL for un-

milled) was increased by factors of 4-5 and 10-20 for HPMC and soluplus, respectively. The 

weakening of crystals, stabilization of the amorphous phase and an increase in solid-state 

hydrogen bonding are the likely mechanisms for this enhancement. Reductions in Q70% 

dissolution time were also observed, by a factor of four and seven for ibuprofen:HMPC and 

ibuprofen:soluplus co-milled mixtures, respectively. In both, cases there were similar reductions 

in particle size, dispersibility and degree of amorphization and so the enhanced dissolution rate 

for soluplus, over that for HPMC, must be due to the additional solubilisation contribution to the 

kinetic solubility provided by soluplus. 

Key words: Poor soluble drugs, ball milling, solubility enhancement, dissolution rate, particle size, 

amorphous content. 
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1 Introduction 

Milling and co-milling (which is defined as milling in the presence of an excipient) are well known 

techniques that have a positive influence on the kinetic solubility and dissolution rate of sparingly 

soluble drugs (Jagadish et al., 2010; Szafraniec et al., 2017). These procedures have been shown 

to provide a simple, efficient and economical method that does not require any particularly 

sophisticated equipment (Fisher, 2007). Moreover, the method has less of an environmental 

impact as it does not require the use an organic solvent (Friedrich et al., 2005). Co-milling 

combines the advantages of a reduction in particle size and the amorphization of a crystalline 

drug substance, which is a benefit of conventional milling of single materials, but with the 

additional benefits of improved wettability and solubilization that are provided by the co-milled 

excipient (Mosharraf et al., 1995). Furthermore, it may also prevent aggregation, by the surface 

coverage of the charged particles (produced by milling), while stabilizing the amorphous phase 

in the solid state and reducing the mechanical/thermal degradation of drugs by moderating the 

effect of the heat generated on milling (Lin et al., 2010). 

Solubility is a physicochemical property of substance, which depends on the thermodynamic 

properties of the crystal lattice (i.e. the bonding energies which define the melting point) and the 

balance between solute-solute and solute-solvent (solvation) interactions in the solution state. 

The solute-solvent interactions may be changed by adding other chemicals to the solvent, for 

example surfactants which providing a micellar environment for the solubilisation of the drug. It 

is also important to remember that the solubility of a milled crystalline material, containing 

metastable (partially amorphous) phase, represents the kinetic solubility rather than 

thermodynamic/equilibrium solubility (Brittain, 2014).  

The rate of dissolution, which defines the rate of mass transfer from the crystalline state to the 

dissolved (solution state) is coupled to the solubility but is also impacted by attributes of the 

material such as the particle size distribution (surface to volume ratio), surface tension (which 

influences the wettability of the surface) and the physical form (i.e. whether in a crystalline or 

amorphous state). In the case of an amorphous solid (which is often present in a milled material) 

the supersaturated solution (i.e. one which exceeds the thermodynamic equilibrium solubility) 

can be obtained for a short time until the system relaxes and returns to the thermodynamic 

equilibrium (when the excess drug precipitates from solution). The presence of an excipient in 

the solution or from co-milling with excipient can affect both the solubility of drug (due to the 



alteration of the liquid medium and presence of more complex interactions between solvent, 

excipient and drug molecules) and the dissolution rate (including the relaxation time of 

oversaturated solution). An extension of the oversaturated state of the solution for few hours is 

desirable in order to increase the bioavailability of drug. Co-milling process may have an impact 

on all three aspects: a reduction in drug particles size, a partial conversion to amorphous state 

and the alterations to the molecular interactions between drug and solvent.  

The focus of this study is the model drug Ibuprofen. Ibuprofen is one of many propionic acid 

derivatives that provide analgesia through the inhibition of the enzyme cyclooxygenase (COX). It 

is widely used in the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis and 

acute gouty arthritis (Brunton et al., 2006). Ibuprofen is practically insoluble in an aqueous or 

acidic medium (Saleh et al., 2008) resulting in poor bioavailability when administered as a 

conventional dosage form. The poor solubility of ibuprofen has been addressed using a variety 

of approaches. One of them is to reduce the particle size by milling (Plakkot et al., 2011), 

however; the milling of ibuprofen alone is difficult as it is a highly ductile material with a low 

melting point (Larsson et al., 2000). Nevertheless, the size reduction of ibuprofen has been 

achieved by co-milling with variety of excipients, i.e. aluminium hydroxide, kaolin and PVP 

(Mallick, Pattnaik, Swain, De, Saha, Ghoshal, et al., 2008; Mallick, Pattnaik, Swain, De, Saha, 

Mazumdar, et al., 2008). Other approaches to improve the solubility of ibuprofen include the 

preparation of solid dispersions with PEG (Hasnain et al., 2012) or poloxamer (Newa et al., 2008; 

Passerini et al., 2002) and the complexation ǿƛǘƘ ʲ-cyclodextrin (Chowdary et al., 2012; Salústio 

et al., 2011). In the majority of these studies, size reduction or the dispersion of the drug in an 

amorphous matrix were the underlying mechanisms for solubility and dissolution rate 

enhancement. Among the excipients used in the co-milling of ibuprofen in aforementioned 

mentioned studies, none would be expected to solubilise the drug. 

