
Context-Aware and Adaptive Usage
Control Model

Ph.D Thesis

Abdulgader Z. Almutairi

This thesis is submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

Leicester - United Kingdom

September 2013

Dedication

To my father

Zaid Almutairi

For all his prayers, sacrifices without his endless support

I could not have accomplished my Thesis

To my mother

Nawir Almutairi

For her endless love, encouragement and prayers

Thank you very much indeed for everything you have done for me

To my wife

Asma Almutairi

For her endless love, support, and patience

Without her patience most of these work would not have been done

i

Abstract

Information protection is a key issue for the acceptance and adoption of pervasive

computing systems where various portable devices such as smart phones, Personal

Digital Assistants (PDAs) and laptop computers are being used to share information

and to access digital resources via wireless connection to the Internet. Because these

are resources constrained devices and highly mobile, changes in the environmental

context or device context can affect the security of the system a great deal. A

proper security mechanism must be put in place which is able to cope with changing

environmental and system context.

Usage CONtrol (UCON) model is the latest major enhancement of the traditional

access control models which enables mutability of subject and object attributes, and

continuity of control on usage of resources. In UCON, access permission decision is

based on three factors: authorisations, obligations and conditions. While authorisa-

tions and obligations are requirements that must be fulfilled by the subject and the

object, conditions are subject and object independent requirements that must be

satisfied by the environment. As a consequence, access permission may be revoked

(and the access stopped) as a result of changes in the environment regardless of

whether the authorisations and obligations requirements are met. This constitutes

a major shortcoming of the UCON model in pervasive computing systems which

constantly strive to adapt to environmental changes so as to minimise disruptions

to the user.

ii

We propose a Context-Aware and Adaptive Usage Control (CA-UCON) model

which extends the traditional UCON model to enable adaptation to environmental

changes in the aim of preserving continuity of access. Indeed, when the authorisa-

tion and obligations requirements are fulfilled by the subject and object, and the

conditions requirements fail due to changes in the environmental or the system con-

text, our proposed model CA-UCON triggers specific actions in order to adapt to

the new situation, so as to ensure continuity of usage.

We then propose an architecture of CA-UCON model, presenting its various

components. In this model, we integrated the adaptation decision with usage deci-

sion architecture, the comprehensive definition of each components and reveals the

functions performed by each components in the architecture are presented.

We also propose a novel computational model of our CA-UCON architecture.

This model is formally specified as a finite state machine. It demonstrates how the

access request of the subject is handled in CA-UCON model, including detail with

regards to revoking of access and actions undertaken due to context changes. The

extension of the original UCON architecture can be understood from this model.

The formal specification of the CA-UCON is presented utilising the Calculus of

Context-aware Ambients (CCA). This mathematical notation is considered suitable

for modelling mobile and context-aware systems and has been preferred over alter-

natives for the following reasons: (i) Mobility and Context awareness are primitive

constructs in CCA; (ii) A system’s properties can be formally analysed; (iii) Most

importantly, CCA specifications are executable allowing early validation of system

properties and accelerated development of prototypes.

For evaluation of CA-UCON model, a real-world case study of a ubiquitous

learning (u-learning) system is selected. We propose a CA-UCON model for the

u-learning system. This model is then formalised in CCA and the resultant specifi-

cation is executed and analysed using an execution environment of CCA.

iii

Finally, we investigate the enforcement approaches for CA-UCON model. We

present the CA-UCON reference monitor architecture with its components. We then

proceed to demonstrate three types of enforcement architectures of the CA-UCON

model: centralised architecture, distributed architecture and hybrid architecture.

These are discussed in detail, including the analysis of their merits and drawbacks.

iv

Declaration

I declare that the work described in this thesis is original work undertaken by me for

the degree of Doctor of Philosophy, at the software Technology Research Laboratory

(STRL), at De Montfort University, United Kingdom.

No part of the material described in this thesis has been submitted for any award

of any other degree or qualification in this or any other university or college of ad-

vanced education.

This thesis is written by me and produced using LATEX.

Abdulgader Almutairi

v

Publications

1. A. Almutairi, and F. Siewe. CA-UCON: a context-aware usage control model.

Proceedings of the 5th ACM International Workshop on Context-Awareness for

Self-Managing Systems, CASEMANS’11 - Beijing, China, pages 38–43, 2011.

2. A. Almutairi, and F. Siewe. Formal Specification of CA-UCON model using

CCA. Science and Information Conference 2013. 7-9 October 2013, London,

UK.(Accepted).

3. A. Almutairi, and F. Siewe. Modelling Usage Control of a U-learning System

using CA-UCON. The 4th Workshop on Service Discovery and Composition

in Ubiquitous and Pervasive Environments (SUPE’2013). August 26-28, 2013,

Cyprus.

4. A. Almutairi, and F. Siewe. Enforcement of CA-UCON Model. The seventh

International Conference on Mobile Computing and Ubiquitous Networking.

January 6-8, 2014, Singapore Management University, Singapore. (Submit-

ted).

5. W. Alkhaldi. S. Almutairi. A. Almutairi and K. Aldrawiesh. Toward Devel-

opment Context Aware Advertisement system (Case Study). in proceedings of

the IEEE 2011 International Conference on Computer Applications and Net-

work Security (ICCANS 2011), May 27th-29th 2011 in Maldives, IEEE Press,

CFP1182M-PRT/ISBN: 978-1-4244-9764-5.

vi

Acknowledgments

First and foremost, I am grateful to almighty and the most merciful ALLAH for

giving me the strength and courage and for enabling me complete this thesis, with-

out whom nothing is possible.

My sincerest thankfulness and deepest appreciation goes to my mentor, great

supervisor Dr Francois Siewe for his guidance, care, concern throughout my PhD

study; without his support, encouragement and guidance this thesis would not have

been possible to achieve. I am really happy that I was able to finish my PhD under

his supervision.

I also, would like to express my deepest thanks to Prof. Hussein Zedan, the

head of the STRL for his guidance, love, and care for everyone in STRL. I would

like to thank Dr. Ali Al-Bayatti for his guidance, insightful suggestion in this

work and motivation.

I would like to thank all researchers, colleagues and staff of the STRL for the

friendly and convenient working environment I could experience there.

vii

On family side, I would express my deepest thanks to my parents for their

prayers, support and encouragement, whose prayers and blessings were no doubt

the true reason behind any success I have.

Finally, I would like to special thank my wife (Asma) and my children (Abdu-

laziz, Rana and Ahmed) for being patient while I was doing my thesis, without their

patience most of these work would not have been accomplished.

viii

Table of Contents

Dedication i

Abstract ii

Declaration v

Publications vi

Acknowledgments vii

Table of Content ix

List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

1.1 Introduction and Motivation . 2

1.2 Problem Description and Research Question 4

1.3 Research Methodology . 5

1.4 Criteria for Success . 7

1.5 Thesis Structure . 7

ix

TABLE OF CONTENTS

2 Literature Review 11

2.1 Introduction . 12

2.2 Background . 12

2.3 Traditional access control models . 16

2.3.1 Discretionary Access Control (DAC) 17

2.3.2 Mandatory Access Controls (MAC) 17

2.3.3 Role Based Access Control (RBAC) 18

2.4 Trust Management (TM) . 18

2.5 Digital Right Management (DRM) 19

2.6 Usage Control (UCON) Model . 19

2.6.1 Introduction . 19

2.6.2 Usage Control Conceptual Model 20

2.6.3 Usage Control Components 21

2.6.3.1 Subjects (S) and Subject Attributes (ATT(S)) 21

2.6.3.2 Objects (O) and Object Attributes (ATT (O)) . . . 21

2.6.3.3 Attributes . 22

2.6.3.4 Rights . 23

2.6.3.5 Authorizations (A) 23

2.6.3.6 oBligations (B) . 23

2.6.3.7 Conditions(C) . 24

2.7 The UCONABC family core modules 25

2.8 Ubiquitous (Pervasive) Computing 26

2.8.1 Introduction . 26

2.8.2 Ubiquitous System Properties 27

2.8.3 Ubicomp Technologies . 27

2.8.3.1 Devices . 28

2.8.3.2 Connectivity . 28

x

TABLE OF CONTENTS

2.8.3.3 User Interfaces . 29

2.9 Overview of Context-Aware Systems 29

2.9.1 Definition of Term Context 29

2.9.2 Context Model . 30

2.9.3 Context-Aware Systems . 32

2.9.3.1 Context Information Acquisition 34

2.9.3.2 Context-Aware System Abstract Architecture 34

2.10 Adaptive Systems . 36

2.11 Adaptation in Ubiquitous Computing 38

2.12 Adaptation Approaches . 39

2.12.1 Parameter Adaptation . 40

2.12.2 Compositional Adaptation . 41

2.12.3 Action-Based Adaptation . 42

2.13 Comparison of Adaptation Approaches 43

2.14 Related Work on Context-Aware Access Control Models 44

2.14.1 Extensions of Role-Based Access Control (RBAC)Model . . . 44

2.14.1.1 Generalised Role-Based Access Control Model 45

2.14.1.2 Spatio-Temporal Models 45

2.14.1.3 Dynamic Role-Based Access Control Model 47

2.14.1.4 CAAC-based Models with Architectural Components 48

2.14.2 Extensions of Usage Control (UCON) Model 49

2.15 Summary . 51

3 Context-Aware and Adaptive Usage Control (CA-UCON) Model 52

3.1 Introduction . 53

3.2 Architecture of CA-UCON model . 53

3.2.1 Usage Decision (UD) . 54

xi

TABLE OF CONTENTS

3.2.2 Adaptation Decision (AD) . 55

3.2.3 Subjects (S) and subject Attributes (ATT(S)) 57

3.2.4 Object (O) and Object Attributes (ATT (O)) 57

3.2.5 Rights (R) . 57

3.3 Computational model of the CA-UCON model 58

3.4 The CA-UCONABD Family Core Models 60

3.4.1 The CA-UCONpreA Model . 61

3.4.2 The CA-UCONOnA Model . 61

3.4.3 The CA-UCONpreB Model . 62

3.4.4 The CA-UCONonB Model . 64

3.4.5 The CA-UCONpreD Model 65

3.4.6 The CA-UCONonD Model . 67

3.5 Expressive Power of the CA-UCON Model 68

3.6 Summary . 69

4 Formal Specification of CA-UCON Model in CCA 71

4.1 Introduction . 72

4.2 Overview of CCA . 72

4.2.1 Modelling in CCA . 73

4.2.2 Syntax of CCA . 74

4.2.2.1 Processes . 75

4.2.2.2 Location . 76

4.2.2.3 Capabilities . 77

4.2.3 Context model . 78

4.2.4 Context Expressions . 79

4.3 Ambient-based model for CA-UCON model 81

4.4 Formalising the CA-UCON Model in CCA 82

xii

TABLE OF CONTENTS

4.4.1 Notation . 82

4.4.2 Subject Ambient . 83

4.4.3 Requesting Ambient . 84

4.4.4 Accessing Ambient . 85

4.4.5 Preadapting Ambient . 86

4.4.6 Onadapting Ambient . 87

4.4.7 CheckPreA Ambient . 87

4.4.8 CheckPreB Ambient . 88

4.4.9 CheckPreC Ambient . 88

4.4.10 CheckOnA Ambient . 88

4.4.11 CheckOnB Ambient . 89

4.4.12 CheckOnC Ambient . 89

4.5 Summary . 90

5 Case Study 91

5.1 Introduction . 92

5.2 Ubiquitous Learning (U-Learning) . 92

5.2.1 Overview . 92

5.2.2 U-learning Technologies and Infrastructure 93

5.3 Modelling of a U-learning System in CA-UCON 95

5.3.1 U-learning Services . 95

5.3.2 Requirements of the u-learning system 96

5.3.2.1 Authorisation Requirements 96

5.3.2.2 Obligation requirements 96

5.3.2.3 Condition requirements 97

5.3.2.4 Adaptation requirements 99

5.3.3 Formalisation in CA-UCON 100

xiii

TABLE OF CONTENTS

5.3.3.1 Right . 100

5.3.3.2 Authorization . 101

5.3.3.3 Obligation . 101

5.3.3.4 Condition . 102

5.3.3.5 Adaptation . 105

5.4 Formal specification in CCA . 112

5.4.1 CheckPreC Ambient . 112

5.4.1.1 SubjectCxt Ambient 115

5.4.1.2 MemorySize Ambient 115

5.4.1.3 Bandwidth Ambient 116

5.4.2 GC Ambient . 117

5.4.3 preadapting Ambient . 117

5.4.4 Subject Ambient . 121

5.4.5 FMem Ambient . 122

5.4.6 HB Ambient . 122

5.5 Validation . 122

5.5.1 ccaPL: A Programming Language for CCA 123

5.5.1.1 Syntax of ccaPL . 123

5.5.1.2 Context Expressions in ccaPL 125

5.5.1.3 ccaPL Execution Environment 125

5.5.2 Executing Scenarios . 128

5.6 Summary . 141

6 Enforcement of CA-UCON model 142

6.1 Introduction . 143

6.2 Architecture of CA-UCON Reference Monitor 143

6.2.1 Enforcement Point . 145

xiv

TABLE OF CONTENTS

6.2.2 decision point . 146

6.2.3 Attribute Manager . 146

6.2.4 Context Information Manager 147

6.3 Enforcement Architectures of CA-UCON Model 147

6.3.1 Centralized Enforcement Architecture 147

6.3.1.1 Example 1: . 149

6.3.2 Distributed Enforcement Architecture 150

6.3.2.1 Example 2: . 151

6.3.3 Hybrid Enforcement Architecture 153

6.3.3.1 Example 3: . 154

6.4 Summary . 156

7 Conclusions and Future Work 157

7.1 Work Summary . 158

7.2 Statement of Evaluation . 160

7.3 Success Criteria Revisited . 161

7.4 Contribution to Knowledge . 162

7.5 Future Work . 162

Bibliography 163

xv

List of Figures

2.1 Traditional Access Control [86] . 16

2.2 Usage Control Model [72] . 22

2.3 Ubiquitous Systems properties [80] 27

2.4 Layered conceptual framework for context-aware system [57] 35

2.5 Adaptive System Architecture [82] 37

2.6 Adaptation loop in ubiquitous computing [25] 39

2.7 CAAC conceptual view [26] . 44

2.8 UbiCOSM middleware services [23] 49

3.1 Architecture of The CA-UCON model 54

3.2 Execution of an access request in the CA-UCON model 59

4.1 Ambient-based Model for CA-UCON Model 81

5.1 U-learning types of devices and connectivity [114] 94

5.2 The architecture of the execution environment of ccaPL [96] 126

5.3 Reduction relation of execution environment of ccaPL 127

5.4 Execution of Scenario 1 . 129

5.5 Execution of Scenario2 . 130

5.6 Execution of Scenario 3 . 132

5.7 Execution of Scenario 4 . 134

xvi

LIST OF FIGURES

5.8 Execution of Scenario 5 . 136

5.9 Execution of Scenario 6 . 138

5.10 Execution of Scenario 7 . 140

6.1 Architecture of the CA-UCON Reference Monitor 145

6.2 Centralised Enforcement Architecture 149

6.3 Distributed Enforcement Architecture 152

6.4 Hybrid Enforcement Architecture . 155

xvii

List of Tables

2.1 Location Permission Assignment List in SRBAC 47

4.1 Syntax of CCA: processes . 75

4.2 Syntax of CCA: location . 76

4.3 Syntax of CCA: capabilities . 77

4.4 Syntax of contexts . 78

4.5 Algebraic semantics of contexts . 79

4.6 Syntax of CCA: context expressions 80

4.7 Constants . 83

4.8 Variables . 83

5.1 Capabilities of ccaPL . 124

5.2 Processes of ccaPL . 124

5.3 Location of ccaPL . 124

5.4 Context Expressions of ccaPL . 125

xviii

List of Abbreviation

UCON Usage control

CA-UCON Context-aware usage control

CCA Calculus of Context-aware Ambients

U-learning Ubiquitous Learning

RM Reference Monitor

DAC Discretionary Access Control

MAC Mandatory Access Control

RBAC Role-Based Access Control

TM Trust Management

ccaPL Calculus of Context-aware Ambients Programming Language

DRM Digital Right Management

CE Context Expression

Ubicomp Ubiquitous computing

UD Usage Decision

AD Adaptation Decision

xix

List of Abbreviation

PreA Pre-Authorizations

OnA On-Authorization

PreB Pre-oBligation

OnB On-oBligation

PreC Pre-Condition

OnC On-Condition

PreD Pre-Adaptation

OnD On-Adaptation

GC Garbage collector

HB High Bandwidth

FMem Free Memory

AC Access Control

ICT Information Communication Technology

A Authorizations

B oBligation

C Condition

D Adaptation

R Set of access Rights

S Set of Subjects

O Set of Objects

xx

List of Abbreviation

Att(s) Attributes of the subject s

Att(o) Attributes of the object o

PCS Personal Communications Services

UML Unified Modelling Language

ER Entity Relationships

CoBrA Context Broker Architecture

CAAC Context-aware Access Control

GRBAC Generalised-Role-Based Access control

TRBAC Temporal Role-Based Access control

SRBAC Spatial Role-Based Access Control

GTRBAC Generalised Temporal Role-Based Access Control

DRBAC Dynamic Role-Based Access Control

CA Central Authority

TUCON Times-Based Usage Control

GEO-UCON Geography Usage Control

ConUCON Context-aware Usage control

CUC The Contextual Usage Control

FMS Finite State Machine

xxi

Chapter 1

Introduction

Objectives:
• Present an introduction and motivation of this research.

