A Data Fusion Framework for Large-Scale Measurement Platforms
Abstract— The need to assess internet performance from the user’s perspective grows, as does the interest in deployment of Large-Scale Measurement Platforms (LMAPs). The potential of these platforms as a real-time network diagnostic tool is limited by the volume, velocity and variety of the data they generated. Fusing this data from multiple sources and generating a single piece of coherent information about the state of the network would increase the efficiency of network monitoring. The current practice of visually analysing LMAPs’ data stream would certainly benefit from having automatically generated notifications in a timely manner alerting human controllers to the network’s conditions of interest. This paper proposed a data fusion framework for LMAPs that makes use of mathematical distribution based sensors to generate probabilistic sensor outputs which are fused using a Dempster-Shafer Theory. 
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I. Introduction
The Internet is the largest network of distributed and heterogeneous devices where telecommunication systems operators and service providers continuously optimise users’ Quality of Experience (QoE) for all kind of applications and services. Large-Scale Measurement Platforms (LMAP) commonly consist of networks of Measurement Agents (MAs) that are used to measure state of the network continuously [1, 2]. As opposed to passively observing the existing traffic, MAs actively introduce specific measurement traffic into the network. The accuracy of the network diagnostics from LMAPs is directly governed by the number of MAs, their coverage, the active measurements available and their measurement regularity. Although QoE metrics obtained from LMAPs are high in volume, velocity and variety, the existing LMAPs rely heavily on having experts to visually analyse these statistics. As a result of this human analytical requirement, LMAPs are often used to provide confirmations rather than for real-time network diagnostics and only on a limited selection of QoE metrics.  
Data fusion [3] is a process of integrating multiple data and knowledge streams (i.e. from single or multiple sources) representing the same real-world object or condition of interest into one single consistent information stream. For network diagnostics on the LMAPs, each MA acts as a source of data representing the current state of the network where the condition of interest is whether or not the measured QoE is at an acceptable level. However, the physical and virtual path information of each MA and also other metadata such as the technology and manufacturer of network equipment along the path and the configuration of the user’s broadband service govern how an MA represents the state of the network. For example, an MA on an ADSL connection is more likely to experience a slower speed than another MA on a fibre optic connection. It is crucial that this metadata is used in integrating multiple data streams from multiple MAs. 

A data fusion framework for providing real-time notifications related to the current state of an Internet Service Provider’s (ISP) network on an LMAP is proposed. The framework consists of a set of sensors and a data fusion technique. The term “sensor” here refers to a mathematical distribution generated from a set of selected historical statistics. Different combinations of path information and other metadata are used in selecting such historical statistics for different sensors. Each sensor probabilistically evaluates an incoming statistic from an MA and generates a sensor output. In this paper, Dempster-Shafer Theory (DST) is used to integrate these sensor outputs and generate a single belief related to the current state of the network. The selections of historical statistics for different sets of sensors, as well as the associated notification thresholds, are investigated. The focus is on monitoring the QoE on the known routing paths of user’s traffic on an LMAP.    
II. Quality of Experience in Telecommunications

Since the development of the Internet, telecommunication systems play a major role in connecting people and machines together and blurring geographical boundaries. The ability to connect to all manner of things (i.e. human-to-human, human-to-machine, machine-to-machine) and the rise in high bandwidth applications such as video, put a heavy pressure on the telecommunication systems and service providers to allocate enough capacity at any given time. The constant upgrade in such networks, along with the heterogeneous nature of the technology often makes it difficult to detect and diagnose problems. In particular it is often difficult to assess exactly how a problem impacts actual users.  

A typical large Internet Service Provider (ISP) will connect to other peers or transit networks, along with large Content Distribution Networks (CDNs) at a number of central locations.  In order to reach such locations, the user’s traffic traverses across the ISP access, backhaul and core networks where it is increasingly aggregated with other traffic. Since the routes taken by each user’s traffic are known, it is possible to correlate user performance or problems to determine the shared aggregation point. Along with physical and virtual path information, the ISP also holds other metadata such as the technology and manufacturer of network equipment along the path and the configuration of the user’s broadband service.  