In the recent works using soluplus for solubility enhancement, by the way of hot melt extrusion 

(Albadarin et al., 2017), electro-spinning (Nagy et al., 2012), micellization (Ke et al., 2017),  spray 

drying (Herbrink et al., 2017) and freeze drying (Nagy et al., 2012), it was suggested that this 

excipient may be used to advantage when co-milled with drugs, as previously used to form 

amorphous solid dispersion (Caron et al., 2013). In addition, there are many other prospective 

candidate excipients, which have not been investigated to date for their potential to enhance the 

solubility and dissolution rate of ibuprofen. Examples of such excipients include HPMC, MCC, PVP 



and lactose, which are the widely used materials owing to their hydrophilicity and wetting 

properties for many other drugs (Garg et al., 2009; Vogt, Kunath, et al., 2008; Vogt, Vertzoni, et 

al., 2008). 

The objectives of this study are the enhancement of solubility and dissolution rate of ibuprofen 

and to understand the mechanisms involved. The development of method for assaying ibuprofen 

in the presence of interfering substance was also an objective of this study. 

There are two phases to this work; In the first (screening) phase, in which a sub-set of excipient 

type and processing conditions (including the speed and time of milling) were selected on the 

basis of best outcomes in terms of processing properties (like flowability) and solubility of the 

drug. In the second (extended) phase, the optimal process parameters of speed and time were 

applied to prepare co-milled binary mixtures of ibuprofen with the sub-set of excipient and the 

effect on solubility and dissolution rate of ibuprofen determined. These co-milled mixtures were 

then characterized by various analytical techniques in order to establish the mechanism of 

solubility and dissolution rate enhancement.  

2 Materials and methods 

Ibuprofen was purchased from Fischer chemical, UK. Soluplus (a graft co-polymer of PEG) and 

lutrol F-68 (a block co-polymer non-ionic surfactant consisting of Poly-oxyethylene-(POE-) and 

Polyoxypropylene-(POP-) units) were obtained from BASF, UK. Polyvinyl pyrrolidone (PVP K30) 

(Jiaozou Fine Chemical, China), hydroxy-propylmethyl cellulose (HPMC-E5) (Ashland, US), micro-

crystalline cellulose (MCC), PEG-6000, lactose monohydrate were obtained from Merck, 

Germany. All excipients were of pharmaceutical grade and were used as received from the 

suppliers. 

2.1 Assay of ibuprofen in co-milled mixtures 

A 0.05% w/v solution of the un-milled ibuprofen in phosphate buffer of pH 7.4 was prepared and 

its UV spectrum was measured between 200-400 nm in UV spectrophotometer (2550, 

Schimadzou, Japan). From this spectrum, the wavelength of maximum absorbance (lmax) was 

selected based on the highest clear peak (see Section 3.1). 

In order to determine any interference in UV absorbance of ibuprofen by co-milled excipients, 

the UV spectrum of each excipient (0.05% w/v) was also measured and overlaid on the spectrum 



of ibuprofen (see Fig. 1). The interference as detected by soluplus was corrected by applying two 

wavelength assay approach or multivariate least square approach (see Section 3.3). 

2.2 Screening phase 

2.2.1 Co-milling of ibuprofen with excipients 

At the initial stage of this study, an optimum milling speed and time was determined and a sub-

set of these excipients selected based on the binary mixtures that provided highest solubility 

while maintaining optimal flowability (Section 3.5).  

For this purpose soluplus was used as trial excipient (as it was the only excipient that has shown 

the prominent effect on solubility of drug on changing the concentration while maintaining the 

flowability) and it was co-milled with ibuprofen in an oscillatory ball mill (MM 301, Retsch, 

Germany), according to following protocol.  

i) For the selection of milling speed, Ibuprofen and soluplus (1:0.5 ratio) were co-milled 

at three different speeds, viz. 15, 18 and 25 Hz, for 15 min. The milling time of 15 min 

was selected on hit and trail basis to avoid melting of this drug.  

ii) For the selection of milling time, the mill speed was fixed (i.e. 18Hz, see results in 

Section 3.5) and ibuprofen was co-milled with soluplus (1:0.5 ratio) for 5, 10, 15 and 

30 min.  

iii) For the selection of best excipient for co-milling, Ibuprofen was co-milled with 

different excipients (soluplus, HPMC, lutrol, PVP, MCC, lactose and PEG-6000) with 

1:1 ratio at the selected speed and time (18 Hz and 15 min, see results Section 3.1). 

The solubility of co-milled mixtures was determined as per method described in Section 2.2.2. 

2.2.2 Solubility studies 

The well-known shake the flask method (Nandi et al., 2003) was used to determine the solubility 

of ibuprofen in distilled water (pH 6.1). For this purpose, an excess quantity of ibuprofen or its 

mixtures equivalent to 200 mg ibuprofen was added to a 100 mL conical flask containing 50 mL 

of the distilled water. The flasks were capped and shaken at 100 rpm on a multi-flask shaker 

(Heidolph Unimax 2010, Germany) at ~25 °C temperature. The samples were collected after 24 

hr, filtered through 0.45 µm syringe filters (Millipore, US) and diluted appropriately and the 

concentration of ibuprofen was determined by UV spectrophotometry. 