• List the research questions.

• Present the research methodology.

• Give the thesis structure.

1

CHAPTER 1. INTRODUCTION

1.1 Introduction and Motivation

Ubiquitous environments use a wide variety of devices such as mobile phones, lap-

tops, wearable computers, embedded computing devices and hardware sensors. These

devices employ wireless and/or wired networks, which have differing limitations in

terms of power consumption, memory size and computational speed [2]. These net-

works can be incorporated and interact with each other in order to produce adaptive

services, which are provided depending on the present context of the user, the envi-

ronment and the system. Many new applications are now taking advantage of the

ubiquitous computing paradigm, facilitating the creation of smart homes, health

systems, smart vehicles, etc. One of the most significant features of ubicomp is that

it is ’context-aware’ [57].

The concept of a context-aware system is that the system is able to sense its

surrounding environment (the context) and can react accordingly. The widely ac-

cepted definition of context was given by [24] as, "any information that can be used

to characterise the situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between a user and an application, including

the user and applications themselves." Thus, the three functions that must be in-

corporated into a context-aware system are: (i) sense the environment, i.e. context;

(ii) process any change in the context; and (iii) adapt to the new context.

Various modern technologies are being exploited in networks and computing,

leading to the further development and increased use of ubicomp, and facilitating

a variety of ’convenience applications’ [77]. However, this increase in ubicomp has

introduced new security challenges, as information can be accessed and shared by

2

CHAPTER 1. INTRODUCTION

users anytime and anywhere. Therefore, access through adaptive services and smart

devices must be protected by an efficient access control system. Traditional access

control models, such as Discretionary Access Control (DAC), Mandatory Access

Control (MAC) and Role Based Access Control (RBAC), were designed for tradi-

tional computing environments and accordingly have certain boundaries; these limit

their adoption and utilization in ubicomp environments. For example, the access

decision in traditional access control models is based on static attributes, which

makes them unsuitable for dynamic environments where the context of the user and

environment must be considered in any access decision [102].

The Usage Control (UCON) model is the latest major enhancement to tradi-

tional access control models; it enables mutability of subject and object attributes,

and continuity of control on usage of resources [73]. UCON has a condition com-

ponent, which can sense and capture the context, but it cannot react and adapt to

the new situation depending only on this context. Therefore, UCON is not wholly

appropriate for dynamic environments such as in ubicomp, where the context can

change frequently; this would affect the access decision for a subject who requests

access to an object. Thus, UCON needs to be further enhanced to make it an adap-

tive model, i.e. one that interacts with the changing environment and adapts to any

new situation in order to ensure continuity of service.

In this motivated example, We assume a vehicle equipped with smart system that

is able to connect wirelessly to any network and permits user to download music or

video services. We assume that the system is able to sense the bandwidth of network

connection when the user requesting the downloading music or video services .So

the condition for downloading this service is that the bandwidth must be high. If

the user wants to download the service, the system will check the authorization

3

CHAPTER 1. INTRODUCTION

and the obligation and the condition of the current request. So if the authorization

and obligation are met but the condition is not met which means in this case the

bandwidth is low, the system will deny the access. In this case the need for adaptive

model that adapts to new situation by do the action (e.g. slowdown the car speed)

in order to get the high bandwidth and continue the access to the user is important.

1.2 Problem Description and Research Question

Producing an adaptive usage control model that is compatible with UbiComp en-

vironments is a challenging task. A ubicomp system must be able to adapt its

behaviour based on its environment. Thus, it must respond to change in current

context if it is to deliver an adaptive service. The security system that is utilized

in an ubicomp environment (in order to control access in adaptive services) must

accordingly be context-aware.

Many access control models have been proposed to suit different aspects of ubi-

comp environments. Most of the proposed models and architectures have been built

on traditional access control models, such as RBAC [26][62]. Some researches have

been conducted in an attempt to extend the UCON model in order to build an

adaptive model that is appropriate for the ubiquitous environment [113][39].

However, to the best of our knowledge, none of the existing extensions to access

control models, particularly UCON, has completely solved this issue in the ubiqui-

tous environment, where context-awareness is a vital aspect of any ubicomp system,

as the context is constantly changing. Thus, it is essential that an adaptive access

control model (that is better suited to the ubiquitous environment) be developed in

4

CHAPTER 1. INTRODUCTION

order to remedy the limitations of traditional access control models.

In this thesis, we present a new usage control model, one that is adaptive

and context-aware, called Context-Aware and Adaptive Usage Control model (CA-

UCON in short). This new model ensures three features: (i) data protection, (ii)

enhanced service quality; e.g. ensuring the continuity of usage despite change in the

environment and (iii) keeping explicit interactions with the user at a minimum.

The overall and key research question can thus be presented as follows:

How can an adaptive usage control model (context-aware) solution,

one that seamlessly suits a dynamic computing environment (ubicomp),

be produced?

The main aim of this research is to address the question above in an efficient

manner. However, in order to answer this research question, three sub-questions can

be formulated as follows:

• How can the adaptation process be integrated into the usage control model?

• How can the new model be formally analysed using a suitable formal notation?

• How can an adaptive usage control model be enforced in ubiquitous environ-

ments?

1.3 Research Methodology

The research methodology employed in this thesis is a standard scientific research

technique (Constructive method), in which novelty is developed through an innova-

5

CHAPTER 1. INTRODUCTION

tive architecture, model or technique. Having expert knowledge in this particular

field is vital if novelty is to be developed, and the literature will be key to this.

Accordingly, the proposed approach is comprised of five work packages; the first is

a literature review, and the second focuses on the proposed architecture. The third

work package presents the suitable formal specification, and the fourth demonstrates

different enforcement architectures for an adaptive model. The last work package

concentrates on the evaluation of the work [42].

• Work package 1: Research background

The research background mostly comprises a literature review, which involves

assessing all the aspects associated with the research question. Various re-

sources are utilized, such as digital libraries, publications, journals, articles,

etc.

• Work package 2: Architecture

This work package presents the proposed architecture to capture the aim of this

research, as formulated in the research question. Throughout this phase, the

research explores context-aware access control models and their boundaries in

order to identify the objectives and requirements of the proposed architecture;

it also describes its contribution to the field.

• Work package 3: Formal specification

This work package explores the available formal methods in order to generate

specifications for the context-aware and adaptive usage control model, and

elaborates the appropriate mathematical notations. Thus, the selected formal

method is utilized to specify various aspects associated with the remit of this

thesis.

• Work package 4: Enforcement architecture

6

CHAPTER 1. INTRODUCTION

In this phase, the research investigates the different enforcement architectures

on which the adaptive model can be enforced. Then, it studies the most

appropriate reference monitor and explains its components.

• Work package 5: Evaluation

In the final phase, a real-world case study of ubiquitous learning is selected,

and the discussed formal method is applied to formalise this case study. The

properties of the context-aware and adaptive usage control model are analysed,

through the execution environment of the aforementioned formal method.

1.4 Criteria for Success

Satisfying the criteria of the research in this thesis is achieved as follows:

• The research questions posited at the commencement of this work must be

met.

• A study demonstrating how our proposed architecture is distinct from others

must be presented.

• An analysis of the proposed system using CCA.

• A study that illustrates the appropriate enforcement architecture must be

presented.

1.5 Thesis Structure

This section describes the outline of the remaining chapters of this thesis based on

the aims of this research.

7

CHAPTER 1. INTRODUCTION

Chapter 2: Literature Review

Firstly, an overview of traditional access control models is presented in this chapter.

It begins with a definition of access control, describing different access control mod-

els, and explains their differences. This chapter then illustrates the Usage Control

(UCON)model and investigates the distinction between this model and the tra-

ditional access control models. Moreover, it examines the conceptual model and

the family-core model of usage control. Subsequently, it provides an overview of

ubicomp systems and context-aware systems. It provides a definition for context,

and examines context models, context-aware systems and the properties of ubiq-

uitous systems. In addition, a definition of adaptive systems and adaptation in

ubicomp systems are presented. Then a various aspects of adaptation approaches

are presented. Finally, related works on context-aware access control are presented.

Different attempts to extend access control models, particularly UCON model are

assessed.

Chapter 3: Context-Aware and Adaptive Usage Control Model (CA-

UCON)

This chapter proposes a novel context-aware and adaptive usage control architec-

ture, which extends the Usage Control (UCON) model. It enables the adaptation

to environmental changes with the aim of preserving continuity of usage in a per-

vasive computing system. It then describes the computational model of CA-UCON

as a Finite State Machine (FMS), depicting how a subject’s request to access an

object is handled in this model. This chapter also provides formal definitions of the

two newly introduced adaptation models within the CA-UCON model. Finally, it

presents the expressive power of CA-UCON, which the UCONmodel can be specified

in CA-UCON model, and so all the access control models that can be represented

8

CHAPTER 1. INTRODUCTION

in UCON (such as RBAC, MAC, DAC and DRM)

Chapter 4: Formal Specification of the CA-UCON Model

This chapter is separated into three parts. The first part illustrates the selected

formal method; it presents CCA. CCA has been proposed and is considered an ap-

propriate mathematical notation for modelling mobile applications that are context-

aware. The second part shows the ambient-based model within CA-UCON, which

can model any entity in a system as ambient. The final part presents the formalisa-

tion of the CA-UCON model in CCA.

Chapter 5: Case Study

This chapter is based on a ubiquitous learning (u-learning) system as a case study;

it explains in detail the requirements of a u-learning system. These requirements are

then modelled in CA-UCON. The u-learning system is then formalised in CCA and

executed. It is used to analyse the behaviour of the underlying CA-UCON model.

These are done via devising scenarios in a u-learning system and executing them in

order to assess the behaviour of CA-UCON in a changing context.

Chapter 6: Enforcement Architecture

This chapter presents the architecture of the CA-UCON Reference Monitor (CA-

UCON RM) and explains all included components. Then, it investigates the en-

forcement architecture of the CA-UCON model by demonstrating three types of en-

forcement, which are known as Centralised Enforcement Architecture, Distributed

Enforcement Architecture and Hybrid Enforcement Architecture. Moreover, this

chapter details the differences between these architectures and presents the advan-

tages and disadvantages of each architecture. Finally, some examples are illustrated

in order to present the efficacy of the enforcement within CA-UCON under different

9

CHAPTER 1. INTRODUCTION

architectures.

Chapter 7: Conclusions and Future Work

This chapter presents a summary of the research in this thesis as well as the final

results. Then, it suggests future work that may build upon the boundaries of our

model.

10

Chapter 2

Literature Review

Objectives:
• Present a literature on Traditional Access Control Model.

• Investigate Usage Contol Model (UCON).

• Explore Pervasive (Ubiquitous) Computing, Context,Context-aware System.

• Show Adaptive system, Adaptation in Ubiquitous system, Adaptation ap-

proaches.

• Present some existing Context-aware access control model.

11

CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

In this chapter we give an account of background of the area of access control models.

We begin with a definition of access control, introducing a traditional access control

models, and follow with an explanation of the distinction between these models. In

addition, we illustrate the usage control model (UCON) and describe the differences

between this model and the traditional access control models. The conceptual model

and family-core model of UCON are presented. An overview of Ubicomp systems and

context-aware systems are shown, including the definition of context, context model

and context-aware systems. Then, we present a different adaptation approaches and

make the comparison between these approaches in order to select the most suitable

approach for our work. Finally, related work on extension of access control to include

context information in access decision are presented.

2.2 Background

Important new challenges have emerged as a consequence of recent technological

innovations and advancements in the telecommunications, computing and networks.

Various devices, such as smart phones, personal computers and portable devices are

now being used to share resources and digital information, which make it difficult

to protect such shared digital resources against unauthorized accesses [12].

Researchers in the relevant areas have attempted to mitigate and resolve the

unauthorized access problem, and have made significant advances in the protection

of scientifically oriented data and information as well as in the overall information

security domain. Since the advent of the information security discipline, the infor-

12

CHAPTER 2. LITERATURE REVIEW

mation security community has considered ’access control’ as a major information

security issue. Traditionally, access control concentrates on safeguarding computa-

tional resources against unauthorized access in a closed environment. The control

mechanism employed focuses primarily on identity and attributes of the recognized

client, or uses a reference monitor with specified authorization rules [72].

There are many ways to define access control; however, we can define it as the

ability to grant or deny access to a subject to a particular object or resource in order

to ensure protection against unauthorized access to particular digital information

or computer resources. Hence, the objective of access control is to ensure three

elements [53]:

Confidentiality: prevention and mitigation of the unauthorized exposure of a digital

resource.

Integrity: prevention and mitigation of unauthorized modification to digital re-

sources that could undermine their integrity.

Availability: ensuring access for authorized and authenticated subjects .

There are three main traditional access control models:

1. Discretionary Access Control (DAC).

2. Mandatory Access Control (MAC).

3. Role Based Access Control (RBAC).

13

CHAPTER 2. LITERATURE REVIEW

These models were developed based on a set of predefined authorization rules,

comprising ’subject’, ’object’ and ’operation’ for each and every entity in a digital

resource that needs access protection. Basically, these define what resources (ob-

jects) a user (subject) can or cannot access, and what actions the user is authorized

and permitted to execute (operation) on the resources that they are permitted to

access [94]. The focus of the traditional access control models is to protect digital

and computational resources within a closed security environment. However, the

recent rapid advances in complex computing systems have necessitated the intro-

duction of new security requirements, and hence the need for a more robust new

security mechanism [85].

The traditional security models do not and cannot sufficiently address all the

major problems and challenges that have arisen in modern computer network sys-

tems. More robust and flexible models are needed to ensure access protection for

modern digital resources. Furthermore, DAC is mainly responsible for controlling

access to objects; it does not control the information flow. MAC can control the in-

formation flow but may not be suitable for controlling the access to objects. RBAC

can control and administer access to digital information and other computational

resources in a closed and controlled organizational domain but may not be able to

do so if subjects are unknown in an open environment systems [95].

Another model, Trust Management, can be used in open environment systems to

control and authorize access for unknown subjects only when the entities accessing

are static and do not often change. Trust Management and the other traditional

access control models control access to objects on the server side [104]. Moreover,

studies have been conducted on access control issues and the usage of digital objects

before and after dissemination; this is known as Digital Rights Management (DRM).

14

CHAPTER 2. LITERATURE REVIEW

DRM opens up many opportunities for the commercial digital-information sector.