The goal of Quality of Experience (QoE) monitoring is to assess the actual experience that users get from their applications and services. While it may not prove possible to test or monitor all possible applications, this can be achieved by monitoring some of the most important services, along with monitoring the end-to-end network performance and building models of how applications are likely to perform under given network conditions. End-to-end performance measurements can be sensed using passive or active measurements. While passive measurements measure a network by observing existing traffic, active measurements introduce specific measurement traffic into the network. This traffic is analysed to determine network characteristics such as throughput rates, loss, latency and jitter. There is a growing interest in the deployment of Large Scale Measurement Platforms (LMAP) [1] in order to conduct such QoE measurements on a large scale. Active measurements are executed by Measurement Agents (MAs). MAs may be scheduled to perform different active measurements at different time intervals (e.g. hourly, bi-hourly, daily) and to different targets (e.g. service or dedicated test server). 
If MAs are deployed at users’ premises, ISPs can measure the QoE from the real users’ point of view. Factors such as the coverage of the MAs across the network, the number of MAs, measurement regularity, and the active measurements available, all govern the value of the measured QoE. It is important to note that the traffic from these active measurements should not interfere with the users’ normal traffic since this will lead to degradation in user experience and corrupted measurement results. 
QoE metrics can be used by the ISPs in a number of ways: to monitor and spot problems on their network, to improve network capacity planning, or to benchmark themselves against their competitors for improvements and competitive advantages. Examples of common QoE metrics include: upload speed, download speed, UDP latency, UDP packet loss, DNS resolution time, VoIP and video performance and website download times.
For network performance monitoring purposes, negative variations in different QoE metrics can be used to spot problems. The timeliness in spotting problems depends on the regularity of the active measurements executed by MAs, the number of the MAs, as well as the regularity in evaluating the QoE metrics. Due to the known network paths, the variations in different QoE metrics can be used to identify the effected part of the network and possibly the root cause. As well as physical and virtual connection information, other metadata can also be used to identify problems based on different other logical hierarchies (e.g. technology, manufacturer or product based). Different QoE metrics may be correlated, negatively correlated or even unrelated. The relationships among different QoE’s metrics may be used to identify patterns for different types of problems (e.g. changes in DNS resolution time while line latency is unchanged would indicate a DNS problem). The options for analytically monitoring the network performance are endless. Fig. 1 illustrates an example of a network monitoring tool on an LMAP. The same QoE metrics are presented on both graphs but different metadata is applied to aggregating the results collected by the MAs when plotting the graphs. The x-axis represents the timeline whereas the y-axis represents the values of the measured QoE.
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Fig. 1. Examples of an LMAP QoE visualisation.

III. Data Fusion

For real-time network diagnostics on LMAPs, manipulating (i.e. processed, assessed and delivered) the large amount of data is a fundamental issue. The existing LMAPs provide a number of visualization options. However, experts are still required to make use of the visualisation tools to manually monitor and evaluate the variations on different QoE metrics. As a result, the visual evaluations are often carried out to confirm the rise of the anomalous events and often only using limited sets of QoE metrics. To realise the potential of LMAPs for real-time network diagnostics, different QoE metrics from multiple MAs must be consistently and intelligently integrated to unify MAs’ viewpoints into one single representation of the current state of the network at any time of request. 
Data fusion aims to tackle this by exploiting the synergy among the available data, filter noises in order to make predictions or inferences about a monitored environment. A number of surveys in various application areas have shown that data fusion can give better results than single inputs by combining data from multiple sources [4 – 7]. On the LMAPs, physical and virtual connection information as well as other metadata are known and can be used to synergistically transform QoE metrics from different MAs into one stream of meaningful information, A number of commonly used data fusion techniques are discussed in [8, 3]. Dempster-Shafer Theory (DST) is one the techniques analysed in this survey. 
A. Dempster-Shafer Theory

Dempster-Shafer Theory (DST) is a mathematical theory that deals with beliefs or weights of evidence [9]. The idea is based on combining beliefs from different sources depending on their reliability. DST contains a viewpoint of the representation of uncertainty when different sources are conflicting. The fused beliefs or combination of evidence produce a plausibility of a certain proposition. DST has been successfully applied in several multi-source data fusion applications. 
In [10], DST is used for fault diagnostics where heterogeneous measuring sensors, measuring vibration, sound, pressure and temperature, are used as pieces of evidence to infer engine quality. The distance between the measurement vectors and the fault feature vectors is used. The larger the distance between the two vectors, the less probable that type of fault is and these probable vectors are then fused using the DST. Similar to the distance between the measurement vectors and the fault feature vector, in [11] a conflict metric which quantifies the discordance in a set of evidence is used to classify whether the camera sensors have malfunctioned, the environment has changed, or the perception model is incorrect for a security guard robot with four camera sensors (i.e. colour, black and white, thermal and ultrasonic). In [12], DST is used in fusing video and voice sensor data in a context-awareness situation, identifying speakers in a meeting room with the corresponding video frame. One common concern with DST application is related to the fusion of highly conflicting pieces of evidence [13]. In [14], four approaches are compared in conflicting management for information fusion using DST from multi-sensors automatic target recognition system. Decision fusion frameworks for image forensics using DST and Fuzzy Logic (FL) [15] are compared in [16]. The reliability of different image forensic tools is used when fusing degrees of tampering detection from each of the tools. The results obtained from the DST and FL frameworks are comparable. The frameworks illustrate the expandability in adding additional forensic tools. 