Standard solutions of known concentrations of ibuprofen in distilled water were also prepared 

and used to construct calibration models. The calibration standard solutions, designed in 

adherence to Beer-Lambert law (i.e. A < 1) were linear in the range of 0.005 to 0.08 mg/mL in 

distilled water, with value of correlation coefficient near unity and value of intercept on the 

ordinate, near to zero. 

2.3 Extended phase 

In this phase, the selected excipients (i.e. soluplus and HPMC) and process parameters (milling 

speed 18 Hz and time 15 min) were used to produce co-milled mixtures with ibuprofen. The 

solubility and dissolution rates of these mixtures were determined and these were evaluated 

with different analytical techniques to establish the possible mechanism for solubility 

and/dissolution rate improvement (if any). 

2.3.1 Co-milling of ibuprofen with selected excipients 

Ibuprofen was co-milled with soluplus and HPMC in different drug to excipient ratios (i.e. 1:0.25, 

1:0.5, 1:0.75 and 1:1) in order to determine the effect of excipient concentration on the solubility 

and dissolution rate of drug.  

The physical mixtures of ibuprofen with these excipients and the physical mixtures of the pre-

milled materials (abbreviated as PM and PMPM, respectively) were also prepared for the purpose 

of a comparison with co-milled mixtures. The PM was prepared by simple mixing of both 

components with spatula in a weighing boat (Barzegar-Jalali et al., 2010) and the PMPMs were 

prepared by milling the ibuprofen and excipients separately in a ball mill then mixing these in 1:1 

ratio. 

2.3.2 Solubility studies  

Method already described under Section 2.2.2. 

2.3.3 Dissolution rate Studies 

Ibuprofen and its co-milled mixture with different excipients, equivalent to 200 mg ibuprofen, 

were filled in colourless hard gelatine capsule shells and subjected to dissolution studies in a USP 

type I (paddle) apparatus (DT-700, Erweka Germany). 900 mL of phosphate buffer (pH 7.4) was 

selected as the dissolution medium and the temperature maintained at 37 ° 0.4 °C. The paddle 



speed was set up at 50 rpm. Aliquots of 5 mL were withdrawn at intervals of 5, 10, 20, 30, 45, 60 

and 90 min and replaced with the equal volume of the fresh dissolution medium in order to 

maintain a constant volume. Each sample was filtered through a 0.45 µm syringe filter and then 

diluted adequately (i.e. Amax < 1) for assay by UV spectrophotometry. 

2.3.4 Particle size determination 

The particle size distribution (PSD) of un-milled ibuprofen and its co-milled mixtures with HPMC 

or soluplus (1:1) was determined with dry dispersion laser diffraction technique according to the 

method described in literature. (Krause et al., 2011). The powder was dispersed in compressed 

air at a pressure of 3 ± 0.05 bar using a dispersion unit, RODOS (Sympatec, Germany), dispensed 

at the feed rate of 60 mm sec-1 using a micro-dosing unit, ASPIRO (Sympatec, Germany) and 

measured under the pressure of ~0.5 bar with a laser diffractometer (HELOS H1360, Sympatec, 

GmbH, Germany) fitted with R5 lens (Sympatec) that can measure the particle size between 4.5 

to 875 µm. Measurements were taken in triplicate and results presented as average values. 

2.3.5 Scanning electron microscopy (SEM) 

SEM images of un-milled, milled and co-milled Ibuprofen samples were obtained on a ZEISS EVO 

HD 15 scanning electron microscope (Carl Zeiss, NTS Ltd. Cambridge, UK) according to the 

method described (Qiao et al., 2013). The samples were mounted on the carbon adhesive tape 

fixed on aluminium stubs (Agar Scientific Ltd., Stansted, UK) and flushed with air. The SEM images 

were taken at the electron beam voltage of 10 KV. 

2.3.6 Differential scanning calorimetry (DSC) 

DSC experiments of un-milled ibuprofen and its co-milled mixtures with different excipients were 

performed according to the method described in our previous study (Smith et al., 2015). The 

sample was analysed over the temperature range from 25 to 150 °C at a ramp rate of 20 °C/min. 

In order to compare the results of milled ibuprofen with that of a 100% amorphous sample, a 

sample of crystalline ibuprofen contained in non-hermetically sealed DSC pan was vitrified by 

heating in an oven at 90 °C for 10 min then quenched by dipping it in the liquid nitrogen. This pan 

was loaded in a pre-cooled DSC furnace and heated from -60 °C to 110 °C. 



2.3.7 Attenuated total reflectance (ATR) spectroscopy  

The IR spectra of un-milled, milled and co-milled ibuprofen were recorded in Bruker Alpha ςFTIR 

Spectrophotometer (Bruker, Japan) fitted with a Smart Performer, platinum ATR accessory. The 

data were analyzed by Alpha Opus Software. The instrument was configured with an ATR sample 

cell containing a diamond crystal with scanning depth of 2 µm. Sample powder was placed on 

the surface of crystal and secured in place with clutch type lever. Each sample was scanned for 

20 times against air between 4000 - 400 cm-1 at the resolution of 2 cm-1. 