Hence, the majority of current DRM solutions concentrate on payment-based dis-

semination control but can be applied as well on non-payment based dissemination

[12]. However, as DRM and Trust Management have each focused on their own spe-

cific issues in terms of access control, a new Usage Control (UCON) access model

was recently proposed. UCON extends multiple aspects of the traditional access

control models, introducing two new aspects: mutability of attributes, and continu-

ity of the access permission decision [83].

One of the most rapidly developing areas in ICT is known as ’ubiquitous com-

puting’. It refers to the ever-increasing phenomenon of integrating and embedding

ICT tools in people’s daily lives and in the situations or environment in which they

live. This has been made possible by the ever-improving developments in the man-

ufacture of microprocessors, which now have built-in communication functions and

other amenities [77].

The new technologies that have being employed in networks and computing have led

to the development of ubiquitous computing, facilitating a variety of convenient ap-

plications [77]. The most significant matter in ubiquitous computing, which brings

new challenges, is security, where the information can be accessed and shared by

users anytime and anywhere.

Many researchers have attempted to solve security issues in ubiquitous environ-

ments, but none of them completely solves these problems. Thus, a new and effective

security mechanism must be put in place; one that is able to cope with changing

environmental and system contexts.[102]

15

CHAPTER 2. LITERATURE REVIEW

2.3 Traditional access control models

Throughout the history of computing and information security, there have been sev-

eral studies and efforts to facilitate and protect the access and the usage of digital

resources. As above and now in Figure 2.1, traditional access control models can be

divided into three: Mandatory Access Control (MAC), Discretionary Access Control

(DAC), and Role-Based Access Control (RBAC)[86]. Despite the success of these

models in closed environments, the issue of access control remains a major issue for

information and system security in our modern cyberspace. Providers of digital con-

tent services and other relevant resources need to exercise control over accessibility

and usage of their resources in the sense of gaining the ability to determine who is

allowed to access a digital resource and what access rights they can have over the

objects available; this is the central issue in any access control model. [95].

Figure 2.1: Traditional Access Control [86]

16

CHAPTER 2. LITERATURE REVIEW

2.3.1 Discretionary Access Control (DAC)

Discretionary access control is defined as a denotation of restriction access to the

available resources or services, relying on the identification of authorized users [55].

Most operating systems today use the DAC model at the heart of their controlling

mechanisms. DAC provides flexibility in access control by devolving the protection

decision and the right to determine access to the user, who owns or has created the

object. The flexibility of DAC enables the object owner to discretionarily specify the

type of access privileges for a potential user. However, "any practical DAC scheme

must have significant constraints which can be best be understood in terms of the

layered construction of protection systems" [97]. In general, discretionary access

control models are concerned primarily with controlling users’ access to restricted

information resources.

2.3.2 Mandatory Access Controls (MAC)

Mandatory access control is a process, acting to restrict a user’s access to resources

based on ’access sensitivity’, which is defined for the object in terms of the informa-

tion objects that those resources contain; this entails a more formal authorization

in the form of clearance, which is needed by users to access such sensitive objects

[103]. "MAC bases the access rights on fixed regulations determined by a central

authority" [95]; it is concerned mostly with the control of information flow between

the different objects in a system. Moreover, the MAC security model is deemed to

have a better access control in terms of security to objects than DAC, as MAC can

control "indirect information flow". [28].

17

CHAPTER 2. LITERATURE REVIEW

2.3.3 Role Based Access Control (RBAC)

In RBAC, users are given predefined access rights in the form of roles, which they

can assume and execute on the system; hence, this restricts a user’s access to other

objects, i.e. those that do not concern them or those for which access has not been

assigned. As the concept of ’role’ stems from individuals in an enterprise or orga-

nization, where each and every person has a specific role and responsibility, RBAC

facilitates modelling object access security from an enterprise or organizational per-

spective, by aligning the assigned roles with the roles that a subject is assigned to

within an organization or enterprise [68]. RBAC is used in commercial applications

as a viable alternative to the traditional models of mandatory/discretionary access

control, as it can align users’ access rights in a given system based on their assigned

responsibility in the organization [89][88].

2.4 Trust Management (TM)

Trust Management is another access control model, which is used in authorizing

unknown entities to have access to objects in an open environment. However, Trust

Management is most generally applied when the entities are static, which are not

likely to change over time. The concept of Trust Management was first proposed

by [13]. It is described as a process of "using a uniform method that describes

and explains security policy, security credential and trust relationship which is used

to directly mandate to the key safety operation" . Moreover, the widely accepted

definition of trust management was proposed by [76], stating that it "refers to the

acquisition, evaluation, and implementation of trust intention". Based on this def-

inition, the trust of subject in the object might be assessed utilizing mathematical

process rely on previous experience and can be amended continuously based on the

18

CHAPTER 2. LITERATURE REVIEW

behavioral result of object.

2.5 Digital Right Management (DRM)

DRM is one of many technology-oriented access control models. With the deploy-

ment of DRM, content owners can restrict and protect their digital contents before

distributing and forwarding them by creating usage rules for those contents[56].

Such usage rules may include assigning temporary versions (trial), content expira-

tion, content subscription, etc. DRM can be highly effective in protecting shareable

and distributable digital information in an open environment [52] [103].

2.6 Usage Control (UCON) Model

2.6.1 Introduction

This section discusses the basic principles of a new access control, known as Usage

Control (UCON); it was originally proposed by [73] to address issues in, and to pro-

vide various access control systems for, the new and modern computer applications

environment. UCON uses attributes to determine access permission to a controlled

digital information or computational resource based on three factors: authorization,

obligations and conditions. These elements shall be discussed in detail in the sub-

sequent sections. Moreover, UCON provides enhancements to existing traditional

access control models by taking into consideration two new aspects for any object

requiring access: mutability or changeability of attributes, and continuity of the ac-

cess permission decision. The concept of mutability refers to the fact that attributes

are not static; rather, they change intermittently, and hence the access permission

decision should be dynamic and continually re-evaluated and updated (as soon as

a new circumstance arises). The continuity of access decision ensures that any de-

19

CHAPTER 2. LITERATURE REVIEW

cision to permit and allow access to an object is made constantly both before and

during the access to an object [72].

2.6.2 Usage Control Conceptual Model

The Usage Control (UCON) model is known as a conceptual framework that pro-

vides a unified structure to protect digital resources. The UCON framework is not

introduced to substitute or replace existing traditional access controls, Trust Man-

agement or DRM. Instead, the UCON framework provides enhancements and thus

includes the existing access controls by applying two new access control concepts

mentioned above: mutability of attributes and continuity of access decision [78]. The

continuity of access decision in UCON ensures that the security policy is enforced

before and during access has been granted to an object. The UCON authorization

mechanism ensures that the granted usage access is revoked and terminated if the

object’s attributes change while the access is in progress and if the security policy

in place is not satisfied with any particular attribute change [112]. As mentioned

above, three factors are used to determine the access decision in the UCON model:

authorization, obligations and conditions. Authorization is a predicate that enforces

constraints on the attributes of both the subject and object when the subject wants

to access an object. Obligations are the expected sequence of actions that are re-

quired by the subject before and during the usage of a given object. Conditions are

a set of restrictions that are dependent on the environment of the access, which are

expected to be valid at the time of access and during the access period.

As an illustration of the three factors discussed earlier, a UCON security and

access policy may enforce aspects such as ensuring that a subject’s name is something

specific (i.e. authorization), that the subject may be required to sign an agreement

form before access, which must not be violated (i.e. obligations), and finally that

the object that needs to be accessed may only be accessed during official working

20

CHAPTER 2. LITERATURE REVIEW

hours (i.e. conditions) [110]. To design such an access control system, the first

action required is to identify the objects that need to be protected, then to identify

the subjects that could request usage or operation on the objects that have been

identified, and to identify all the possible actions that can be operated and executed

on those objects, and finally to identify all the access rights needed to execute the

identified actions on the objects [111].

2.6.3 Usage Control Components

The UCONABC model comprises eight key components (see Figure 2.2), namely:

subjects, objects, subject attributes, object attributes, authorizations, rights, obliga-

tions and conditions. Usage decisions are based on authorizations, obligations and

conditions; these are functional predicates that must be evaluated for each usage

decision [72].

2.6.3.1 Subjects (S) and Subject Attributes (ATT(S))

A subject is an entity who requests access to a resource; it must hold certain rights

of access to the target object or resource, must be able to commence the request

for usage, and consequently must be capable of executing the rights granted and

assigned to it . The subject or resource requester is mostly defined and represented

by its attributes, i.e. subject attributes [37]. The subject attributes, ATT(S), are

basically the capabilities and properties that describe the subject, which can be used

as a basis for any possible usage decision [79].

2.6.3.2 Objects (O) and Object Attributes (ATT (O))

Objects are basically the entities of interest to which subjects have predefined rights

of access and use. Object attributes, ATT (O), are descriptions and properties of

a given object, which could be used as basis in the provision for and making usage

21

CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Usage Control Model [72]

decisions. The target objects to which subjects hold rights can be of a variety of

types: an object may be digital information, or computational, network or service-

oriented resources [40]. An object may be modified, shared or distributed by subjects

in an open computer network environment. Objects may also be original, derivative

or copied, or may be privacy or security sensitive (or otherwise). For example, access

usage histories of subjects are considered as derivative of an object. In UCON, non-

original objects (derivatives) are generated as result of using the original copy [38].

2.6.3.3 Attributes

Attribute is a commonly used concept in access control. For example, in the MAC

model, a security tag assigned to an object can be considered as an object’s attribute

and a user role is also considered a subject’s attribute in the RBAC model. The

mutability of attributes is also introduced in the current access control approaches,

but in most cases, a systems administrator control and force attribute updates. The

mutability of objects and subject attributes resulting from UCON usage processes

is considered the backbone of the UCON model. There are three different types of

attributes in UCON, namely: environmental attributes, object attributes and sub-

22

CHAPTER 2. LITERATURE REVIEW

ject attributes. Subject and object attributes were discussed above. Environmental

attributes are considered as system-oriented attributes, such a device platform, area

code, etc [74].

2.6.3.4 Rights

The concept of access right in UCON is the same as in traditional access control

models. The access rights granted to subjects are not predefined but rather are

granted on demand when a subject attempts to access an object, and the access

right granted is based on the subject itself as well as the object, the authorization,

the obligations, the conditions and the environmental attributes [60].

2.6.3.5 Authorizations (A)

Authorizations are defined as a key functional requirement that must be satisfied be-

fore granting a particular right of access to a digital object. There are various types

of authorizations, and broadly they are utilized in many different contexts, includ-

ing in the traditional access models. For instance, an authorization predicate may

require that a user who wants to access an object or resource must be 22 years old

or more, etc. Authorization predicates place conditions and constraints in the form

of logical predicates on both the subject and object attributes. Unlike traditional

models (which use pre-authorization), UCON authorization predicates are triggered

and evaluated both before (pre-authorization) and during (on-authorization) the

subject’s execution of assigned rights [85].

2.6.3.6 oBligations (B)

Obligations are also defined as functional predicates; they are used to confirm the

compulsory requirements that a subject must undertake before and during a partic-

ular usage process. The mandatory requirements here may be either pre-obligations

23

CHAPTER 2. LITERATURE REVIEW

(preB) or ongoing-obligations (onB). preB uses a Boolean function and returns ei-

ther ’true’ or ’false’ in order to determine whether or not certain pre-requisite actions

have been fulfilled before granting access; for instance, a user agreeing to provide a

log before listening to a music file, or a subject agreeing to provide personal infor-

mation on a form before reading a company’s free whitepaper, etc. onB represents

the ongoing-obligations that a subject must fulfil in order to ensure that a particular

predicate is active (continuously or periodically) while the permitted rights are being

executed or are in use. For example, a subject may be required to keep a particular

online advertisement active on the side while the subject is still logged on to watch

a free video. Subject or object attributes may or may not be used by obligations.

Attributes are useful for determining the types of obligations that may be required

for usage approval. In some cases, obligations require making certain updates on

subject attributes; those updates would likely affect both future and current usage

decisions. However, attributes are not utilized in making decisions in relation to

obligations; rather, they are only used to determine which obligations to select and

perform [112].

2.6.3.7 Conditions(C)

Conditions are defined as environmental restrictions that must be considered in the

process of a usage decision. They are not related directly to objects or subjects but

they do rely on environmental properties or attributes. The assessment of condi-

tion predicates may take place before granting access permission to a digital object

(pre-condition) or while the subject is using the object (on-condition). However,

conditions do not update object, subject or environmental attributes, and the sta-

tus value of conditions may be altered as a consequence of environmental amendment

[78].

24

CHAPTER 2. LITERATURE REVIEW

2.7 The UCONABC family core modules

In this section, we briefly discuss UCONABC family core models, which rely on

the combination of three decision factors described above (authorization, obliga-

tions and conditions), as well as on continuity of usage decision and mutability

of attributes. These core models were developed for the simple reason that they

concentrate largely on the enforcement process of usage decisions, rather than on

administrative issues. The ABC model functions (with the assumption of a usage

request on a target object and the decision to grant access rights) can be per-

formed either before or during the action and execution of requested rights. As

a side effect of usage decision, mutability of objects permits limited updates on a

subject or object attribute. Therefore, the UCON model identifies six core mod-

els, known as pre-authorization (UCONPreA), on-authorization (UCONOnA), pre-

obligation (UCONPreB), on-obligation (UCONOnB), pre-condition (UCONPreC) and

on-condition (UCONOnC). The models incorporate five components: subjects (S),

objects (O), rights (R), subject attributes (ATT(S)), object attributes (ATT(O)).

The notation allowed(s, o, r), means that a subject s is permitted to use a right

r on an object o. Moreover, the notation stopped(s, o, r) means that the access

will be revoked because all or some of the decision factors are no longer satisfied.

Attributes update can be achieved in UCON before the access (PreUpdate), during

the access (OnUpdate) or after the access (PostUpdate) [38].

25

CHAPTER 2. LITERATURE REVIEW

2.8 Ubiquitous (Pervasive) Computing

2.8.1 Introduction

One of the most rapidly developing areas in ICT is known as ’ubiquitous computing’.

It refers to the ever-increasing phenomenon of integrating and embedding ICT tools

in people’s daily lives and in the situations or environment in which they live. This

has been made possible by the ever-improving developments in the manufacture of

microprocessors, which now have built-in communication functions and other ameni-

ties [77]. There are many applications available for ubiquitous computing, including

healthcare, homecare, environmental monitoring, intelligent transport systems man-

agement and monitoring, etc. [105]was the first to introduce the term of ubiquitous

computing as a seamless integration of micro-devices into the daily lives of ordinary

people as well as specialists .

Moreover, developers in the field have been discussing and investigating pervasive

or ubiquitous computing since about 1993 [57]. Ubiquitous computing has been

defined in many ways but the most broadly used definition refers to it as a method

for enhancing the use of computers by users who cannot see them even though

there may be many of them accessible in the physical environment. The nature of

"environment" in ubiquitous computing differs from that in traditional computing

models, wherein the environment is represented as physical space, which is directly

supported by the relevant software and hardware to enable interactive messages to

be sent between users and that space [48].

26

CHAPTER 2. LITERATURE REVIEW

2.8.2 Ubiquitous System Properties

In reference to Figure 2.3, there are three main properties in ubiquitous comput-

ing (ubicomp) systems, namely, distributed computing, implicit Human Computer

Interaction and context-awareness, plus two other additional properties, namely,

autonomous and intelligent computing [80].

Figure 2.3: Ubiquitous Systems properties [80]

2.8.3 Ubicomp Technologies

Ubiquitous computing involves the convergence of three ICT areas, namely: com-

puting devices, communications and user interfaces [31][8][51].

27

CHAPTER 2. LITERATURE REVIEW

2.8.3.1 Devices

Personal Communications Services (PCS) devices come in varying shapes and sizes,

such as tiny handheld devices as small as mobile devices to near-invisible micro de-

vices that are embedded in everyday objects such as clothing and furniture. These

micro-devices have the ability to communicate and interact with each other seam-

lessly and intelligently. So, devices can be categorised as follows:

Sensors: these serve as a form of input device that function to detect and recognise

human commands, and to detect relevant changes in user behaviour as well as in

the environment.