IV. Data Fusion Framework for LMAPs
Fig. 2 illustrates a proposed data fusion framework for network diagnostics on the LMAPs. The framework consists of three phases: “Data Acquisition”, “Statistical Analysis” and “Data Fusion”. Each of the three phases is composed of one single component each: measurement agents (MA), sensors (S) and a data fusion technique (X) respectively.   
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Fig. 2. Data fusion framework for telecommunication systems.

From Fig. 2, a statistic (ST) from an MA refers to a value in a QoE metric. As illustrated, not all MAs may be available at the time of request (i.e. MA3 in Fig. 2) and an MA may generate more than one statistic (i.e. MA1 in Fig. 2 generates ST1, ST4 and ST5) representing an MA executing multiple active measurements. 
The term “sensor” (S) here refers to a mathematical distribution generated from a set of selected historical statistics. For example, S1 may represent a distribution of the [peak-time, weekday, download speed]. Given the distributed nature of the MAs, distributions for the sensors can be made topologically oriented. For example, S2 may represent a distribution of the [peak-time, weekday, download speed, TopologyMA]. This means that for a given incoming statistic a different distribution will be obtained depending on the physical connection paths at which that the MAs are used. So in Fig. 2, the distribution obtained by S2 depends on the MA1‘s physical topology at the time of request. 
The sensor output (O) is calculated by evaluating an incoming statistic to a dynamically obtained distribution using a selected sensor. For example, if the distribution [peak-time, weekday, download speed] from S1 fits a Gaussian distribution, Gaussian probability is used to evaluate ST1. The distribution’s parameters, in the case of S1 in this example: the mean (µ) and the standard deviation (σ), are used in generating the sensor output. The sensor output of ST1, or O1 in this example, equates to the probability p(|x - µ| > |ST1 - µ|) when x is sampled from N(µ, σ) of S1. The sensor outputs can be any real numbers between 0 and 1. The smaller the distance between ST1 and µ is, the larger the sensor output O1 will be. If ST1 in Fig. 2 is equal to µ, O1 will be equal to exactly 1. 
Different sensors may require more than one input statistic (i.e. Sn in Fig. 2). Examples of such sensors are those that evaluate the average of all the statistics within a given time interval, or evaluate the change between multiple statistics. In such cases, only until all the required statistics are received, the sensors will then activate. Therefore, it is possible that not all sensors are activated at a time of request as shown in the case of S3 in Fig. 2. 
The simplest fusion option, at the final phase of this data fusion framework, is for the entire set of sensor outputs to be fused together using a data fusion technique and therefore generate one fused sensor output. This fused sensor output can then be used as an input for another system, for example an anomaly detection system. In order to provide notifications in real-time streaming environments, suitable thresholds will be required. For the cases of small variations in the QoE metric, a soft alarm may be raised on some visualisation tool, or an email may be sent to a human controller in the case of a larger variation in the QoE metric. Fig. 3 illustrates an example of a tabulated visualisation of 24 network access points (i.e. rows) on 30 different events of interest (i.e. columns), where each value represents one fused sensor output. The values in the table are the fused sensor outputs for each of these events of interest. 
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Fig. 3. An example of a tabulated visualisation for real time notifications on LMAPs.