  



3 Results and discussion  

3.1 UV spectra of ibuprofen and excipients 

A 0.05% w/v solution of the un-milled and milled ibuprofen in pH 7.4 phosphate buffer showed 

a well-defined, large peak at 221 nm (visible in the diluted samples - not shown here) and two 

other peaks; one at 264 nm and a second at 273 nm along with a shoulder at 258 nm (Appendix 

1). The overlaid spectra of 0.05% w/v ibuprofen and excipients in phosphate buffer have shown 

that, lutrol, MCC, PEG-6000, Lactose and HPMC solutions have negligible absorbance over the 

entire UV range. In contrast, PVP and soluplus solutions exhibit a high absorbance, with the 

former only at wavelengths below 230 nm while the later over the entire range of wavelengths 

(210 ς 330 nm). 

 

3.2 Selection of UV absorbance peak for the ibuprofen assay 

The absorbance peak of ibuprofen at 221 nm has been reported previously in many studies 

(Nokhodchi et al., 2010). However, the solutions of soluplus and PVP exhibit absorbance values 

greater than 0.7 (A > 0.7) below 230 nm.  This precluded the use of the absorbance peak of 

ibuprofen at 221 nm in the development of the UV-assay of ibuprofen in the presence of these 

two excipients. For consistency the peak at 221 nm was also not used for the other excipients. In 

order to select the analytical wavelength, the absorbance of ibuprofen was determined at three 

potential analytical wavelengths 258, 264 and 272.4 nm (Table 1). The results indicated that 

lutrol, HPMC and PVP have only 1-2% relative absorbance at these three wavelengths for 

ibuprofen. Therefore, the wavelength of maximum absorbance (lmax) i.e. 264 nm, was selected 

for the assay of ibuprofen in the presence of these excipients.  

On the other hand, the UV spectrum of soluplus solution has shown a significant absorbance over 

the entire wavelength range, which increases towards lower wavelengths (Appendix 1). This 

spectrum, when overlaid on the spectrum of same concentration of ibuprofen shows higher 

absorbance than ibuprofen solution towards higher wavelength (> 285 nm). The absorbance of 

ibuprofen starts increasing and becomes higher than the soluplus solution absorbance towards 

lower wavelengths. Therefore, two wavelengths are selected for the estimation of ibuprofen in 

the presence of soluplus: first, 264 nm which is the lmax of ibuprofen and has the lowest relative 



absorbance of soluplus among its three potential wavelengths (Table 1); second, 287 nm at which 

soluplus shows higher absorbance. 

Table 1: a) Relative absorbance of the excipients as compared to the absorbance of ibuprofen 
at three potential wavelengths of ibuprofen  

 Relative Absorbance (%) 
 258 nm 264 nm 272.4 nm 

HPMC 1.4 1.1 1.2 

lutrol 0.4 0.3 0.4 

MCC 1.1 0.9 0.7 

Lactose 0.2 0.4 0.4 

PVP 2.1 1.5 1.5 

PEG-6000 0.4 0.3 0.4 

Soluplus 55.2 40.5 45.2 

3.3 Correction of the interference (UV absorbance) of soluplus in the quantitative 

determination of ibuprofen in the mixture 

3.3.1 Two wavelength assay 

The two wavelength assay approach, which is described in literature as absorbance ratio method 

(Erk, 2000) or simultaneous equation method (Nallasivan et al., 2010; Patil et al., 2009) was 

applied with minor modifications and generally involves the measurement of the absorbance of 

both the drug and interfering excipient (i.e. ibuprofen and soluplus) at two different wavelengths; 

l1 and l2. The calibration curves are constructed by plotting these absorbance values against 

concentrations of both single component solutions of ibuprofen drug x(d) and soluplus excipient 

x(e) respectively. From this calibration curve, the absorption of both drug and excipient at two 

wavelengths can be described by the following relations: 

At l1 

ἋἬȟ ἵ Ἤȟ Ͻὀ Ἤ  (1) 

ἋἭȟ ἵ Ἥȟ Ͻὀ Ἥ  (2) 

At l2 



═▀ȟⱦ □ ▀ȟⱦ Ͻ● ▀  (3) 

═▄ȟⱦ □ ▄ȟⱦ Ͻ● ▄  (4) 

²ƘŜǊŜ ƳόŘΣ ˂мύΣ ƳόŘΣ ˂нύ ŀǊŜ ǘƘŜ ƎǊŀŘƛŜƴǘ ƻŦ ŎǳǊǾŜ ŘǊŀǿƴ ŦƻǊ ǘƘŜ ŘǊǳƎ ŀǘ l1 and l2; while, m(e, 

˂мύΣ ƳόŜΣ ˂нύ ŀǊŜ ǘƘŜ ǎƭƻǇŜ ƻŦ ŜȄŎƛǇƛŜƴǘ ŀǘ l1 and l2 respectively. The total absorbance (T-total) 

of the mixture of drug and excipient at both wavelengths is measured as !ό¢Σ˂мύ ŀƴŘ !ό¢Σ˂нύ 

respectively. The individual contributions to the total absorbance at l1 and l2 are presented as: 

Ἃἢȟ ἋἬȟ ἋἭȟl   (5) 

Ἃἢȟ ἋἬȟ ἋἭȟl   (6) 

Now by substitution of the expressions for the individual absorbance of both components from 

equations 1 to 4 in equation 5 and 6, gives the following expression for total absorption as: 