Processors: there are functional components for interpreting and analysing the

inputs detected by the sensors.

Actuators: these are output devices that act in response to processed informa-

tion by making certain changes to the environment through mechanical or electronic

means, such as controlling air temperature (which is normally done by actuators).

Furthermore, the term may refer to devices that deliver processed information in-

stead of being devices that physically change the environment .

2.8.3.2 Connectivity

Ubicomp systems depend largely on the interaction of different independent elec-

tronic devices into a larger seamless computer network. The interlinking and in-

terconnectivity of these systems and devices may be achieved though wired (e.g.,

Ethernet/ADSL broadband) or wireless means (e.g., WiFi, Bluetooth). The devices

themselves are equipped with the ability to select the most effective connectivity

mode at any given time. The development of ubiquitous computing relies mostly

28

CHAPTER 2. LITERATURE REVIEW

on the extent of the interoperability and convergence of both wireless and wired

technologies.

2.8.3.3 User Interfaces

A user interface is the domain of interaction between a human user and an ICT

device. For example, in personal computers, there are various devices, such as a

mouse, a keyboard and a microphone, that are used to provide input data, while

visual display units, such a monitor or a projector, are used to provide the processed

output information. For ubicomp systems, different types of enhanced user inter-

faces are being developed constantly, with ability to sense and provide data about

users and the environment to a computer device for further processing. Interfaces

have recently been developed to accept touch as input data, and in the future, user

interfaces will be used to accept input data that may be visual, such as face recog-

nition or responses to human gestures; they may include other input types such

as sound and scent. Current ubicomp technologies have the potential to know and

recognize the user, in the form of the user’s expressed attitudes, behaviour or prefer-

ences, and subsequently they conduct changes in the physical environment to meet

the user’s specific needs. However, there are considerable engineering challenges in

designing and developing a computing system that can automatically adjust itself,

i.e. that can adapt or change as a result of unforeseen situations .

2.9 Overview of Context-Aware Systems

2.9.1 Definition of Term Context

Many researchers have attempted to define the word "context". The first authors

who introduced and defined the term context were [93]. They stated the first de-

scription of the context as identities of people, location and objects around. [67]

29

CHAPTER 2. LITERATURE REVIEW

has made similar description of previous one which define context as the users iden-

tity, environment, time and location. While [18] have made definition of context as

social, user’s physical, emotional or state of information. Another way of describe

and define the term context is by utilizing synonyms like (situation, Background or

circumstance)[14][6].

Moreover, a further definition was posited by [75], who considers context as be-

ing the conceptual and physical states of interest to some specified person, place

or object. Thus, context is basically information pertaining to the environment, as

stated in [81]. Even with all the definitions mentioned above, it remains difficult to

clarify the term context; however, arguably the best (and possibly the easiest defi-

nition to fully comprehend) was given by [24], who described it as "any information

that can be used to characterize the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction between a user and an

application, including the user and application themselves".

2.9.2 Context Model

The importance of the definition of context is that it identifies the precise data that

need to be stored, which in turn assists in developing a context model that has the

ability to define and store this context information in machine processable form.

[98] categorized context models as follows:

1. Key-value Model: this is one of the easiest forms for modelling context

information. Context information can be stored as attribute-value pairs; For

instance, name: John, age: 23, location: office, time: 2:30, and so on. However,

this model is limited in terms of being able to refine the structure so that it

can handle sufficiently powerful context information retrieval algorithms.

30

CHAPTER 2. LITERATURE REVIEW

2. Markup scheme model: this is another approach to data structure that can

be utilized to represent and exchange context information, based on markup

tags that are used on the stored data content and attributes. The markup tag

contents can recursively contain other markup tags.

3. Graphical model: in this model, the unified modelling language (UML)

is used because UML has a variety of efficient graphical tools. The generic

structure of UML is appropriate for context information modelling. This type

of context modelling is suitable for expressing Entity Relationships (ER) from

which ER models can be derived from it; these can be used as functional tools

to structure relational databases within the system architecture of context

management.

4. Object Oriented Model: the nature of context information is becoming a

problem in most context-aware systems because of their dynamism. Therefore,

the goal of using this approach is to encapsulate the details of context pro-

cessing at the object level and to access the context information only through

particular interfaces.

5. Logic based model: the descriptions of context in this approach are known as

expressions, facts and rules. The expressions also incorporate a set of varieties.

All logic-based models employ a high level of formality.

6. Ontology based model: the idea behind this type is to identify the context

and concepts as well as their interrelations. There are many examples for this

approach, but one excellent example that used ontologies to model context

information is the CoBrA system (Context Broker Architecture) [21], which

characterizes entities by offering a set of ontological concepts.

31

CHAPTER 2. LITERATURE REVIEW

The most appropriated context model approach for our work in this thesis is

object oriented model where The contextual information is embedded as the

states of the object, and the object provides methods to access and modify

the states.

2.9.3 Context-Aware Systems

Context-awareness is one of many wide areas in ubiquitous computing. Ubicomp

technologies allow for separation between users and devices, hence providing any-

time, anywhere by anyone computer usage. In order to be effective in the provision

of adequate services for users, software applications and services must know their

context and have the ability to automatically adapt to changes in those contexts

[106]. [6][80] defined a context-aware system as one that has the ability to adapt

itself to the current environment or context. So, the system is context-aware if it

senses and reacts to changes in its environment. The author who first introduced

and defined context-aware computing was [93] in 1994, who defined it as the capa-

bility of computing devices to interact with their environment in a dynamic manner.

Also [67][75][16] have offered definitions for a context-aware system, generally saying

that it reflects the ability of a system to sense or detect context information and to

process it, and then to react or respond in order to provide the most appropriate

service or information to the user.

In this regard, context-aware applications have been defined by [18] as applica-

tions that dynamically deliver services or information, and that react based on any

user context provided by sensors.

Context-awareness provides both application developers with new opportunities

for collecting context data and then adapting the behaviour of the system accord-

32

CHAPTER 2. LITERATURE REVIEW

ingly. With the use of mobile devices, context-awareness has become critical to

enhancing usability [19]. Although context-awareness has been the subject of much

consideration in research and development, there are as yet no specific approaches for

the implementation of context-aware systems; this is largely because such systems

depend on constraints and situations such as the positions of sensors, the number of

probable users, the accessible resources, the typical devices used or the possibility

of extending the system [17] [92].

The most appropriated definition for our work in this thesis is defined by [24]

who states that a context-aware system is one that has the ability to utilize context

in order to deliver suitable services or information to the requester, where the pro-

vided service is based both on the user’s task and his/her context.

Overall, context-aware systems are designed with the ability to automatically

adapt to current context, taking into account the environmental context, without the

need for any direct intervention by the user, and thereby to enhance the effectiveness

of the device being used [69].

From our previous definitions of context-aware systems, there are two different

types of context-aware systems as follows [48]:

• Active context-awareness: a system can sense the context and automatically

adapts to new situation based on this context.

• Passive context-awareness: a system can sense the context and presents this

context to interested user or makes the context persistent for the user to re-

trieve later, but cannot adapt to new situation based on this context.

Therefore, in our model we have used an active context-awareness because CA-

UCON model can sense the context and adapt to the new situation depend on the

33

CHAPTER 2. LITERATURE REVIEW

current context. Active context-awareness may help to eliminate user intervention

and adapts automatically.

2.9.3.1 Context Information Acquisition

There are various approaches to acquiring context information, as presented by [57]:

1. Direct sensor access: this is where client software on the device is able to

directly gather the desired information using internally built-in sensors.

2. Middleware infrastructure: one important method that modern software

design uses is encapsulation; it allows the separation of the graphical user in-

terface from the business logic. Encapsulation as a middleware-based approach

that provides a layered architecture model for the context-aware system with

the aim of hiding the details of any low-level sensing.

3. Context server: in this, the sensors send all the data they gather to the

context server for the purpose of facilitating multiple concurrent access. It

is logical to allow multiple clients to have access to a remote data source in

context-aware systems. The middleware-based architecture is extended by the

distributed approach through processing access by managing many distant

components.

2.9.3.2 Context-Aware System Abstract Architecture

In this section we discuss conceptual architecture layers for context-aware systems;

as illustrated in Figure 2.4 below, expansion layers are designed to detect and for

utilizing context information by attaching ’reasoning’ and ’interpreting’ functionality

[57].

The initial layer in the figure above consists of gathering data from the various

sensors. It should be noted that ’sensor’ here refers not only to sensing the hardware

34

CHAPTER 2. LITERATURE REVIEW

Figure 2.4: Layered conceptual framework for context-aware system [57]

but also all the data sources that are able to offer useful and utilizable context

information. In respect of the data capturing methods, sensors may be classified

into three groups:

• Physical sensors: this is the most commonly and widely used form. There

are many varieties of hardware-based sensors that are capable of capturing all

types of physical data.

• Virtual sensors: these sensors source their context data and information

from services and software applications. For instance, determining a particular

employee’s present location can be achieved by using physical sensors in the

form of tracking systems, and also using the virtual sensors in the form of

assessing employee browsing information, travel bookings, electronic calendars,

emails, etc.

• Logical sensors: these sensors utilize of combination of physical and virtual

sensors as well as additional information from various sources to resolve higher

tasks.

35

CHAPTER 2. LITERATURE REVIEW

The second layer of this conceptual framework is charged with the recovery of

raw context data. Suitable drives are used for physical sensors, while application

programming interfaces (APIs) are used for both logical and virtual sensors.

The pre-processing layer is the third one in the framework but is not applied in

all context-aware systems. However, it can provide helpful information that can be

used in the system if the raw data are too coarse-grained. The pre-processing layer

is tasked with performing the reasoning and interpreting of contextual information.

The fourth layer, storage and management, is responsible for organizing the

data gathered and subsequently making them available to clients through a public

interface. Clients can access information in two ways: the first is access through

a synchronous manner, whereby clients poll the new changes on the server using a

remote method. The second is asynchronous, whereby clients subscribe for a par-

ticular content or event in which they are interested.

The fifth layer in framework is application. The implementation of the real re-

sponse to various context information and events is achieved here. In some circum-

stances, application-specific context, reasoning and information retrieval manage-

ment are encapsulated and hidden from agents, which act between the pre-processing

and the application layers as an additional layer in order to communicate with the

context server.

2.10 Adaptive Systems

From the literature, there are a variety of definitions for adaptive system; one of the

most common definitions was given by [82], which states, "Self-adaptive software

36

CHAPTER 2. LITERATURE REVIEW

evaluates its own behaviour and changes behaviour when the evaluation indicates

that it is not accomplishing what the software is intended to do, or when better func-

tionality or performance is possible". The appropriate definition for our research was

given by [36],which states, "Self-adaptive software modifies its own behaviour in re-

sponse to changes in its operating environment. By operating environment, we mean

anything observable by the software system, such as end-user input, external hard-

ware devices and sensors, or program instrumentation" . The abstract architecture

of adaptive systems can be seen in Figure 2.5 .

Figure 2.5: Adaptive System Architecture [82]

There are different kinds of systems that have link and similar meanings to the

term adaptive system, including as self-managing and autonomic system. However,

it is challenging to identify any real differences among these terms, and they are

used interchangeably by the majority of researchers. Nevertheless, the distinction

between autonomic and self-adaptive is that the former is more general, whereas the

latter is more restricted, which means that an adaptive system is a special case of

an autonomic system.

37

CHAPTER 2. LITERATURE REVIEW

2.11 Adaptation in Ubiquitous Computing

Ubiquitous computing adaptation is considered as a reactive process, in which the

adaptation takes place based on a particular circumstance or series of events in

the environmental context; the main objective of this adaptation is to improve the

quality of the service being used by the system user. Therefore, the most significant

requirements for an application being applied in the ubiquitous environment are that

it has the ability to sense the surrounding environment and process these changes,

and that it can respond to these changes in an efficient and effective manner [43].

The most common description for adaptation within ubiquitous computing is

taken from the MAPE-K loop developed by IBM [25], which is often used in the

autonomic computing context. Thus, adaptation in ubiquitous computing is con-

sidered as a closed loop consisting of different phases, as shown in Figure 2.6.

The first phase is the sensing and processing of context; this phase senses the

different user contexts, such as location, user preferences, etc., and the different

system contexts, such as light level, temperature, etc. All the gathered data are

interpreted in terms of high-level context events in order to consider the various

adaptation process steps available.

The next phase is reasoning and planning; the function of this phase is to process

and analyse any new changes to the context that have been captured by the sensors,

to consider the particular type of adaptation required as well as how to accomplish

the required objectives.

The final phase in ubiquitous adaptation is adaptation acting; the responsibility

of this phase is to implement the most suitable adaptation approach in order to effect

38

CHAPTER 2. LITERATURE REVIEW

Figure 2.6: Adaptation loop in ubiquitous computing [25]

the adaptation decision of the previous phase (reasoning and planning process).

2.12 Adaptation Approaches

From the literature, various adaptation approaches have been utilized in order to re-

alize dynamic adaptation in software. In the following subsections, we present three

adaptation approaches, known as parameter adaptation, compositional adaptation

and action-based adaptation [63][20].

39

CHAPTER 2. LITERATURE REVIEW

2.12.1 Parameter Adaptation

This kind of adaptation approach is utilized to affect the behaviour of the system

via the amendment of particular variables in the program. A common instance of

this approach is TCP protocol, in which its behaviour can be adjusted in respect of

network congestion. Parameter adaptation is used in the area of ubiquitous com-

puting for amending the non-functional properties of a system that are influenced

as a consequence of context change. For instance, a portable device that has an

image render might present images in low quality because of the low bandwidth or

low memory size, and so the system adapts its behaviour to the current situation by

adjusting particular parameters in the image application in order to meet the new

situation [30].

However, having unpredictable context changes in a highly dynamic environment

raises the difficulty of trying to define in advance all the probable contexts (as well

as their processes) for non-functional properties. The advantage of the parameter

adaptation approach is that it is cheap in terms of implementation effort and com-

plexity, and this is why some context-aware systems use this approach [4].

On the other hand, the parameter adaptation approach has not been considered

as an optimal solution in the area of ubiquitous systems; the key disadvantage of this

approach is that the software components (as well as unimplemented algorithms)

that are left throughout the design stage cannot be adapted. In addition, using

this approach for such an application, where its behaviour is based on frequent

context changes, might lead to several configurable parameters becoming conflicted.

Thus, a different approach is required, i.e. one that helps to decrease the number of

parameters; like memory parameter. [7].

40

CHAPTER 2. LITERATURE REVIEW

2.12.2 Compositional Adaptation

Another approach to adaptation is a compositional adaptation; this goes further

than straightforward code-tuning and permits the algorithm or parts of the system

structure to be replaced to enhance the program in order to meet the current situa-

tion. Compositional adaptation works in environments with unpredictable contexts

or requirements and where new adaptation functionality may be required. Thus,

in the following two bullets, we discuss the most important technologies that have

been used in compositional adaptation [63][11]:

• Separation of Concerns: in this technology, the segregation of functional be-

haviour from non-functional behaviour in terms of development is permit-

ted, where the functional behaviour is related to business logic and the non-

functional behaviour is associated with security and quality of service. This

mechanism facilitates the development of the system and its maintenance when

upgrading the system. Separation of concerns, such as domain-specific lan-

guages, constraint languages and generic languages, has been considered a

significant principle in the area of software engineering, and it is employed in

various advanced techniques .

• Computational Reflection: this is related to the ability of an application to

process new contexts and adapt its behaviour to the current situation. It facil-

itates a system in changing its behaviour through expressing the implementa-

tion details of the system at an abstract level, devoid of negotiating portability.

In this technology, two activities are introduced: introspection and interces-

sion; the former deals with the observation of the system behaviour, and the

latter responds to the changes that are captured in the observation stage and

then adapts to the new situation.