In Fig. 3, the fused sensor outputs are highlighted if it falls below certain thresholds. Three thresholds are specified in this example (i.e. 0.30, 0.60, and 0.85). However, only two thresholds were reached in this example. The colour gradient depends on the severity of the anomalies. The darker the shade is, the more severe the anomaly is (i.e. the fused sensor output being closer to zero).
A. Exploting Physical Topology and Other Metadata for Fusion 
As explained, MAs are geographically dispersed. The first entry point to any ISP is via a Point of Presence (PoP). The traffic is routed via multiple Network Access Points (NAPs) before it reaches the Internet. Rather than naively fusing all the sensor outputs, sensor outputs can be divided into different groups depending on the physical topology of the MAs (i.e. the physical paths they use to route their traffic) and other metadata. Fig. 4 illustrates an example in dividing MAs into groups for sensor output fusion using their physical topology and metadata.
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Fig. 4. An example of a topological or other metadata exploitabtion in data fusion.

A very small example of an ISP network is shown in Fig. 4. The network is consisted of 8 users. Each of the users has an MA installed. Each PoP supports two users. The network only has two tiers of NAPs and each NAP supports either two PoPs or 2 NAPs. Suppose all the connections (i.e. solid line) are fibre, except one connection (i.e. the dash line) is ADSL. For simplicity, all the MAs here only collect one QoE metric each. To monitor the QoE between MA to dotted NAP 1, there are three possible fusion options. The first and simplest option is to fuse all sensor outputs from grey (i.e. both dark and light) MAs together. The second option is to fuse the sensor outputs hierarchically. So first, the sensor outputs from the dark grey MAs are fused together generating the first fused sensor output (i.e. slash dark grey), and the sensor outputs from the light grey MAs are then fused together generating the second fused sensor output (i.e. chequer light grey). These two fused sensor outputs are then fused again generating the final fused sensor output. The third option is to exploit a metadata (in this case the technical limitation of ADSL vs. fibre) in data fusion. Given the small size of this ISP network, the ADSL happens to serve only the slash dark grey PoP, therefore the final fused output will be similar to the second fusion option. However, on a larger network, the final fused sensor output may be different. Other metadata can also be exploited, for example, Service Level Agreement (i.e. SLA or broadband packages for home users), hardware types or software versions of MAs. Combinations of fusion options exponentially increase with the number of metadata and the physical tiers of the network there are.
B. Two or More-tiered Data Fusion Framework
More than one QoE metric can be generated by an MA. Different issues on the network may affect each QoE metric differently. These variations may not correlate across all of the QoE metrics. Fusing highly conflicting pieces of evidence may possibly yield less than ideal or even unexpected results [13]. The data fusion framework in Fig. 2 is extendable and can be made into a multi-tiered framework. This could be particularly useful when fusing multiple QoE metrics together. Examples of two-tiered data fusion frameworks are shown in Fig. 5.
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Fig. 5. Examples of two-tiered data fusion frameworks, where (a) multiple fusion techniques are used or (b) one fusion technique is used at the higher tier.

In Fig. 5, each node at the bottom level (i.e. Tier 1) represents a data fusion framework similar to that shown in Fig. 2. Each of them evaluates one QoE metric. At the higher level (i.e. Tier 2), a controller (i.e. a different data fusion framework or simply a data fusion technique) uses the fused sensor outputs from its predecessor(s) as their input. Expert knowledge can be applied in fusing multiple QoE metrics. For example, changes in DNS resolution time while line latency is unchanged would indicate a DNS problem. Each of the data fusion frameworks within the multi-tiered framework may apply the same or different sensor fusion technique. Fig. 5 (a) illustrates an example of a two-tiered data fusion framework where problem specific knowledge is explicitly applied within the data fusion structure. Fig. 5 (b) illustrates an example of a two-tiered data fusion framework where problem specific knowledge is implicitly applied within the data fusion technique used. 