Ἃἢȟ ἵ Ἤȟ ȢὀἬ ἵ Ἥȟl ȢὀἭ   (7) 

Ἃἢȟ ἵ Ἥȟ ȢὀἭ ἵ Ἥȟl ȢὀἭ     (8) 

The unknown concentration of drug x(d) in the mixture is determined by applying the following 

equation obtained from re-arranging and substituting the equations 7-8: 

ὀἬ
Ἃἢȟ Ȣ  ἵ Ἥȟl  Ἃἢȟl Ȣἵ Ἥȟl

ἵ Ἤȟ Ȣἵ Ἥȟl ἵ Ἥȟl Ȣἵ Ἤȟl
   (9) 

3.3.2 Multivariate Least Square Approach  

¢ƘŜ Ŝǉǳŀǘƛƻƴ ф ǿƻǊƪǎ ŀǇǇǊƻǇǊƛŀǘŜƭȅ ŦƻǊ ƴƻƴπƛƴǘŜǊŀŎǘƛƴƎ ƳŀǘŜǊƛŀƭǎΦ IƻǿŜǾŜǊΣ ǿƘƛƭŜ ŀǎǎŀȅƛƴƎ ǘƘŜ 

ƛōǳǇǊƻŦŜƴ ƛƴ ǘƘŜ ǇǊŜǎŜƴŎŜ ƻŦ ǎƻƭǳǇƭǳǎΣ ƛǘ ǿŀǎ ŦƻǳƴŘ ǘƘŀǘ ǘƘŜ ¦± spectrum of 1 to 1 mixture of 

ibuprofen and soluplus (1:0.5) solutions was higher than the theoretical spectrum, i.e. 

mathematical sum of individual spectra of both materials (Appendix 2). This might be due to light 

scattering effect of soluplus that has formed micelles in the solution. Therefore, the interference 

by the soluplus could not be corrected simply by two wavelength method. 

Another approach, i.e. multivariate analysis, was applied to examine the spectrum of such 

mixture. The least-squares solution to calculate the contribution (concentration) of each 

component from the mixture spectrum, using reference spectra may be given by the Equation 

10. 



╬ ╢╢ {Ωȅ Equation 10 

where c is the concentration factor, which represents the exact contribution of the individual 

components in the mixture of ibuprofen and soluplus and y is the measured spectrum of the 

mixture of both components. An advantage of the multivariate approach is that the component 

concentrations are estimated using many spectral variables and thus helps to average out the 

measurement noise present in each variable. 

The least squares approach can be applied using the original spectra; or first derivative spectra 

(calculated using the Savitzky-Golay method, using a 15-point window and a second-order 

polynomial). The spectra of both ibuprofen and soluplus with concentration of 0.25 mg/mL and 

0.125 mg/mL, respectively (1:0.5 ratio) were used to create a two column matrix S. In case of first 

derivative spectra, the matrix S is constructed from first derivative reference spectra (Appendix 

3a) that minimizes the spectral contribution of soluplus, and the mixture spectrum (denoted y) 

is also transformed to the first derivative prior to applying equation 10. 

The new spectrum (derivative) predicted from the matrix based on this concentration factor 

overlaid the measured spectrum (Appendix 3b). The residual spectrum in this plot illustrates that 

the soluplus spectrum is smooth and featureless, so most of the values in the soluplus first 

derivative spectrum are zero. This serves to enhance the selectivity of the ibuprofen spectrum 

and thus provides more robust estimates of the concentration of ibuprofen. Therefore, the 

estimated concentrations, c can then be used to reconstruct a mixture spectrum.and was used 

to calculate the concentration of ibuprofen in the mixture with soluplus. The values of c obtained 

for mixture of ibuprofen and soluplus in four different ratios have been summarized in Table 2. 

Table 2: Values of concentration factor and predicted concentrations calculated for ibuprofen 
in various mixtures with soluplus applying multivariate analysis. 

Ibuprofen to soluplus 
ratio 

(Ibu conc. 0.25 mg/mL) 

Concentration factors 
of ibuprofen (from 

predicted derivative 
spectrum) 

Predicted concentration of 
Ibuprofen in mixture (c * 0.25 

mg/mL) 

1:0.25 0.99 0.2475 
1:0.5 0.98 0.2450 
1:0.75 0.97 0.2425 

1:1 0.97 0.2425 

The solubilities of ibuprofen in all other excipient-drug combinations were determined by simply 

taking the absorbance at the analytical wavelength of 264 nm and equating that to ibuprofen via 

the calibration curve for pure ibuprofen in distilled water. 



3.4 Solubility of un-milled and milled ibuprofen 

The solubility of un-milled ibuprofen (n=3) in distilled water at room temperature (~25 °C) was 

~0.09 mg/mL. Unsurprisingly, milled Ibuprofen was found to have almost the same solubility. 

These values were comparable or slightly higher than the reported solubility values of Ibuprofen 

from the literature (viz. 0.056 ° 0.004, (Kocbek et al., 2006) 0.09 mg/mL (Milhem et al., 2000) and 

0.081 mg/mL (Saleh et al., 2008).  

3.5 Results of screening phase 

The solubility of ibuprofen increases with the milling speed (Table 3); however at the higher 

speed (> 18 Hz), the co-milled mixture becomes sticky mass and difficult to remove from the jar 

of the mill. Therefore, the speed of 18 Hz was used for all subsequent milling experiments. 