41

CHAPTER 2. LITERATURE REVIEW

2.12.3 Action-Based Adaptation

This kind of adaptation approach is also known as rule-based adaptation. Action-

based adaptation is a common approach employed in adaptive systems. It is able to

define the self-configuring and self-managing aspects of the system’s behaviour that

is associated with distributive technologies and networks. This approach relies on

the concepts of state and action, where the system at a specific time (t) should move

from the current state (S1) to the next state (S2) if all corresponding conditions are

true and the transition of the system has to be determined by the action (a). There-

fore, the way to direct the system to adapt to the new situation is through using

the format of If (conditions), and Then (actions)[35] [70].

Many researchers have used this type of adaptation approach in their work. One

common model was proposed by [27], who developed an adaptation platform for

mobile systems; it uses action policies based on an event calculus, which are formu-

lated in the form of conditions and actions that accurately determine the adaptation

behaviour of the system. The conditions are defined as logical expressions that may

take the value "true" or "false", while the actions are defined as the adaptation

methods that are performed if the condition is evaluated to be "false".

Moreover, the notion of event-action rules has been used in terms of expressing

dynamic system reconfiguration. For instance, the DART project [46] uses an adap-

tation manger that implements adaptation policies, which are activated by particu-

lar events, and these events are created depending on user requirements and system

statistics. Thus, each policy is associated with one or more events, and whenever

a specific event occurs, the most suitable policies are invoked by the manager, who

then executes them. The problem is that many policies might index the same event,

42

CHAPTER 2. LITERATURE REVIEW

and this could cause the policies to conflict; in order to solve this problem, appro-

priate priorities are allocated to each policy.

2.13 Comparison of Adaptation Approaches

In this section, we present the differences between all the adaptation approaches

mentioned above in order to identify the one best suited to the field of ubiquitous

computing. The parameter adaptation approach is suitable for a low-dynamic en-

vironment; it can change the system’s behaviour by alerting particular parameters

that are influenced by context changes. However, this adaptation approach is not

appropriate approach for highly dynamic environments, which must consider all the

various types of context that could occur and respond based on those contextual

changes. The second adaptation approach is compositional; this is considered to

be a general approach to self-adaptation based on the language of implementation.

Depending on several works that have been accomplished through compositional

adaptation, it can be claimed that compositional adaptation is a powerful approach

for two different reasons; the first, in terms of processing level, is its flexibility of

reasoning, and the second, in terms of adaptation reaction, is the easy implementa-

tion of the dynamic reconfiguration of the system (compositional adaptation allows

algorithmic and structural changes) [63].

However, the action-based adaptation approach is considered a good alternative

solution; it uses actions in order to adapt to new situations. This type of adaptation

approach is more suitable for non-functional requirements such as security and qual-

ity of service. Based on our adaptation objective, we would prefer to use this type of

adaptation approach, as the CA-UCON model uses adaptation actions in adapting

43

CHAPTER 2. LITERATURE REVIEW

to the current context. The action-based adaptation approach uses conditions and

actions, where the actions take place if the conditions are evaluated as being false

in the adaptation process.

2.14 Related Work on Context-Aware Access Con-

trol Models

In this section, we present some additional works that have been done in the area of

context-aware access control models, which merge the context information with cre-

dentials while making any decision over access control. In other words, the context-

aware access control model is an access control mechanism that uses context infor-

mation as a further constraint to govern and control the resources or adapts to the

new situation [34].

2.14.1 Extensions of Role-Based Access Control (RBAC)Model

In this subsection we present some proposed models that extend the RBAC model

to include the context information in the access decision. We, then compare these

models with our proposed model in order to show the differences and the limitations.

Figure 2.7: CAAC conceptual view [26]

44

CHAPTER 2. LITERATURE REVIEW

As can be seen in Figure 2.7, the new kind of restriction introduced to the

context-aware access control model is known as a contextual constraint, which con-

trols the user assignment and permission assignment functions [26]. For example, a

specific role is granted to a specified user only if the contextual constraints of that

user are fulfilled, and permission is assigned to that role only if the contextual con-

straints of the holder of this role are fulfilled. A further discussion of such models

is given in the following subsections.

2.14.1.1 Generalised Role-Based Access Control Model

This is one of the earliest models and was proposed by [29] in the area of context-

aware access control. This model was proposed for the smart home environment,

which extends the notion of the role to include two kinds of roles, which are known

as object role and environment role. The environment role is utilized to capture the

environment context, which means the system context as well, as it is considered in

the decision-making process. However, the object role is used to capture the level

of sensitivity of the requested object. For instance, if a subject wants to perform

a particular right over a particular object, the access control considers the object

role, subject role, environment role and the right in order to permit the access. The

purpose of these widened roles is to eliminate the restriction of the subject-centric

roles of the RBAC model. Because of the introduction of these extended roles, the

GRBAC model becomes more complex in term of decision-making, which means

that it requires a complex framework as well [45][47].

2.14.1.2 Spatio-Temporal Models

Several access control models were developed in the area of pervasive systems, and

in order to control the access, they generally use two types of context information:

time and location [99] [101]. One of these models is known as Temporal Role-Based

45

CHAPTER 2. LITERATURE REVIEW

Access Control (TRBAC) model proposed by [10], which is an extension of the RBAC

model. This model introduced a new notion called temporal restriction within access

control policy, which offers a new mechanism that implements the access control

policies based on time. Therefore, the assignment of any role to the user relies on

satisfying the temporal constraint. Another model is known as generalized Temporal

Role-Based Access Control (GTRBAC) model [41], which extends the above model

(TRBAC) by including the idea of an activating role. The difference between an

activating role and an enabling role is that an enabling role can be claimed by the

user with all the related permissions. However, an activating role is an enabling

role that must be activated in the particular session by at least one user. So, the

user can obtain all the related permissions of the current role. The advantage of

the activating role is that it assists in identifying the currently running role, which

is utilized to observe all running activities and usage of resources. Many temporal

restrictions are enforced by the GTRBAC model on user assignment and permission

assignment policy, enabling time and role activation [22].

A different model was proposed by [109], which is known as Spatial Role-Based

Access Control (SRBAC) Model. This model considers a constraint that is based

on location. In this, the access permission is granted to the user based on the user’s

location; the location may be divided into several zones and each one may be assigned

to a different set of permissions. Thus, if the user requests access, the condition of

this role must be fulfilled in the current zone. From the table 2.1, it can be seen

that each user role is assigned with a different permission in a specific location. The

main problem of this model is that it does not have the proper semantic meaning

of the position information.

Various models have been categorized as spatio-temporal access control methods,

which consider location and time in terms of contextual information in the access

decision process, including those explained in [100] [49].

46

CHAPTER 2. LITERATURE REVIEW

Table 2.1: Location Permission Assignment List in SRBAC

Roles Location Permissions
Customer_role Zone1 P1,P2,P3
Customer_role Zone2 P4
Customer_role Zone3 φ

2.14.1.3 Dynamic Role-Based Access Control Model

The models examined above have a common aspect in that they consider the context

information of the user at the time of the request. Thus, the user’s context infor-

mation is evaluated, which means that if the user requests to access an object, the

system evaluates the context information of the user in order to determine whether

or not to allow access to the requested object. The evaluation of the context infor-

mation is performed at the time of the request, and there is no further evaluation

once the right has been granted to the user. Moreover, only time and location as

context information are considered in spatio-temporal models, even though context

information is represented by more than just time and location. Therefore, in the

pervasive environment, all types of context information should be considered in order

to build a comprehensive access control model.

To solve this problem, a model was proposed by [108], which is known as the

Dynamic Role-Based Access Control (DRBAC) model. In this model, the role and

permission assignments are regulated dynamically, relying on the context informa-

tion of the user, but it considers all types of context information by using the Central

Authority (CA) in order to deal with and manage the role hierarchy for the user

in granting those roles. In the CA, an agent is utilized in the device of the user in

order to observe and alter the role(s), based on the context information. The agent

is represented by a state machine, which means that each state represents a role,

and the transition between the current role to another role is performed by moving

from the current state to another state; this happens based only on the context

47

CHAPTER 2. LITERATURE REVIEW

information.

The key disadvantage of the DRBAC model is that it is highly complex in terms

of implementation, as the user device must have a role state machine running for

each role. This increases the number of roles in the system, which increases the

complexity of the system; this is a major problem for the restricted devices that are

generally used in pervasive environments.

Various models have been categorized as Dynamic access control methods in-

cluding those explained in [15][115]

2.14.1.4 CAAC-based Models with Architectural Components

Context-aware access control models require a special architecture to gather and

manage the context information that must be considered in the decision-making

process. This architecture must contain two parts: one for the collection and man-

agement of the context information, and the second one for controlling the access.

However, the architecture that represents the traditional access control models in-

cludes only one part, which is access control, and so is not suitable for models in

which context information is considered in decision-making. In order to conquer

this restriction, a variety of architectures have been proposed recently to capture

the context information. In the following paragraph, we present one example of

these architectures [44].

UbiCOSM: One of the context-aware access control models is known as Ubi-

COSM [23]. It uses the evaluation of the user’s context in order to control the

objects or resources. As can be seen from the figure 2.8, the UbiCOSM model in-

cludes the external model that manages the context and that deals with low-level

entity identification (like CARMEN [9]). It is hard for UbiCOSM to hold diverse

access control requirements, application domains and policies because of the strong

48

CHAPTER 2. LITERATURE REVIEW

connection between context information and access permissions.

Figure 2.8: UbiCOSM middleware services [23]

The reason behind introducing the authorisation enforcement manager in Ubi-

COSM is to segregate the authorisation engine from the access control enforcement.

This separation offers a high degree of modularity, while the enforcement of an access

control is based on application.

However, The majority of these works and their solutions have been constructed

on the RBAC model. All the above RBAC extensions are simply represented in CA-

UCON model, where CA-UCON has the preAdapting components that can adapt

to the new situation before the access request is granted (based on the context

information). In addation, CA-UCON goes beyond that by controlling the usage

and adapt to the change in the environment in order to preserve continuity of usage.

So, each extension of traditional access control above is considered as a special case

of CA-UCON model.

2.14.2 Extensions of Usage Control (UCON) Model

Many recent works have been done to improve the UCON model and solve this

weakness in pervasive computing system. For instance, [113] proposed a new access

control called as Times-based Usage Control (TUCON) in order to protect digital

resources misuse. In TUCON the use of the time variable is Initiated into UCON,

49

CHAPTER 2. LITERATURE REVIEW

and greatest times described as consumption restrictions. This approach is simply

identified in CA-UCON model by specified the time as condition requirement. [39]

proposed a new model defined as Geography Usage Control (GEO-UCON) model

to deal with GEO DBMS access control. In this model, a geospatial factor is in-

troduced into UCON in order to ensure data protection in mobile applications and

location-based services. This model like the last one, it can be defined in CA-UCON

model where the location can be used as condition requirement to control the ser-

vice.

Moreover, [5] proposed usage control model to context-aware in mobile com-

puting environments defined as ConUCON. In this model two new components are

introduced: context and states. The access decisions in ConUCON model is based

on these new components plus obligations. [58] proposed a new model called as

contextual Usage Control (CUC) model which replaces the conditions component

in UCON by context and add a management module to it. The last two models are

using context information as further constraints in order to govern and control the

resources by changing the condition component into context, which is basically the

UCON model can do that. UCON model has condition component which can sense

the context of environment, but it cannot adapt to the new situation based on this

context. However, all these efforts have not completely solve this issue.

In contrary the above UCON extensions, CA-UCON model enables adaptation

to environmental changes in the aim of preserving continuity of access by triggering

specific actions to adapt to new situations. In addition to data protection, CA-

UCON model enhances the quality of services, striving to keep explicit interactions

with the user at a minimum. This makes it more suitable for pervasive computing

50

CHAPTER 2. LITERATURE REVIEW

systems.

2.15 Summary

In this chapter, we presented a background about traditional access control mod-

els (MAC, DAC,RBAC), trust management(TM) and DRM by discussing the pur-

poses, functionality and distinction between these models. We then, investigated

usage control model (UCON) which is considered as a new access control model and

determines what distinguishes it from other traditional access control models.

In next part of this chapter, we gave an overview of ubiquitous systems and

context-aware systems by examining the context and context-aware system and

properties of Ubicom systems. In addition, the definition of adaptive systems and

the adaptation in ubiquitous system are presented. Then, a various aspects of

adaptation in term of adaptation approaches are covered. Finally, previous works

on context-aware access control are provided.

In the following chapter, we propose a context-aware and adaptive usage control

model by demonstrating architecture and computational model of this model.

51

Chapter 3

Context-Aware and Adaptive Usage

Control (CA-UCON) Model

Objectives:
• Present a novel architecture of the CA-UCON Model.

• Present a computational Model of CA-UCON .

• Give formal definition of CA-UCON model .

• Show the Expressive power of the CA-UCON model.

52

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

3.1 Introduction

In this chapter we propose a Context-Aware and Adaptive Usage CONtrol (CA-

UCON) model which extends the traditional UCON model to enable adaptation to

environmental changes in the aim of preserving continuity of access. Indeed, when

the authorisations and obligations requirements are met by the subject and the

object, and the conditions requirements fail due to changes in the environment or

the system context, CA-UCON model triggers specific actions to adapt to the new

situation. Besides the data protection, CA-UCON model so enhances the quality

of services, striving to keep explicit interactions with the user at a minimum. We,

then propose a novel architecture for Context-Aware and Adaptive Usage Control

(CA-UCON) model which is introduced based on the notion of context-aware sys-

tem. The main innovative features of this architecture is the merging of continuity

of usage decision (UD) and dynamic adaptation decision (AD) to changes in the en-

vironmental or system context. The computational model of CA-UCON is described

as a Finite State Machine (FSM), depicting how a subject’s request to access an ob-

ject is handled in this model. Moreover, we provide the formal definition of the two

newly introduced adaptation models within the CA-UCON model. The expressive

power of CA-UCON model is presented which the UCON model can be specified in

CA-UCON model; and so all the access control models that can be represented in

UCON (such as RBAC, MAC, DAC, DRM).

3.2 Architecture of CA-UCON model

In this section, we elucidate the whole architecture of the CA-UCON model as de-

picted in Figuer 3.1, it provides comprehensive definition of each components in the

architecture and reveals the functions performed by each components in the archi-

53

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

tecture, in particular how these components interrelate with each other to complete

the task of permit or deny the access request. The architecture highlights the two

important components known as usage decision (UD) component and the adap-

tation decision (AD) component. The two dashed ovals materialise the fact that

usage decision and adaptation decision happen continuously before and during us-

age. The following subsections explain the intuitive meanings of the two significant

components with all corresponding components.

Figure 3.1: Architecture of The CA-UCON model

3.2.1 Usage Decision (UD)

This component is described as in the usage control model (UCON), making de-

cision of granting or denying rights of access based on three factors identified as

54

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

authorisation, obligation and condition components [73]:

• Authorisations (A): Authorisations are a key functional requirement that

must be fulfilled before granting a particular right of access to a digital object.

Authorization predicates place conditions and constraints in the form of logical

predicates on both the subject and object attributes. The authorization pred-

icates are activated and evaluated both before (pre-authorization) and during

(on-authorization) access.

• oBligations (B): Obligations are also functional predicates which are used to

confirm mandatory requirements that a subject must undertake both before

and during a particular usage process. The mandatory requirements here

may be either pre-obligations (preB) to be fulfilled before access permission is

granted or on-obligations (onB) to be fulfilled during access.

• Conditions (C): Conditions are environmental constraints that must be con-

sidered in the process of usage decisions. Conditions are not related directly

to objects or subjects, but they are based on environmental attributes. The

evaluation of condition predicates may take place before granting permission

to access a digital object (pre-conditions) or while the subject is using the

object (on-conditions). When conditions fail due to changes in the environ-

mental context, adaptation actions are triggered in an attempt to change the

environmental context such that these conditions hold.