V. Experimental Results

Network issues can be divided into two major types: internal issues and external issues. The internal issues are those within the control of the ISP, for example, hardware failure, congestion. While hardware failure abruptly affects the QoE metrics, congestions can be influenced by real-world events (e.g. sports, music) and may be avoidable. The external issues are beyond the control of the ISP, for example, transit networks or CDNs. Depending on the nature of the problem, it may be fixable e.g. missing entries on the Border Gateway Protocol (BGP) table.
Data from an LMAP of an ISP related to these network issues is used in evaluating the proposed data fusion framework. Three standard QoE metrics are considered: download speed, RTP jitter and web load time. A set of anomalous events has been labelled on this data. In this investigation, the aim is to evaluate the framework and the use of LMAP’s metadata in generating distributions for the sensors. A data fusion technique, DST, is used to integrate these sensor outputs into a single piece of information at any time of request. Thresholds are specified and any fused sensor outputs that are lower than the given thresholds are marked as anomalous. These are then compared to the gold standard given by the experts. 
A. LMAP Experimental Setups
Almost 3,000 MAs are deployed on the ISP network under investigation. These are composed of three tiers of NAPs similar to that as shown in Fig. 4. There are over 1,000 NAPs in total. However, only the top two tiers of the network which are made up of 24 NAPs are focused upon in this paper. This makes certain that fused sensor outputs for all the NAPs will be available at the time of request even when some of the MAs are not active. The MAs deployment is geographically dispersed across all the NAPs. The MAs execute each of the three active measurements to a number of different target servers (e.g. 20 different file servers, 3 different web servers). Each MA is scheduled to run a set of these [active measurements, target server] pairs once an hour. The MAs will only execute the scheduled active measurements if the user is not currently using the Internet. 
Two main sensors are used: MA-sensor and NAP-sensor. All experiments are carried out using either one or both of these sensors. The distributions for the MA-sensors are obtained using the historical statistics of each MA. This means that all the MAs will have a different distribution. The distributions for the NAP-sensor are obtained using the historical statistics of all the MAs in each of the NAP. However, given different technologies exist along the connections paths, technological speed limitation is also considered for NAP-sensor. This means that if two MAs are in the same NAP, the same distribution will be generated as long as they are both routing their traffic via paths that are on the same speed limit. Although there are also other metadata that can be used, only the physical path information is the focus of this paper.

Experimental results are obtained by evaluating a month of statistics obtained from a set of MAs. The distributions for each of the sensors are generated from a set of historical statistics in a previous month. The data fusion framework generates a fused sensor output per hour per sensor used. Three slots of one hour each are investigated. Hence, 90 fused outputs are generated for each NAP for the selected three hours in a month. There are therefore a total of 2,160 fused sensor outputs from all of the 24 NAPs for each of the three active measurements. There are 15, 3 and 3 anomalous events pre-identified by experts for download speed, RTP jitter and web load time respectively. The fused sensor outputs are between 0 and 1. The thresholds will specified for each set of the experiments and any fused sensor output that is lower than that threshold is notified as anomalous. The anomalous fused sensor outputs are compared to the gold standard anomalous events and the number of true positives (TPs), true negatives (TNs), false positives (FPs) and false negatives (FNs) are presented as the experimental outcomes.
B. Building Sensors

Congestion on the network varies over different time intervals during a day or different days of the week [17]. The assumption is that any incoming statistics during a selected time interval (e.g. an hour slot, peak, or off peak) on a selected date should resemble their corresponding historical QoE metrics during a different date as long as they are on the same “day of week” and on the same “time of day” timeslots. It is also expected that the QoE metrics reflect seasonal changes and special real-world events (e.g. sport, music festivals). Other factors that influence the variations in the QoE metrics also include the telecommunication infrastructure and other technological advancements. Specifying suitable day-time intervals in selecting a set of historical statistics is therefore crucial to the accuracy of identifying variations in the QoE metrics. Ideally, the most recent historical statistics should be used. However, too narrowly specified day-time intervals can be limiting resulting in an insufficient number of data points that can be used in building the distributions. 
This set of experiments is aimed at evaluating whether it is possible to use a set of similar historical statistics (i.e. several consecutive hours) rather than a set of exact historical statistics (i.e. exactly the same one hour period) so that a larger set of most recent historical statistics can be selected to build the distributions. Both the MA-sensor and NAP-sensors are used in this set of experiments. Therefore, there are two sensor outputs for every incoming statistic. These sensor outputs are fused to generate a single fused output for an incoming statistic, which is then hierarchically fused using the topology shown in Fig. 4. The first set of distributions use same Day-Hour historical statistics (e.g. [Monday, 08:00-09:00]) in generating the distributions for the sensors. However, it is expected that QoE metrics will somewhat reflect the variations of traffic during different time periods during each day. The twenty four hour period is divided into four groups: peak-day 08:00-15:00, peak-evening 19:00-23:00, off-peak-day 15:00-19:00 and off-peak-evening 23:00-08:00. The second set of distributions use these Day-Period historical statistics (e.g. [Monday, peak-day]) in generating the distributions for the sensors. The threshold for the fused sensor outputs is set at 0.85. The number of FPs, FNs, TPs and TNs when the threshold is used to evaluate the fused sensor outputs are shown in Table I.
TABLE I.  Comparisions Between using Day-Period Sensors and Day-Hour Sensors
	