Table 3: Effect of various milling speeds on the solubility and physical state of co-milled 
mixtures of ibuprofen and soluplus (the milling time was 15 min and the drug-to-soluplus ratio 
was constant). 

Milling  
speed (Hz) 

Solubility (mg/mL) 
of ibuprofen 

Physical state 
of Co-milled 

mixture 

15 1.21 Powder 
18 1.26 Powder 
25 1.89 Sticky mass  

The results indicate that the solubility increases with increasing the milling time from 5 min to 30 

min (Table 4). However, on milling for the longer time periods (> 15 min) the mixtures became 

sticky mass (presumably as a result of an increased temperature in the milling jar). This mixture 

has poor flowability and is difficult to extract from the mill, therefore the 15 min milling time was 

selected for the next part of this study. 

Table 4: Effect of various milling times on the solubility and physical state of co-milled mixtures 
of ibuprofen and soluplus (the milling speed was 18 Hz and drug-to-soluplus ratio was 
constant). 

Milling  
Time 
(min) 

Solubility (mg/mL) 
of ibuprofen 

Physical state 
of Co-milled 

mixture 

5 0.31 Powder 
10 0.54 Powder 
15 1.26 Powder 
30 1.30 sticky mass 

Fig. 1 shows the comparison of solubilities of ibuprofen and its co-milled mixtures with different 

excipients. The results indicate that the solubility of ibuprofen in co-milled mixtures is higher than 



the un-milled drug alone, with the co-milled mixtures ibuprofen and HPMC, lutrol or soluplus (in 

a 1:0.5 ratio) resulting in solubilities of 0.53 mg/mL, 0.66 mg/mL and 1.26 mg/mL, respectively, 

in comparison with of pure drug alone (0.09 mg/mL) (Saleh et al., 2008). In contrast, co-milling 

with lactose, PEG, PVP and MCC only had a moderate impact on the solubility of ibuprofen; with 

values of 0.13 mg/mL, 0.19 mg/mL, 0.12 mg/mL, and 0.21 mg/mL, respectively. The co-milled 

mixtures with lutrol and PEG-6000 were sticky mass and were not workable. 

 

Fig. 1: Solubility values of ibuprofen (in distilled water) and its co-milled mixtures with 1:1 ratio 
of different excipient. The error bars represents the standard deviation from repeats of the 
milling processes (n=3). *CM stands for co-milled mixture. 

Based on the highest solubility of ibuprofen and their workable mixtures; soluplus and HMPC 

were selected for next phase of study. 

3.6 Results of extended phase 

3.6.1 Effect of concentration of excipients on the solubility of ibuprofen 

The co-milled mixtures of ibuprofen and HPMC in ratios of 1:0.25, 1:0.5, 1:0.75 and 1:1, have the 

solubilities of 0.41, 0.53, 0.57 and 0.56 mg/mL, respectively (Fig. 2), while the physical mixture, 

even with highest ratio, i.e. 1:1 only has a solubility of 0.25 mg/mL. The co-milled mixtures with 

different ratios of ibuprofen to SoluplusÑ have solubilities of 0.71, 1.26, 1.42 and 1.96 mg/mL 

respectively and the physical mixture (1:1) 0.93 mg/mL (Fig. 5).  
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Fig. 2: Solubility values (in distilled water) of ibuprofen and its co-milled mixture with four 
different ratios with HPMC and Soluplus (as mentioned on x-axis). The error bars represents 
the standard deviation of three values (n = 3).  

Therefore, the solubility of ibuprofen in co-milled mixtures with HPMC is 4 to 5 times higher than 

the solubility of the un-milled or milled drug whereas the solubility of ibuprofen in co-milled 

mixtures with soluplus is 10 to 20 times higher than the solubility of the un-milled or milled drug. 

These trends of solubility enhancement of ibuprofen with increasing the ratios of polymers to 

drug are comparable to results achieved by (Madhuri Newa et al., 2008) in solid dispersion with 

PEG-8000. However the enhanced solubility values are ~5 times less than those obtained in 

dendrimer solutions (Milhem et al., 2000).  

3.6.2 Dissolution of ibuprofen and its co-milled mixtures 

The in-vitro release profile of un-milled, milled and co-milled (with Soluplus and HPMC) ibuprofen 

in phosphate buffer (pH 7.4) is shown in Fig. 6. The percentage of un-milled ibuprofen dissolved 

in first 15 min is ~40% and ~75% at 90 min, whereas the milled (15 min) ibuprofen exhibited a 

slightly faster release with ~45% drug dissolve in first 15 min and ~80% in 90 min (Fig. 3a). This is 

contrary to the results already given in literature for milled ibuprofen, where a slight decrease in 

dissolution rate was reported (Han et al., 2011). This was probably due to the lack of 

agglomeration of milled particle (as discussed in SEM results) that was observed previously.  