3.2.2 Adaptation Decision (AD)

This component decides what adaptation action to perform depending on the envi-

ronmental context which is refined into subject context, object context, information

and communication technology (ICT) context, and the physical environment con-

text:

55

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

• Subject Context:

Subject context is any type of context information linked to the subject such

as his location, activity, preferences, and people nearby.

• Object Context:

Object context refers to any kinds of context information related to the object.

These can be the location of the object, execution state, nearby resources and

availability.

• Physical environments context:

This characterises relevant physical phenomena taking place such as the time,

light, noise level, temperature, weather and so on.

• ICT context:

ICT context is general term that deals with any kind of context information

related to ICT and computing system included any communication devices

or applications nearby. Examples of these contexts include: laptops battery

rate, network reliability, smart phones memory size, PDAs and hardware ca-

pability and communication bandwidth. In addition, the diverse services and

applications related to them, such as video-conferencing and distance learning.

• Adaptation Actions:

Adaptation action is an operation that should be performed over condition

predicate with the purpose of overcoming the environments changes. These

actions may be classified according to the subject of the adaptation and the

scope. For example, service instance adaptation actions (retry, duplicate ser-

vice, and substitute service) and flow instance adaptation actions (redo, choose

alternative service, and undo).

56

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

3.2.3 Subjects (S) and subject Attributes (ATT(S))

A subject is an entity who requests access to a resource and must hold certain rights

of access to the target object or resource. Subject has attributes which are used in

the usage decision making. For example of subject attributes are : identities, roles,

group name and memberships. We let S denote the set of subjects and ATT(S)

denote the set of subject attributes.

3.2.4 Object (O) and Object Attributes (ATT (O))

Object is the resource or entity which the subject has to hold a certain right to access

or use. Object attributes are the descriptions and properties of a given object which

could be used as the basis for the provision and making of the usage decision process.

For instance of object attributes are: ownership, security labels and role permission.

Let O denote the set of objects and ATT(O), the set of object attributes.

3.2.5 Rights (R)

Rights are privileges that subject can hold and use on an object. The subject must

fulfill the authorizations, obligations and conditions requirements in order to be

granted the right to access the object. For example of rights are: read, write and

download The subject loses this right anytime one of these requirements does not

hold. If this happen during access, there are two possibilities: (i) if either authorisa-

tions requirement or obligations requirement is not fulfilled, then the access right is

revoked and the access stopped at once; (ii) if both authorisations requirement and

obligations requirement are fulfilled, but the conditions requirement is not met due

to changes in the environmental context, the system will attempt to adapt to the

new situation by performing specific adaptation actions (including request to alter-

native object); if the adaptation is successful then the access continues, otherwise

57

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

the access right is revoked and the access terminated.

3.3 Computational model of the CA-UCON model

In this section, a computational model of CA-UCON model is presented , it can be

described as a Finite State Machine (FSM) depicting how an subject’s request to

access an object is handled in the CA-UCON model. The FSM is depicted by the

graph in Figuer 3.2, where nodes are called states and edges are called transitions.

The initial state, labelled initial, corresponds to the state when the system is wait-

ing for a subject to submit a request. There are three final states: end, when the

access has successfully terminated; denied, when the access request has been denied;

and revoked, when access permission has been revoked during access and hence the

access stopped.

The intuitive meaning of the remaining states of the FSM can be summarised as

follows: requesting, denotes when the access request is being processed; accessing,

represents the state when the actual access is taking place; preadapting, is the state

when the system is trying to adapt to the environmental context prior to access;

and finally onadapting, is when the system is trying to adapt to the environmental

context during access.

The transitions of the FSM are labelled with the events (or actions) that fire them.

The event tryaccess occurs when a subject sends an access request (e.g. by clicking

a menu button). This event forces the FSM to enter the requesting state to pro-

cess that access request. While in this state, the system can perform updates on

subject’s and object’s attributes through preupdate events. If the authorisations,

obligations and conditions requirements are all met, the system emits the permi-

taccess event and moves into the accessing state. If for some reasons either the

58

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

requesting

preadapting

accessinginitial end

denied revoked

onadapting

tryaccess permitaccess endaccess

revokeaccess

revokeaccess

denyaccess

tryaltaccess

o
n
ad
ap
taccess

co
n
ti
n
u
ea
cc
es
s

p
read

ap
taccesstr

y
al
ta
cc
es
s

permitaccess

preupdate onupdate postupdate

preadapt onadapt

denyaccess

Figure 3.2: Execution of an access request in the CA-UCON model

authorisations requirement or the obligations requirement is not met, the system

emits the event denyaccess and terminates in the denied state. However, if both the

authorisations requirement and obligations requirement are met, but the conditions

requirement is not satisfied, the system emits the preadaptaccess event and moves

into the preadapting state.

In this state, specific adaptation actions, denoted by the preadapt events, are per-

formed in an attempt to meet the conditions requirement. If the adaptation is

successful, the permitaccess event is raised and the system transitions into the ac-

cessing state. In addition, a new request to access a specified alternative object,

denoted by the tryaltaccess event, may be issued automatically by the system if

the adaptation actions fail. Otherwise the access request is simply denied when no

adaptation is possible.

When access permission is granted (see permitaccess event), the system transitions

into the accessing state in which the actual access takes place. During access the sys-

tem can perform updates on subject’s and object’s attributes via onupdate events.

59

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

If during access either the authorisations requirement or the obligations requirement

is not met, the system emits the event revokeaccess and terminates in the revoked

state. However, if both the authorisations requirement and obligations requirement

are continuously met, but the conditions requirement fails, the system raises the

on-adaptaccess event and moves into the onadapting state.

In this state, specific adaptation actions, denoted by the on-adapt events, are per-

formed in an attempt to meet the conditions requirement. If the adaptation is

successful, the continueaccess event is raised and the system moves back into the

accessing state. In the effort to enhance the quality of service even further, the sys-

tem might issue an implicit request to access a specified alternative object through

the tryaltaccess event, when the adaptation actions fail. In the worst case when

no adaptation is possible, the access permission is simply revoked and the access

stopped at once. When an access terminates successully via the endaccess event,

the system moves into the end state and eventually performs updates on subject’s

and object’s attributes through postupdate events.

Therefore, The Finite State Machine (FSM) of CA-UCON model in figure 3.2 will be

specified using Calculus of Context-Aware Ambient(CCA) and later used to analyse

the behaviour of the model.

3.4 The CA-UCONABD Family Core Models

In this section, a formal definition of CA-UCON model is presented which extends

and enhances the traditional UCON model by enabling the adaptation features on

it. [73] defined the UCONABC family core models where A stands for Authorisations,

B for oBligations and C for Conditions. Here we define the CA-UCONABD family

core models where C is replaced by D for aDaptation. So the CA-UCONA and

60

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

CA-UCONB family core models are identical to UCONA and UCONB, respectively.

The CA-UCOND family core model comprises two new models: the pre-adaptation

model CA-UCONpreD and the ongoing adaptation model CA-UCONonD. The CA-

UCONABD family core models are detailed below.

3.4.1 The CA-UCONpreA Model

The CA-UCONpreA Model has exactly the same meaning as on UCON Model which

evaluates the attributes of subject and object for the decision making before the

subject access the object (at the time of access request). So, if the pre-authorization

evaluate to true the access request is granted to the subject.

The CA-UCONpreA core model is composed of:

• S : set of subjects, ATT(S): set of subject attributes.

The subject who request an access to an object.

• O : set of Objects, ATT(O): set of object attributes.

The object is an service or resource that the subject request access on it.

• R: set of rights.

The right are privileges that an subject has to hold in order to access an object.

• PreA: pre-authorizations.

• allowed(s, o, r)⇒ preA((ATT (s), ATT (o), r).

This predicate denotes that the subject s is allowed to access the object o with

the right r, if the predicate preA is evaluated to true.

3.4.2 The CA-UCONOnA Model

The CA-UCONOnA model is also has the same concept like in UCON model which

evaluates the attributes to control the usage access during the access time. In

61

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

absence of pre-authorization, the requested access is always allowed. However, on-

going authorization is active throughout the usage of the requested right. The

CA-UCONOnA core model is composed of:

• S : set of subjects, ATT(S): set of subject attributes.

• O : set of Objects, ATT (O): set of object attributes.

• R: set of rights.

• allowed(s, o, r)⇒ true;

This predicate denotes that there are no pre-authorizations required at the

time of access request.

• OnA: ongoing-authorizations.

• Stopped(s, o, r)⇐ ¬onA(ATT (s), ATT (o), r)

This predicate denotes that the right r used by the subject s on the object o

is revoked, if the predicate onA is evaluated to false.

3.4.3 The CA-UCONpreB Model

The CA-UCONpreB Model has defined precisely as the same as in UCON model

which is a kind of history function that checks whether certain obligations have

been fulfilled or not and return true or false before the access is granted. The preB

predicate is evaluated to true, if all the required pre-obligation elements preOBL are

fulfilled using preFulfilled predicate. The CA-UCONpreB core model is composed of:

• S : set of subjects, ATT(S): set of subject attributes.

• O : set of Objects, ATT (O): set of object attributes.

• R: set of rights.

62

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

• OBS : set of obligation subject, OBO : set of obligation object, OB : set of

obligation actions.

There are three different types of obligations : obligation that are related to

the subject which have to be fulfilled by the subject before the access right is

granted, obligations that are related to object which must to be satisfied at

the time of access of request; obligations that are linked to actions.

• preB : pre-obligation predicates.

• preOBL: pre-obligation elements

This predicate is responsible for holding all obligations types.

• preOBL ⊆ OBS ×OBO ×OB.

• prefulfilled : OBS ×OBO ×OB → {true, false}.

This predicate is checking all types of obilgations and return with ture or false.

• getPreOBL : S ×O ×R→ 2preOBL.

This is a function to select pre-obligations for a requested usage.

• PreB(s, o, r) =


∧

(obsi,oboi,obi)∈getpreOBL(s,o,r) prefulfilled(obsi, oboi, obi)

if getPreOBL(s, o, r) 6= ∅;

True if getPreOBL(s, o, r) = ∅;


This function denotes that the predicate preB is true, if the prefulfilled predicate

returns true or there are no required obligations for current access request.

• allowed(s, o, r)⇒ preB(s, o, r);

This function denotes that the subject s is granted the right r to access the object

o, if the predicate preB is true.

63

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

3.4.4 The CA-UCONonB Model

The CA-UCONonB Model as the same as in UCON model which is a kind of history

function that checks whether certain obligations have been fulfilled or not and return

true or false during the access. The onB predicate is evaluated to true, if all the

required on-obligation elements onOBL are fulfilled using onFulfilled predicate. The

CA-UCONonB core model is composed of:

• S : set of subjects, ATT(S): set of subject attributes.

• O : set of Objects, ATT (O): set of object attributes.

• R: set of rights.

• OBS : set of obligation subject, OBO : set of obligation object, OB : set of

obligation action.

• T : set of time or event elements,onOBL: ongoing-obligation elements

• onB : ongoing-obligations predicates.

• onOBL ⊆ OBS ×OBO ×OB × T.

• getOnOBL : S × O × R → 2onOBL , a function to select ongoing-obligations

for a requested usage.

• onFulfilled : OBS ×OBO ×OB × T → {true, false};

• onB(s, o, r) = ∧(obsi,oboi,obi,ti)∈getOnOBL(s,o,r)onFulfilled(obsi, oboi, obi, ti);

• onB(s, o, r) = true by definition if getOnOBL(s, o, r) = ∅

This predicate denotes that the predicate onB is true, if there are no required

obligations during the access.

64

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

• allowed(s, o, r)⇒ true;

This predicate denotes that there are no pre-obligations required at the time

of access request.

• stopped(s, o, r)⇐ ¬onB(s, o, r).

This predicate denotes that the right r used by the subject s on the object o

is revoked, if the the predicate onB is evaluated to false.

3.4.5 The CA-UCONpreD Model

In the CA-UCONpreD model, adaptation can be activated only before the access

permission is granted. That is adaptation cannot take place during access. If s is

subject, o is object and r an access right, we let preD(s, o, r) denote a predicate

which is true if the pre-adaptation is successful and false otherwise. We also denote

the access permission decision by the predicate allowed(s , o, r). The CA-UCONpreD

core model is composed of the following elements:

• S : set of subjects, ATT(S): set of subject attributes.

• O : set of objects, ATT (O): set of object attributes.

• AD : set of adaptation actions.

• PreCON : set of pre-conditions elements.

• T : time domain.

• PreAdapted : 2preCON×AD × T −→ {true, false}

preAdapted(c, a, t) is a boolean function that performs the adaptation action a

until all the conditions in c evaluate to true, in which case the function returns

true; otherwise the function returns false after t time-units have elapsed since

the execution of the action a started.

65

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

• getPreADAPT : S ×O ×R −→ 2preCON × AD × T

getPreADAPT(s, o, r) returns a tuple (c, a, t) where c is the set of all pre-

conditions required to grant the subject s the access right r upon the object

o, a is the adaptation action to be performed if any of the pre-conditions does

not hold, and t is the time-out for this adaptation process.

• getPreAltReq : S ×O ×R −→ 2O×R

getPreAltReq(s, o, r) denotes the set of alternative requests that can be made

on behalf of the subject s when the initial request of the access right r upon

the object o could not be granted due to environmental conditions.

• preD(s, o, r) = preAdapted(getPreADAPT(s, o, r))

• The access permission decision is defined as:

• allowed(s, o, r)⇒ preD(s, o, r);

This predicate denotes that the subject s is granted the right r to access the

object o, if the adaptation process for this access request is successful.

ended(s , o, r)⇒


¬preD(s, o, r)

∧∨
(o′,r′)∈E

allowed(s , o ′, r ′)


This predicate denotes that the right r requested by the subject s to access

the object o is ended, if the predicate preD is false and an alternative request

is issued.

where E = getPreAltReq(s , o, r) and the symbol ‘⇒’ denotes the logical im-

plication.

66

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

3.4.6 The CA-UCONonD Model

In the CA-UCONonD model, there is no pre-adaptation; adaptation can only take

place during access. If s is subject, o is object and r an access right, we let

onD(s, o, r) denote a predicate which is true if the ongoing adaptation is successful

and false otherwise. We also denote by stopped(s , o, r) a predicate which is true

if the access has been stopped. The CA-UCONonD core model is composed of the

following elements:

• S : set of subjects, ATT(S): set of subject attributes, O : set of objects, ATT

(O): set of object attributes

• AD : set of adaption strategies (or actions)

• onCON : set of ongoing-conditions elements

• T : time domain

• onAdapted : 2onCON × AD × T → {true, false}

onAdapted(c, a, t) is a boolean function that performs action a until all the

conditions in c evaluate to true, in which case the function returns true; oth-

erwise the function returns false after t time-units have elapsed since the

execution of the action a started.

• getOnADAPT : S ×O ×R→ 2onCON × AD × T

getOnADAPT(s,o, r) returns a tuple (c, a, t) where c is the set of all ongoing-

conditions required for the subject s to keep the right r upon the object

o during access, a is the adaptation action to be performed if any of the

ongoing-conditions does not hold, and t is the time-out for this adaptation

process.

67

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

• getOnAltReq : S ×O ×R→ 2O×R

getOnAltReq(s, o, r) denotes the set of alternative requests that can be made

on behalf of the subject s when the initial request of the access right r upon

the object o fails during access due to environmental conditions.

• onD(s, o, r) = onAdapted(getOnADAPT(s, o, r))

• allowed(s, o, r)⇒ true

• The predicate stopped is defined as follows:

stopped(s , o, r)⇐


¬onD(s, o, r)

∧∧
(o′,r′)∈F

stopped(s , o ′, r ′)


where F = getOnAltReq(s , o, r) and the formula V ⇐ W means that W

implies V .

3.5 Expressive Power of the CA-UCON Model

In this section we show that the UCON model can be specified in CA-UCON model

and so all the security models that can be specified in UCON, such as Role-Based

Access Control (RBAC) and Digital Rights Management (DRM). As mentioned in

the previous section, the authorisation and obligation family core models of CA-

UCON are identical to those of UCON. Rest to prove that the condition family

core models of UCON can be modelled by the adaptation family core models of

CA-UCON.