	FP
	FN
	TP
	TN

	Download Speed
	Day-Period
	3
	6
	9
	2142

	
	Day-Hour
	22
	5
	10
	2123

	RTP Jitter
	Day-Period
	0
	0
	3
	2157

	
	Day-Hour
	0
	0
	3
	2157

	Web Load Time
	Day-Period
	0
	0
	3
	2157

	
	Day-Hour
	1
	0
	3
	2156


  From Table I, all anomalous events are identified for the case of RTP jitter and web load time when the same thresholds are used for all of the three active measurements. Day-Hour sensors correctly identified the anomalous events better than the Day-Period sensors. However, they are more prone to FPs than the Day-Period sensors. 
C. Applying One or More Sensors

There are a total of 24 NAPs of interest on this ISP. Physical and virtual connection information of the MAs as well as other metadata (e.g. technology, manufacturer or product based) differentiates one NAP from another. This difference is clearly illustrated in Fig. 6 where the averages of the fused sensor outputs from the download speed active measurements for all of the 24 NAPs are shown. Each column represents an average fused sensor output on one of the three hour-slots for each of the NAPs. The average is calculated from all of the non-anomalous fused sensor outputs of each NAP within a month.
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Fig. 6. Average fused sensor outputs for download speed, where (a) for NAP-sensor (b) for MA-sensor. 
From Fig. 6 (b), on average the MA-sensor has a lower average of the fused sensor outputs than the NAP-sensor in Fig. 6 (a). This difference is even greater when compared to the average of Day-Hour sensors in Fig. 8 (b), where both MA-sensor and NAP-sensors are applied. This set of experiments is aimed at evaluating the effect of using one or more sensors in evaluating each incoming statistic. Given this difference in the level of average fused sensor outputs, for a fair comparison, a proportionate difference threshold is used. In this set of experiments, the threshold is set at 95% of the average fused sensor output. The number of FPs, FNs, TPs and TNs when the threshold is used to evaluate the fused sensor outputs are shown in Table II. The accuracy shown on Table II is calculated using the sum of true positive and true negative divided by total population.  
TABLE II.  Comparisions Between using Only MA-sensor, Only NAP-sensor, Day-Period Sensors and Day-Hour Sensors
	