The co-milled mixtures with Soluplus exhibited the greatest release of drug i.e. 60 to 85% in first 

15 min and >95% after 90 min (Fig. 3a) which increased with the proportion of Soluplus in the 

mixture. The physical and milled physical mixtures of soluplus also have higher dissolution rate 

than the ibuprofen alone (with both the un-milled and milled drug).  
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The co-milled mixtures with HPMC, in contrast, show a relatively slow release of drug that 

gradually increases as the amount of HPMC increases in the co-milled mixtures (Fig. 3b). The 

percentage release from 1:1 physical mixture was almost similar to that for the un-milled 

ibuprofen i.e. ~40% in 15 min time. The cumulative release increases by ~5% in milled physical 

mixture and by a further 10% in each co-milled mixture with an increase the HPMC ratio from 

0.5:1 to 1:1 (HPMC to ibuprofen). 

  

Fig. 3: Dissolution profiles (in phosphate buffer pH 7.4) of un-milled, 15min milled ibuprofen 
and its physical and co-milled mixtures with a) soluplus, b) HPMC. The error bars represent 
standard deviation with n = 3. 

These results indicate that the time for 70% drug release (Q70%) which was ~72 min in un-milled 

ibuprofen, has reduced to 52 min in milled ibuprofen; ~20 min in co-milled mixtures with HPMC 

and ~10 min in co-milled mixtures with Soluplus. The dissolution rate of ibuprofen, particularly 

from the co-milled mixture with Soluplus, was faster than that already reported for co-milled 

mixture with kaolin (Mallick, Pattnaik, Swain, De, Saha, Ghoshal, et al., 2008) and aluminium 

hydroxide (Mallick, Pattnaik, Swain, De, Saha, Mazumdar, et al., 2008) while comparable to those 

co-milled with PVP (Han et al., 2011). In order to determine the mechanism of such 

enhancement, the co-milled mixtures were then characterized by a number of techniques.  

3.6.3 Analytics to study the changes brought by milling 

3.6.3.1 Changes in particle size distribution on co-milling  (Laser Diffraction Results)  

The size distribution of un-milled ibuprofen and its co-milled mixtures with HPMC and Soluplus 

has been presented as cumulative plots (Fig. 4). This plot indicates that in un-milled ibuprofen 

~50% particles have size less than 125 µm, while the rest of 50% have size between 125 and 400 

µm. On the other hand, in samples co-milled with HPMC ~80% particles have size less than 35 
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µm and the co-milled mixtures with soluplus contain ~90% particles of size 20 µm or less. These 

reductions in the particle size would be accompanied by a dramatic increase in the surface area 

of the ibuprofen in the co-milled mixtures for both excipients and hence the observed increase 

in the dissolution rate of ibuprofen in the co-milled mixture. 

 

Fig. 4: Particle size plots (cumulative distribution) for un-milled Ibuprofen and its co-milled 
mixture with HPMC and Soluplus. 

3.6.3.2 Changes in size, shape and dispersibility of ibuprofen on co-milling  - SEM 

Results 

The SEM images of ibuprofen have shown that the un-milled ibuprofen (Fig. 5a) occurs as acicular 

shape crystals (80 to 160 µm in size) that are longer than width and have smooth surfaces.(Han 

et al., 2011). On milling ibuprofen alone, the particles are fragmented and show multiple cracks 

on the surface of particles (Fig. 5b), which might have provided the enlarged surface for wicking 

of the solvent during dissolution experiment, thereby providing additional mechanisms for the 

observed dissolution rate enhancement (Q70% , 20 min reduced, see Section 3.6.2). 

The co-milled mixtures of ibuprofen with soluplus and HPMC (Fig. 5c and 5d) show that the drug 

particles lose their more regular acicular shape while being partially embedded within what 

appears to be the excipient. This phenomenon might prevent the aggregation of particles, 

thereby enhancing dispersibility, leading to an increase in surface area exposed to the dissolution 

medium (Barzegar-Jalali et al., 2010) while providing additional mechanisms for wetting the drug 

particle surface. This might be one of the reasons for enhanced dissolution rate of drug in these 

co-milled mixtures. 
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Fig. 5: SEM images of un-milled (a), 15min milled (b) ibuprofen and its co-milled mixtures with 
Soluplus (c) and HPMC (d) at X 500 magnification.  

3.6.3.3 Changes in crystallinity of ibuprofen on milling and co-Milling  - DSC Results 

The DSC curve of un-milled Ibuprofen (Fig. 6a) shows a single endothermic peak at ~ 80 °C 

corresponding to the melting of ibuprofen (Madhuri Newa et al., 2008). In the milled ibuprofen, 

the melting temperature is almost the same but the enthalpy of melting slightly decreases from 

~116 Jg-1 to ~107 Jg-1 after 15 min of milling. The Tg step, the first signature of amorphous phase, 

is not observed in milled ibuprofen, however the de-vitrification peak is present at almost the 

same temperature as observed in case of fully amorphous (quenched) ibuprofen (Fig. 6a). 

  

Fig. 6: DSC curves of un-milled, 15min milled and amorphous (quenched) ibuprofen (a) and that 
of co-milled mixtures (b), the inset shows the Tg step near -35°C in quenched ibuprofen and co-
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milled mixtures and de-vitrification peaks in quenched and milled ibuprofen near 25°C (onset) 
only which were otherwise absent in co-milled mixtures. 