Indeed, the UCONpreC model is a special case of CA-UCONpreD model where:

68

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

• AD = {skip}, where skip is a special action that does nothing and lasts one

time-unit.

• T = {1}, the unique time-out is one time-unit.

• getPreAltReq(s, o, r) = φ, for all (s, o, r) ∈ S ×O ×R.

Similarly, the UCONonC model is a special case of CA-UCONonD model where:

• AD = {skip}, where skip is a special action that does nothing and lasts one

time-unit.

• T = {1}, the unique time-out is one time-unit.

• getOnAltReq(s, o, r) = φ, for all (s, o, r) ∈ S ×O ×R.

CA-UCON model can act as UCON model, if the condition of the access re-

quest is met where the adaptation in this case is skipped (no adaptation action is

performed).

3.6 Summary

In this chapter, we proposed a new model called Context-Aware and Adaptive Us-

age Control model (CA-UCON) as novel architecture which extends the traditional

UCON model to enable adaptation to environmental changes in the aim of preserv-

ing continuity of access. The major innovative aspect of this model is the integration

of continuity of usage decision and dynamic adaptation to changes in the environ-

mental or system context, so as to ensure continuity of usage. We then propose a

novel computational model of our CA-UCON architecture. This model is formally

specified as a finite state machine. It demonstrates how the access request of the

subject will be handled in CA-UCON model. The formal definition of CA-UCON

69

CHAPTER 3. CONTEXT-AWARE AND ADAPTIVE USAGE CONTROL
(CA-UCON) MODEL

model is presented where the extension of the original UCON architecture can be

understood from this model.

In the following chapter, the formal specification of CA-UCONmodel is presented

using the mathematical notation of CCA [96] and later used to analyse the behaviour

of the model.

70

Chapter 4

Formal Specification of CA-UCON

Model in CCA

Objectives:
• Present an overview of mathematical notation of CCA

• Give ambient-based model of CA-UCON model

• Present formal specification of CA-UCON model in CCA

71

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

4.1 Introduction

In this chapter, we represent a formal specification of the CA-UCON model by

using the Calculus of Context-aware Ambient (CCA). This mathematical notation

is considered suitable for mobile and context-aware systems and has been preferred

over alternatives for the following reasons: (i) Mobility and Context awareness are

primitive constructs in CCA; (ii) A system’s properties can be formally analysed;

(iii) Most importantly, CCA specifications are executable allowing early validation of

system properties and accelerated development of prototypes. This is based on the

concept of an ambient that was first introduced in calculus of mobile ambient [91].

An ambient is an entity that describes a component (e.g., process, location, device,

etc.). Using CCA, the model along with all ambient and external and internal

interactions can be formalised. Below, we discuss CCA’s syntax with regards to

processes and capabilities.

4.2 Overview of CCA

To integrate and incorporate computers into general activities, pervasive computing

is the new paradigm being used. Pervasive computing allows applications in a dis-

tributed system to support mobility and context-awareness. Entities (i.e. devices

and users) can be mobile. A context-aware system must be able to process informa-

tion regarding its current context within its environment. It must then be able to

use this information to change the way it behaves and match the current conditions.

To model such situations effectively, CCA was proposed by [96]. CCA builds upon

a previous calculus known as Mobile Ambients [91] whilst introducing new ideas.

It enables ambient (e.g., software, devices, locations, etc.) and processes to have

an awareness of the conditions and context in which they are executed. The re-

72

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

sulting process calculus is flexible and powerful, emphasising context awareness and

mobility.

4.2.1 Modelling in CCA

The Calculus of Context-aware Ambients (CCA) is a process calculus. It is based

on the idea of ambients (as defined above) and is used to model ambients in terms

of capability, process and location. In this section, the modelling of a user and

its surrounding environment is shown. From this example, it can be understood

how to model ambients in general. Before moving onto the example, let us set out

the actors. We specify an arbitrary user Bob whose behaviour is described by the

process PBob as:

Bob

PBob

An entity in CCA has a location (similar to the real world). Within CCA the

location of an ambient is modelled as a parent ambient. For instant if Bob is in

an class room, then the ClassRoom ambient will be the parent of ambient Bob and

represent his location:

ClassRoom

Bob

PBob
| PClassRoom

Each ambient has a context which is defined by the ambients around them. For

example, Bob’s context is defined by the classroom, possible other users, his phone

73

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

which he is carrying etc.

Faculty

ClassRoom1

bob

phone

Pphone
| Pbob

| PClassRoom1

ClassRoom2

Alice

PAlice
| PClassRoom2

| PFaculty

So, the user Bob’s environment is represented by the variety of the existed am-

bients which are around it such as in above example, (faculty, classroom1, phone,

classroom2 and Alice), which in this situation the user Bob is one of the ambient in

this environment. The textual representation of the above graph can be shown as

follows:

faculty [classroom1 [bob[phone[Pphone] | Pbob] | Pclassroom1]

| classroom2 [alice[Palice] | Pclassroom2]

| Pfaculty]

4.2.2 Syntax of CCA

Within this section we present the syntax of CCA notation. In CCA, the most

basic entities are names. This is similar to π-calculus [64][91]. Names are given

to all ambients whether they are users, devices or locations. We shall define 4

syntactic categories with CCA. These are: processes P , capabilities M , locations α

and context expressions κ. Names are always written in lower case letters e.g. n, x

74

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

and y etc. A list of names is denoted by ỹ and |ỹ| represents the size of the list.

4.2.2.1 Processes

As can be seen in Table 4.1 the process 0 concludes without actions. If two processes

P and Q are running in parallel, this will be denoted by P |Q. To limit the scope of a

name, the following notation is used: (νn) P , indicates that the scope of n is limited

to P . The sign of replication is !, so the replication process !P signifies a process that

can create a new replica of the process P whenever needed, i.e. !P ≡ P |!P . The

process n[P] indicates an ambient n whose behaviour is described by P . Further, the

square brackets [and] indicate the boundaries of an ambient’s behaviour. Whatever

is within the brackets is the ambient’s behaviour.

Table 4.1: Syntax of CCA: processes

P,Q Description
0 inactivity
P |Q parallel composition
(νn) P name restriction
n[P] an ambient
!P repetition
κ?M.P context-guarded capability
x . (ỹ).P process abstraction

A context expression denotes the condition that must be matched by the envi-

ronment of the executing process. The context-guarded prefix k?M.P is a process

which delays and does not execute the capability M followed by the process P until

the condition (which is the context expression k) fulfils the surrounding environ-

ment. The context-guarded prefix is very similar to the If − Then statement in its

functionality. The (If condition Then action) statement also performs the action

if the condition(s) are satisfied. The use of context-guarded prefix is one of the two

main mechanisms for context acquisition in CCA. The second mechanisms of con-

text acquisition (which is discussed below) is the invoking of a process abstraction.

75

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

Lastly, the process abstraction x . (ỹ).P indicates the linking of the name x to

the process P , where ỹ is a set of formal parameters. The linking is restricted

to the executing ambient where in the process abstraction is defined. So a name x

can be linked to many processes in a number of distinct ambients. E.g. name x is

linked to process P in ambient n and to process Q in ambient m. An invocation to a

process abstraction named x is performed by the executing ambient by carrying out

the capability α x〈z̃〉 where α denotes the position in which the process abstraction

is specified and z̃ is the set of actual parameters.

4.2.2.2 Location

Since ambients can liaise with each other, the location is an important parameter

which is utilised as a reference by the communicating ambients. An ambient can

communicate with a parent ambient, child ambient or sibling ambient. So, in table

4.2 the location α can be ‘↑ ’ which indicates any parent, ′n ↑′ for a definite parent

ambient named n, ‘↓’ which denotes any child, and ‘n ↓’ for a definite child ambient

named n, the ′ ::′ which refers to any sibling, and ′n ::′ signifies a specific sibling

ambient named n. However, it is possible for an ambient to utilise ε (empty string)

to refer to itself.

Table 4.2: Syntax of CCA: location

α Description
↑ any parent
n ↑ parent n
↓ any child
n ↓ child n
:: any sibling
n :: sibling n
ε local

76

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

4.2.2.3 Capabilities

As can be seen in Table 4.3 there are two mobility capabilities, defined in CCA [96],

which make it possible for an ambient to move in its environment. These are in and

out . An ambient can execute the capability ’in n’ to move into a sibling ambient

named n, and the capability out allows an ambient to move out of its parent ambient.

Table 4.3: Syntax of CCA: capabilities

M Description
in n move into ambient n
out move out
α x〈ỹ〉 process call
α (ỹ) input
α 〈ỹ〉 output
del n delete ambient n

A process call α x〈ỹ〉 executes like the process linked to x at location α, where

each actual parameter in ỹ replaces each occurrence of the corresponding formal

parameter. A process call can only occur if the corresponding process abstraction is

accessible at the location specified. Ambients are able to send and receive messages.

Using the capability α 〈ỹ〉 an ambient is able to send a list of names ỹ to a location

α. An ambient can execute the capability α (ỹ) to receive in the variables in ỹ a set

of names from a location α.

Finally, the capability del n removes an ambient named n. However, this only

occurs if that ambient is of the form n[0], i.e. an empty ambient. Necessarily

ambient n has to be located at the same level as that capability. I.e. the ambient

executing the del capability must be the parent ambient of n. For example, the

process del n.P | n[0] reduces to P . The capability del can be viewed as a garbage

collector that removes empty ambients which have no computations left to perform,

i.e. n[0].

77

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

4.2.3 Context model

In a similar manner to Mobile Ambients MA, the ambient is the basic construction

to symbolize any entity in any system in CCA. As mentioned previously, an ambient

has a name, a boundary and can host and be nested inside other ambients. This al-

lows a set of ambients to be described hierarchically. A hole, which is denoted by �,

is a special context that symbolizes the position of the executing process in the sys-

tem. For example, assume a system is represented by the process P | n[Q |m[R | S]],

then the context of the process R in that system is P | n[Q | m[� | S]]. The context

of the ambient named m is P | n[Q | �], and that of ambient n is P | �. The gram-

mar in Table 4.4 details the contexts of CCA processes. A property of a context is

called context expression (CE in short).

Table 4.4: Syntax of contexts

E Description
0 nil
� hole
n[E] location
E|P parallel composition
(νn) E restriction

In Table 4.4, P is any process, E stands for the context and n represents a name.

The context 0 represents an empty context, i.e. it does not render any information.

The hold �, denotes the position of a process in that process’s context. The context

n[E] indicates that the context E is the internal context of the ambient n. The

context P |E signifies that the process P executes with the context E in parallel;

to rephrase, the context E is an element of the context of process P . The context

(νn) E denotes a name restriction, such that the scope of the name n is limited to

the context E.

78

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

Table 4.5 presents the algebraic semantics of contexts. The first equality (cont-0)

signifies that a context with the value of 0 is a nil context; in other words it would

have no affect on other contexts in parallel execution with it. (cont-1) signifies that

parallel compositions of context are commutative, while (cont-2) indicates to them

being associative. The equality (cont-7) denotes that equality is propagated across

scope. (cont-8) states that equality is also propagated across parallel composition

and (cont-9) states that equality propagates through ambient nesting.

Table 4.5: Algebraic semantics of contexts

E | 0 = E (cont-0)
E1 | E2 = E2 | E1 (cont-1)
E1 |(E2 | E3) = (E1 | E2) | E3 (cont-2)
(νn)(νm) E = (νm)(νn) E (cont-3)
(νn) E1 | E2 = (νn) (E1 | E2) if n /∈ fn(E2) (cont-4)
(νn) m[E] = m[(νn) E] if n 6= m (cont-5)
(νn) 0 = 0 (cont-6)
E1 = E2 ⇒ (νn) E1 = (νn) E2 (cont-7)
E1 = E2 ⇒ E1 | E3 = E2 | E3 (cont-8)
E1 = E2 ⇒ n[E1] = n[E2] (cont-9)

4.2.4 Context Expressions

Table 4.6 details the Context Expressions (CEs in short). The CE True always

indicates the value true. The CE • equates to true for the hole context only. To

explain, it represents the process evaluating that context expression. For the CE

n = m, it applies only if the names n and m are lexically identical, i.e. they match.

Such a CE is vital for examining whether the contents of two messages are identical.

The first order operators ¬ (negation), ∧ (and) and ∃ (there exist) develop their

standard meaning to CEs.

79

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

A CE κ1|κ2 is valid for a context if that context is a parallel composition of two

contexts. These must be such that κ1 holds for one and κ2 holds for the other. A

CE n[κ] holds for a context if that context is an ambient named n such that κ holds

inside that ambient. A CE new nκ holds for a context if that context restricts the

name n to another context for which κ holds. A CE ⊕κ holds for a context on the

condition that the context has a child context for which κ holds. For a CE Gκ to

hold for a context there must be a sub-context present, somewhere in that context,

for which κ holds. The operator G is known as somewhere modality while ⊕ is

known as spatial next modality.

Table 4.6: Syntax of CCA: context expressions

κ Description
True true
• hole
n = m name match
¬κ negation
κ1|κ2 parallel composition
κ1 ∧ κ2 conjunction
newnκ revelation
⊕κ spatial next modality
Gκ somewhere modality
∃x.κ existential quantification

It is possible logically to infer some derivates. For example, False = ¬True,

where both sides implies the value false. The disjunction relation κ1 ∨ κ2 is logi-

cally equivalent to ¬(¬κ1 ∧ ¬κ2). The implication of κ1 ⇒ κ2 can be expressed

as ¬κ1 ∨ κ2, with both having the same logical value. Lastly, a logical equivalence

of two contexts κ1 ⇔ κ2 is equivalent to (κ1 ⇒ κ2) ∧ (κ2 ⇒ κ1).

80

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

4.3 Ambient-based model for CA-UCON model

As depicted in the previous chapter, the CA-UCON model is represented in a finite

state machine in order to show how the requests are handled. Accordingly, the

CA-UCON model consists of the following states: initial state, requesting state,

accessing state, preadaptation state, and onadaptation state. The behaviour of the

user that initiates an access request is also represented by an ambient named subject.

In addition, specific ambients are used to check the authorisation, obligation and

condition requirements. However, in this section, we shall now propose an ambient-

based model for CA-UCON, where each state within CA-UCON is modelled as an

ambient. Below in Figure 4.1, an ambient-based CA-UCON model is provided.

Following this, a description shall be given regarding how to change this graphical

model into its textual equivalent in CCA.

Figure 4.1: Ambient-based Model for CA-UCON Model

We begin our CA-UCON model by representing each entity as an ambient. So,

if the subject submits a request to access an object, the request goes to the request-

ing ambient, which checks for preauthorization, preobligation and precondition. If

preauthorization or preobligation is not met, then the request is denied. However, if

81

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

they are met but the precondition is not met, the system adapts to the new situation

based on the context. This happens in accessing ambient during the access as well.

The above figure is represented textually through the following CCA process:

subject [Psubject] | requesting [Prequesting] | accessing [Paccssing]

preadapting [Ppreadapting] | onadapting [Ponadapting]

| preauthorisation[Ppreauthorisation] | preobligation[Ppreobligation]

| precondition[Pprecondition] | onauthorisation[Ponauthorisation]

| onobligation[Ponobligation] | oncondition[Poncondition]

Where Px in this textual model is the process modelling the behaviour of the

related ambient x. These processes are defined in details in the following section.

4.4 Formalising the CA-UCON Model in CCA

Here, we represent the process of formalisation for the CA-UCON model. This

formalisation is based on the functional aspects that control access in order to permit

or deny a service. Therefore, we formalise all the ambients in the CA-UCON model

as well as the interactions among them both before and during the access request

[?]. The CA-UCON formalisation process is illustrated utilizing the mathematical

notation of CCA.

4.4.1 Notation

In the following formalisation process of the CA-UCON model, we use a different

format of letters in order to distinguish between constants and names (variables).