	Accuracy (%)
	FP
	FN
	TP
	TN

	Day-Period
	99.72
	2
	4
	11
	2143

	Day-Hour
	99.68
	4
	3
	12
	2141

	MA-sensor
	74.40
	553
	0
	15
	1592

	NAP-sensor
	99.77
	5
	0
	15
	2144


When comparing Day-Hour and Day-Period results in Table II with the results shown in Table I, it is clear that using a threshold of 95% of the average fused sensor output improves the number of TPs as well as reduces the number of FPs and FNs. As shown in Table II, both MA-sensor and NAP-sensor when the same threshold is used, all anomalous events are identified. However, there are a lot more FPs for the case of MA-sensor than the NAP-sensor. Based on the accuracy, NAP-sensor is the best out of the four sets of sensors. It should be noted that, since the thresholds are calculated based on the average fused sensor outputs of each NAP, it is possible that this may be one of the factors that influence the best outcome when a NAP-sensor is used alone. 
D. Threshold Selection
Any fused sensor outputs dropping below a given threshold are classed as anomalous. The proposed data fusion framework uses these thresholds in providing real-time notifications for network diagnostics on LMAPs. Different thresholds affect the number of TPs, TNs, FPs and FNs differently. The Day-Period sensors, Day-Hour sensors as used in section V.B and MA-sensor and NAP-sensor as used in section V.C are used in this set of experiments. True positive rate is equal to the sum of true positives divided by the sum of condition positives (i.e. as determined by gold standard). False positive rate is equal to the sum of false positives divided by the sum of condition negatives (i.e. as determined by gold standard). Fig. 7 compares the download speed Receiver Operating Characteristic (ROC) curves where different thresholds are used in evaluating fused sensor outputs. 
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Fig. 7. Download speed ROC curves, (a) thresholds for Day-Period sensors (b) thresholds for Day-Hour sensors (c) thresholds for NAP-sensor and (d) thresholds for MA-sensor, where each data series on the ROC curves represent one of the three hour-slots. 
In Fig. 7, each data series on the ROC curves represents a set of thresholds used for each of the three hour-slots. The thresholds used on the ROC curves for Day-Period sensors are between 0.83 – 0.93. The thresholds used on the ROC curves for Day-Hour sensors are between 0.81 – 0.92. The thresholds used on the ROC curves for the NAP-sensor are 0.6 – 0.7, 0.7 – 0.8, and 0.7 – 0.8. The thresholds used on the ROC curves for the MA-sensor are 0.5 – 0.6, 0.6 – 0.7, 0.7 – 0.8. Unlike the Day-Hour and Day Period sensors, the thresholds used for NAP-sensor and MA-sensor are different for each of the three hour-slots. As shown in Fig. 7, different thresholds are required for each hour-slot if the aim is for the data fusion framework to be able to achieve the true positive rate of 1. For Day-Period sensors, these thresholds are 0.85, 0.91 and 0.93. For Day-Hour sensors, these thresholds are 0.83, 0.90 and 0.92. For NAP-sensor, these thresholds are 0.69, 0.73 and 0.8. For MA-sensor, these thresholds are 0.5, 0.61 and 0.8. It is clear from the ROC curves that there are larger false positives for two of the three hour-slots. With the triangle data series in particular, the number of false positives is larger than the other two data series especially if the goal is to identify all of the anomalous events. This data series is taken from one of the hour-slot during the peak-evening period. 
There are a total of 24 NAPs of interest on this ISP. Physical and virtual connection information of the MAs as well as other metadata (e.g. technology, manufacturer or product based) differentiates one NAP from another. This difference is clearly illustrates in Fig. 8 where the averages of the fused sensor outputs from the download speed active measurements for all of the 24 NAPs are shown. Each column represents an average fused sensor output on one of the three hour-slots for each of the NAPs. The average is calculated from all of the non-anomalous fused sensor outputs of each NAP within a month.
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Fig. 8. Average fused sensor outputs for download speed, where (a) for Day-Period sensors (b) for Day-Hour sensors.

From Fig. 8, a number of NAPs, NAP 8 and NAP 10 in particular have lower averages than the other NAPs. In Fig. 7, the same thresholds are used for all of the NAPs. Given the differences of the average fused sensor outputs as shown in Fig. 6 and Fig. 8, it is clear that a single threshold across all the NAPs could be one of the contributing factors towards a number of FPs. Fig. 9 illustrates the download speed ROC curves where thresholds are specified based on the averaged fused sensor outputs as shown in Fig. 8.
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Fig. 9. Download speed ROC curves with NAP-specific thresholds, (a) thresholds for Day-Period sensors (b) thresholds for Day-Hour sensors (c) thresholds for NAP-sensor and (d) thresholds for MA-sensor, where each data series on the ROC curves represent one of the three hour-slots.

The NAP-specific thresholds shown in Fig. 9 are between 90% - 98% of the average fused sensor outputs of each NAP. Each data series on the ROC curves represents a set of thresholds used for each of the three hour-slots. Similar to Fig. 7, different thresholds are required for each hour-slot if the aim for the data fusion framework is to be able to achieve a true positive rate of 1. For both Day-Period and Day-hour sensors, these thresholds are 95%, 96% and 96% of the average fused sensor outputs of each NAP. For NAP-sensor, these thresholds are 90%, 95% and 94% of the average fused sensor outputs of each NAP. For the MA-sensor, any of the thresholds investigated reached the true positive rate of 1. However, the false positive rate is a lot higher when compared to the other three sets of sensors. When comparing Fig. 7 and Fig. 9, it is clear that the false positive rate has been improved massively simply by using this NAP-specific thresholds instead of a single threshold across all the NAPs. The number of FPs, FNs, TPs and TNs when the thresholds (i.e. between 90% – 98%) of the average fused sensor outputs that produced the highest accuracy are used to evaluate the fused sensor outputs are shown in Table III.
TABLE III.  Comparisions Between using Only MA-sensor, Only NAP-sensor, Day-Period Sensors and Day-Hour Sensors with NAP-specific Thresholds
	
	Accuracy (%)
	FP
	FN
	TP
	TN

	Day-Period
	99.77
	1
	4
	11
	2144

	Day-Hour
	99.77
	1
	4
	11
	2144

	MA-sensor
	91.39
	186
	0
	15
	1959

	NAP-sensor
	99.95
	1
	0
	15
	2144


By using the thresholds that give the highest accuracy, the results in Table III are better than those in Table II. Selecting the highest accuracy thresholds is achievable by adding a simple learning mechanism with “human-in-the-loop” to evaluate the accuracy. It should be noted that only the thresholds between 90% – 98% of the average fused sensor outputs are evaluated here, it may be possible to achieve a higher accuracy in all of the four sets of sensors.