The DSC curves of co-milled mixtures of ibuprofen with HPMC and soluplus (Fig. 6b) have shown 

that the melting peak of ibuprofen shifts toward lower temperature and the Tg appears near -35 

°C indicating the presence of amorphous phase (Dudognon et al., 2008). However, the de-

vitrification peak that is present in the milled ibuprofen near 30 °C is not observed in any of the 

co-milled sample. The stabilization of amorphous phase by the both co-milled excipients have 

also shown in literature (Pokharkar et al., 2006).  

Table 5: The values of melting temperature, enthalpy of melting and %Crystallinity for un-
milled, milled ibuprofen and its co-milled mixtures with soluplus and HPMC. 

Sample Melting 
peak (°C) 

Enthalpy of 
melting (Jg-1) 

Crystallinity 
(%) 

Un-milled Ibuprofen 79.7 116.5 100 

15 min milled 79.7 108.9 86.7 

CM with HPMC 1:1 74.9 51.4 44.1 

CM with Soluplus 1:1 65.8 39.6 34.0 

The percentage residual crystallinity of ibuprofen in the co-milled mixtures is calculated from the 

changes in enthalpies by using the method already described in our previous studies for milled 

sugars (Smith et al., 2015). The results indicate that there is 55% and 65% loss in crystallinity of 

ibuprofen in the co-milled mixtures with HPMC and soluplus, respectively. 

The shift of the melting peak of ibuprofen towards lower temperature in co-milled mixtures along 

with the reduction in enthalpies of melting (Table 5) has indicated that the drug crystals were 

weakened as previously reported by (Williams et al., 2005) for melt mixtures of ibuprofen that 

might be responsible for the increased solubilities and hence dissolution rates of co-milled 

mixtures as compared to drug alone.  

3.6.3.4 Molecular interaction of ibuprofen with co-milled excipients/ATR Results 

The IR spectrum of un-milled ibuprofen has shown an intense, a well-defined peak at ~1704 cm-

1 corresponding to the carbonyl-stretching of propionic acid group, a characteristic band from 

800 to 1500 cm-1 due to hydrogen bonding as ibuprofen forms dimer and a spectral band 

between 2800 and 3000 cm-1 due to the stretching of -OH bond (Newa et al., 2008).  

The IR spectra of 1:1 co-milled mixtures of ibuprofen with HPMC and soluplus (Fig. 7a) are almost 

similar to that of un-milled ibuprofen, except that the spectral band near 3000 cm-1 decreases in 



size, while the stretching vibration of carbonyl peak near 1700 cm-1 was still present in co-milled 

mixtures indicating ǘƘŀǘ ǘƘŜ ŘǊǳƎΩǎ ŎǊȅǎǘŀƭƭƛƴŜ ŦƻǊƳ ǿŀǎ ƴƻǘ Ŏƻmpletely lost during co-milling (Fig. 

10a). The carbonyl stretching peak that is relatively broad in the un-milled ibuprofen becomes 

sharper and shifts towards higher wavenumbers on milling the drug alone and co-milling it 

particularly with soluplus (Fig. 7b). 

The shift of carbonyl peak toward higher wavenumbers in milled ibuprofen and its co-milled 

mixture with Soluplus suggests that there is a change in the dimer structure and hydrogen 

bonding (Nokhodchi et al., 2010). This might partly explain the solubilization action of soluplus, 

in the solid state where the vinyl-acetate and vinyl-caprolactam moieties of this surfactant 

surround the drug while the PEG backbone forms the backing. This provides another potential 

mechanism for kinetic solubility enhancement. 

  

Fig. 7: a) IR spectra of un-milled, 15min milled and its 1:1 co-milled mixtures with HPMC or 
Soluplus b) Carbonyl group peak from IR spectra of these samples, the shift in position of this 
peak is indicated by arrow heads. 

4 Conclusion 

This study indicates that co-milling with an excipient (either a polymer, i.e. HPMC, or surfactant, 

i.e. soluplus) effectively enhances the kinetic solubility and hence the dissolution rate of 

ibuprofen. This enhanced dissolution rate is considered to be the result of a number of inter-

related phenomena that are likely to be working synergistically. Co-milling appears to enhance 

the reduction in particle size that is observed for ibuprofen alone but the differences between 

size reduction on co-milling with soluplus or HPMC ŘƻƴΩǘ ŀǇǇŜŀǊ ǘƻ ōŜ ǎƛƎƴƛŦƛŎŀƴǘ ŀƴŘ ƘŜƴŎŜ ǘƘƛǎ 

mechanism is unlikely to explain the significantly increased dissolution rate one see for co-milled 
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ibuprofen with soluplus. However, the % decrease of the enthalpy of melting and the % 

crystallinity (which is 55% and 65% for HPMC and Soluplus, respectively) will have a synergistic 

and therefore amplified effect on the dissolution rate through the alteration of the kinetic 

solubility. In addition the impact of soluplus on the FTIR spectrum of ibuprofen is further proof 

of the disruption to the ibuprofen structure in the solid state (producing a highly soluble solid 

state dispersion) provides further potential for increasing the kinetic solubility and dissolution 

rate, along with the enhanced solution state stability of ibuprofen in a soluplus rich solvent. 
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Appendix 1 

 

 

Appendix 1: Overlaid UV spectra of 0.05% w/v solutions of ibuprofen (showing two peaks at 
273 & 264 nm and a shoulder at 258 nm) and different excipients in phosphate buffer (pH 7.4). 
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