Within this set of selected statistics, there are no anomalous events in two out of three hour-slots for both RTP jitter and web load time active measurements. Fig. 10 compares RTP jitter and web load time ROC curves where different thresholds are used in evaluating fused sensor outputs.



Fig. 10. ROC curves, where (a) thresholds for RTP jitter (b) thresholds for web load time.

The thresholds evaluated for this set of experiments are between 0.83 – 0.92. In Fig. 10, the square data series on the ROC curves represents a set of thresholds used for Day-Period sensors, whereas the diamond data series represents a set of thresholds used for Day-Hour sensors. As shown in Fig. 10, any thresholds within the specified intervals appear to successfully achieve the true positive rate of 1. For web load time in particular, any threshold between 0.83 – 0.92 yields the true positive rate of 1 and false positive rate of 0. When comparing the results in Fig. 9 and Fig. 10, it is clear that download speed is the QoE metric that requires more subtle adjustments of the thresholds. However, these NAP-specific thresholds can be automatically obtained simply by using the average fused sensor outputs for each NAP.
VI. Conclusions
A data fusion framework for LMAP is proposed. The framework consists of three phases: “Data Acquisition”, “Statistical Analysis” and “Data Fusion”. Each phase is composed of a single component: MAs, sensors and a data fusion technique respectively. The MAs are a part of the LMAP for an ISP. Three standard QoE metrics are considered: download speed, RTP jitter and web load time. Each MA executes active measurements to a number of targets according to their schedules. The sensors are the mathematical distributions of a set of historical statistics. The sensor outputs are the probabilistic difference between the incoming statistics from the MAs and the sensors. 
Two sensors are investigated: MA-sensor and NAP-sensor. Two different time intervals used in building the sensors are investigated: Day-Hour and Day-Period sensors. Day-Hour managed to achieve better TPs at a cost of larger FPs. The FPs, FNs, TPs, and TNs when a fixed threshold or the NAP-specific thresholds is used are compared. NAP-specific thresholds massively improve both the number of TPs and FPs. 

The experimental results are promising. Even when very few simple sensors are used, it is possible to identify all of the anomalous events with very little FPs especially if some form of learning mechanism can be applied in automatically adjusting the thresholds. The usefulness is not only that the threshold identified the anomalous fused sensor outputs, but the values of the fused sensor outputs themselves also indicate the severity of the anomalous event. They proportionately and correctly represent the severity as confirmed by the experts. When considering this proposed framework as a tool for providing real-time notifications, once the sensors are built, the sensor outputs can be generated as soon as a statistic is coming in. DST also provides a simple data fusion mechanism which does not add to the processing time. This makes it appealing on LMAPs where data volume and velocity is massive.   
The proposed data fusion framework is data driven and therefore its results depend heavily on how data is collected and manipulated. Each notification can be attached with a “confidence” depending on the number of the sensor outputs available and the degree of agreement among the MAs. Additional sensors can be considered where different metadata are applied when selecting different sets of historical statistics (e.g. manufacturer of the network equipment, broadband package). Different distributions or transformation functions can be used. Clustering or some form of percentile can be applied in automatically throwing out the outliers from the historical statistics. 

The multi-tier structure as described in section IV.B can also be experimented with. Fuzzy Logic has been successfully applied to different application areas for data fusion [18 – 20]. Fusion rules may be specified to control how different QoE metrics are fused in order to identify certain types of known network issues. A technique like Fuzzy Logic can be investigated where Fuzzy rules explicitly specify how statistics from different QoE metrics are integrated.

Visualisation of the fused sensor outputs as well as the notifications also opens a door towards research in Human Computer Interaction (HCI). Visually and meaningfully representing a large amount of data that can be quickly understood and exploited by human controllers is not trivial especially if real-time troubleshooting is required where active measurements can be executed on demand should a user be faced with an unknown issue.

LMAPs are not limited to telecommunication systems. The connections between the MAs, PoPs and NAPs have a resemblance to sensor networks (although not in sense that the term “sensor” is used in this paper). Applications of sensor networks exist in various other industries including medical, oil and gas, security. The transparent design of the proposed data fusion framework should make it easy to apply and evaluate on a different application.   
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