The names written in lowercase letters are known as variables, while the names

written in uppercase letters are known as constants. In Table 4.7 below, the list of

82

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

Table 4.7: Constants

Constants
Notation Description
PERMIT permit the access
DENYA deny Authorisation
DENYB deny Obligation
DENYC deny Condition
REVOKEA revoke Authorisation
REVOKEB revoke Obligation
REVOKEC revoke Condition
END_USAGE terminate usage
ENDED_SUCCESSFULLY usage ended successfully

Table 4.8: Variables

Variables
Notation Description values
s a user id 201,202, 203
o object id lect1, tut3,test4
preA preauthorization 0,1
preB preobligation 0,1
preC precondition 0,1
preD preadaptation 0,1
onA onauthorisation 0,1
onB onobligation 0,1
onC oncondition 0,1
onD onadaptation 0,1

variables is shown and in the subsequent table 4.8, the list of constants is shown.

4.4.2 Subject Ambient

This ambient is responsible for submitting the access request to the requesting am-

bient; it then waits for the reply to this access request, whether permit or deny .

The user eventually ends the usage by sending the message END_USAGE to the

accessing ambient. This behaviour is modelled as follows:

83

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

Psubject =̂ !requesting :: 〈s, o, r〉.requesting :: (reply , o, r).{

(reply = PERMIT)?accessing :: (x, o, r).0

| accessing :: 〈END_USAGE, o, r〉.0

}

Where s is the user id, o the object id and r the access right requested.

4.4.3 Requesting Ambient

This ambient handles all the access requests sent by the subject in order to access

an object. It receives an access request from the subject ambient and checks the

preauthorisation, preobligation and precondition by sending the access request to

the checkPreA, checkPreB and checkPreC ambients, respectively. If the preA and

preB and preC are true (i.e. 1), the subject is permitted to access the requested

object. But if preA (or preB) is not true (i.e. 0), the reply DENYA (or DENYB

respectively) is sent to the subject.

However, if preA and preB are true but preC is false, the request is sent to the

checkPreD ambient in order to adapt to the new situation if possible. The reply

DENYC is sent to the subject if the adaptation fails (i.e. preD = 0). This behaviour

is modelled as follows:

84

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

Prequesing =̂ ! :: (s, o, r).checkPreA :: 〈s, o, r〉.checkPreA :: (preA).

(preA = 1)?checkpPreB :: 〈s, o, r〉.checkPreB :: (preB).

(preB = 1)?checkPreC :: 〈s, o, r〉.checkPreC :: (preC).

(preC = 1)?subject :: 〈PERMIT, o, r〉.

preUpdate :: 〈s, o, r〉.preUpdate :: ().accessing :: 〈s, o, r〉.0

|(preC = 0)?preadapting :: 〈s, o, r〉.preadapting :: (preD).
(preD = 1)?subject :: 〈PERMIT, o, r〉.

preUpdate :: 〈s, o, r〉.preUpdate :: ().accessing :: 〈s, o, r〉.0

|(preD = 0)?subject :: 〈DENY C, o, r〉.0




|(preB = 0)?subject :: 〈DENY B, o, r〉.0


|(preA = 0)?subject :: 〈DENY A, o, r〉.0


4.4.4 Accessing Ambient

This ambient is responsible for continuously controlling all the permitted access re-

quests that it receives from the requesting ambient. This is achieved through sending

the access request to the checkOnA, checkOnB and checkOnC ambient, and receiv-

ing the reply in the following variables: onA, onB and onC. If onA or onB is false,

the reply REVOKEA or REVOKEB is sent to the subject, respectively.

However, if onA and onB are true but onC is false, the access request is sent

to checkOnD, whereupon it receives the parameter onD ; if this is true, the subject

will be permitted to continue to access the object until the user ends the usage.

Otherwise, the reply REVOKEC is sent to the subject ambient and the usage ter-

minates immediately. This behaviour is modelled as follows:

85

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

Paccessing =̂ ! :: (s, o, r).checkOnA :: 〈s, o, r〉.checkOnA :: (onA).

(onA = 1)?checkOnB :: 〈s, o, r〉.checkOnB :: (onB).

(onB = 1)?checkOnC :: 〈s, o, r〉.checkOnC :: (onC).

(onC = 1)?OnUpdate :: 〈s, o, r〉.OnUpdate :: ().accessing :: 〈s, o, r〉.0

|(onC = 0)?Onadapting :: 〈s, o, r〉.Onadapting :: (onD). (onD = 1)?OnUpdate :: 〈s, o, r〉.OnUpdate :: ().accessing :: 〈s, o, r〉.0

|(onD = 0)?subject :: 〈REV OKEC, o, r〉.0




|(onB = 0)?subject :: 〈REV OKEB, o, r〉.0


|(onA = 0)?subject :: 〈REV OKEA, o, r〉.0


|subject :: (X).().PostUpdate :: 〈s, o, r〉.postUpdate :: (X).

subject :: 〈ENDED_SUCCESSFULLY, o, r〉.0

4.4.5 Preadapting Ambient

When the precondition does not hold, the requesting ambient forwards the access

request to this ambient which then attempts to adapt to the context by performing

specific actions. In addition, it is able to issue an alternative request which is ap-

propriate to the current situation. Otherwise, the access request is simply denied,

when no adaptation is possible. This behaviour is modelled as follows:

Ppreadapting =̂ !requesting :: (s, o, r).P.requesting :: 〈preD〉.0

where P stands for the pre-adaptation actions or alternative request, which must

be done by the preadapting ambient. The decision is calculated in the variable preD

and sent to the requesting ambient. The actual specification of the process P is

application dependent.

86

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

4.4.6 Onadapting Ambient

When the oncondition is false during the access, the accessing ambient forwards the

access request to the onadapting ambient which attempts to adapt to the new sit-

uation in order to maintain continuity of usage of the resource. Like the requesting

ambient, it is capable of issuing an alternative request depending on the context. If

no adaptation is possible, the access is simply revoked. This behaviour is modelled

as follows:

Ponadapting =̂ accessing :: (s, o, r).P.accessing :: 〈onD〉.0

where P stands for on-adaptation actions or alternative request, which must be

performed by the onadapting ambient. The decision is calculated in the variable

onD and sent to the accessing ambient.

4.4.7 CheckPreA Ambient

This ambient receives an access request from the requesting ambient and checks

whether the preauthorisation requirements are met by the subject. It then sends

the decision preA to the requesting ambient. This behaviour is achieved as follows:

PcheckPreA =̂ !requesting :: (s, o, r).P.requesting :: 〈preA〉.0

where the process P models the preauthorisation requirements, which again are

application dependent.

87

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

4.4.8 CheckPreB Ambient

This ambient receives an access request from the requesting ambient and checks

whether the preobligation requirements are met by the subject. Then, it sends the

decision preB to the requesting ambient. This behaviour is achieved as follows:

PcheckPreB =̂ !requesting :: (s, o, r).P.requesting :: 〈preB〉.0

where the process P models the preobligation requirements.

4.4.9 CheckPreC Ambient

This ambient receives an access request from the requesting ambient and checks

whether the precondition requirements are met by the environment. Then, it sends

the decision preC to the requesting ambient. This behaviour is achieved as follows:

PcheckPreC =̂ !requesting :: (s, o, r).P.requesting :: 〈preC〉.0

where the process P represents the precondition requirements.

4.4.10 CheckOnA Ambient

This ambient plays similar role for onauthorisation requirements like the checkPreA

ambient for preauthorisation requirements. The decision whether the onauthorisa-

tion requirements are met is returned to the accessing ambient via the variable onA.

This behaviour is specified as follows:

88

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

PcheckOnA =̂ !accessing :: (s, o, r).P.accessing :: 〈onA〉.0

where the process P models the onauthorisation requirements.

4.4.11 CheckOnB Ambient

Similarly to the checkOnA ambient, this ambient plays the same role for onobliga-

tion requirements as the checkPreB ambient for preobligation requirements. The

decision whether the onobligation requirements are met is returned to the accessing

ambient via the variable onB. This behaviour is specified as follows:

PcheckOnB =̂ !accessing :: (s, o, r).P.accessing :: 〈onB〉.0

where P represents the onobligation requirements.

4.4.12 CheckOnC Ambient

As for this ambient, it receives an access request from the accessing ambient and

checks whether the oncondition requirements are met by the environment. The deci-

sion is sent to the accessing ambient in the variable onC. This behaviour is specified

as follows:

PcheckOnC =̂ !accessing :: (s, o, r).P.accessing :: 〈onC〉.0

89

CHAPTER 4. FORMAL SPECIFICATION OF CA-UCON MODEL IN CCA

where the process P models the oncondition requirements.

4.5 Summary

This chapter, we introduced the concept of an ambient-based model and described

its characteristics. We then presented the mathematical notation of CCA, including

its syntax, with regard to the capabilities and processes. CCA is an appropriate

mathematical notation for modelling mobile applications that are context-aware. In

addition, we presented the graphical model of CA-UCON model based on ambient

concept. Finally, we demonstrated the formalisation of CA-UCON model with all

external and internal interactions between its components using the CCA notation.

In chapter 5, we will demonstrate the U-learning system as a real world case study

in order to evaluate our CA-UCON model. We then use the execution environment

of CCA to validate the properties of CA-UCON model.

90

Chapter 5

Case Study

Objectives:
• Present an overview of u-learning system and its infrastructure.

• Present the modelling of u-learning system in CA-UCON.

• Give a CCA specification of the u-learning system.

• Use ccaPL to validate some properties of CA-UCON model.

91

CHAPTER 5. CASE STUDY

5.1 Introduction

In this chapter, we evaluate our CA-UCON model with a case study in the ubiqui-

tous learning system (u-learning) in order to show how our model functions in this

environment. Firstly, we give an overview of u-learning systems and the technologies

and infrastructures that have been used in such systems. Secondly, we propose a

CA-UCON model for the u-learning system and specify all the policies. Thirdly, we

provide the formal specifications for this model in CCA; these specifications will be

analysed using the execution environment of CCA, which will demonstrate how the

properties of the CA-UCON model can be validated.

5.2 Ubiquitous Learning (U-Learning)

In this section we provide an overview of u-learning (derived from the literature)

and describe the technologies and infrastructures used in u-learning systems.

5.2.1 Overview

The notion of ubiquitous learning (u-learning) has become more prevalent since the

development of new ICT technologies facilitating ubiquitous computing, and since

electronic communications have become so widespread. However, the reason behind

the recent evolution of u-learning is that there are now increasing demands for dif-

ferent learning methods to solve the challenges of learning in a flexible manner[32].

U-learning is defined as the ability of a ubiquitous computing system to sense the

learner’s situation and to offer him/her adaptive contents based on his/her con-

text (this is called context-awareness). U-learning is described as a special case

of m-learning, with the notion of learning being based on context. Thus, the aim

of u-learning is that it considers the context of the learner in order to provide

92

CHAPTER 5. CASE STUDY

her/him with learning contents at appropriate times and in appropriate situations.

U-learning is similar to m-learning in terms of mobility but u-learning goes beyond

m-learning by including a high level of embeddedness. This is because u-learning is

able to determine the learner’s context using a number of sensors in order to detect

and gather information pertaining to the learner and his/her particular environment

[59][54].

5.2.2 U-learning Technologies and Infrastructure

U-learning is based on an extremely large range of wireless, mobile, wearable,

portable and embedded devices. Figure 5.1 illustrates that u-learning infrastruc-

tural technology has two significant factors: devices that process the information,

and the communication network. In addition, ubiquitous information processing is

incorporated into office and home appliances as well as handheld and mobile devices;

also, they are able to communicate with each other directly [114].

With regards to communication networks, the main distinction is between hetero-

geneity and ad hoc formations. The former indicates that the network is a mixture

of complementary technologies, not just a single technology. This kind of hetero-

geneity is not observable for the learners that use the learning services. In this case,

the network should have a high level of synthetic intelligence in order for it to select

the appropriate technology and the best operational approach for each user-initiated

application. The latter denotes that the network is created based on the needs and

circumstances of the learner, and is not predefined. The idea of ad hoc networks is

that they are applied on network topology with the dynamism constantly changing

[107].

93

CHAPTER 5. CASE STUDY

Figure 5.1: U-learning types of devices and connectivity [114]

94

CHAPTER 5. CASE STUDY

5.3 Modelling of a U-learning System in CA-UCON

5.3.1 U-learning Services

A u-learning system considers the context of learners, devices, services and environ-

ment in order to provide services such as u-lectures, u-tutorials and u-tests. There-

fore, a u-learning system allows the learners to use their portable devices, such as

smart phones, laptops and PDAs, to connect wirelessly to various wireless networks,

such as Wi-Fi spots, WLANs and 3G terminals, in order to access u-learning services

anytime, anywhere. Thus, the u-learning system delivers the content of services to

the learner as appropriate and adaptable content, based on the current context. A

u-learning system offers the following services:

1. U-Lecture: this kind of service offers learners all possible lecture materials,

which they can request and access through their mobile devices. There are

three different types of u-lecture formats provided by the u-learning system:

text, video and audio. In the u-learning system, each format requires a par-

ticular context in order for it to be delivered to the learner.

2. U-Test: this service is a formal approach for evaluating the learner’s under-

standing of the u-learning content that has been requested and provided. It

assesses the learner’s knowledge and based on the results, the learners receive

feedback to assist them in further u-learning. The learners utilize their mobile

devices in accessing this service.

3. U-Tutorial: this type of service is used by learners to increase their knowledge

in a particular subject; it is a useful service, as it provides an opportunity for

learners to obtain some form of self-assessment and to receive direct and per-

95

CHAPTER 5. CASE STUDY

sonal feedback. This service is a combination of u-lecture and u-test. There are

three different types of u-tutorial formats provided by the u-learning system:

text, video and audio.

5.3.2 Requirements of the u-learning system

A number of different requirements in the u-learning system must be fulfilled for

the learner to gain access. The u-learning system requirements are: authorization

requirements, obligation requirements, condition requirements and adaptation re-

quirements.

5.3.2.1 Authorisation Requirements

The authorisation requirements pertaining to the use of the u-learning system must

be satisfied before the learner is permitted to utilize it, i.e. the learner must be

enrolled. Therefore, we suppose that there are no specific authorisation requirements

in order for the learner to access a service.

5.3.2.2 Obligation requirements

In this section we present the obligation requirements for the u-learning system;

these must be fulfilled before and during the access request. Accordingly, the obli-

gation requirements in the u-learning system are detailed as follows:

B1: The user must register on the module that includes the requested service

before gaining access.

B2: The user must open the module announcement which is related to the requested

service for a duration of 10 seconds.

96

CHAPTER 5. CASE STUDY

5.3.2.3 Condition requirements

Condition requirements within the u-learning paradigm are defined as context re-

quirements; these are considered by the system before and during the access request

in order to permit access and delivery of the requested service to the learner. We

present several condition requirements, as follows:

C1: The u-learning system considers the context of user in order to deliver the

u-service. So, the only u-service format is allowed for a learner in driving context is

the audio format.

C2: In the u-learning system at a university, the context of the learner is classi-

fied as private or public. The public context is defined as learners being in a location

where making a noise is not permitted, such as in a library, seminar or lecture hall.

On the other hand, the private context denotes that the learners are in a location

where making a noise is permitted, such as in a cafe or at home. Therefore, the

system provides u-services in any of the different formats (video, audio or text)

but it considers the learner context before and during the access request. So, the

only u-service format allowed for a learner in a public context is the text format.

However, the system permits access to all the different u-service formats when the

learner context is detected as private.

C3: As above, the u-learning system at a university provides u-services in dif-

97

CHAPTER 5. CASE STUDY

ferent formats (video, audio and text); however, it considers the availability of the

memory of the user’s device before and during the access request. Each u-service

format requires a different amount of space for memory space in order to facilitate

access. If the learner requests a u-service in the video format, audio format or text

format the available memory of the device (before the access request) must be more

than 5MB, 2MB or 1MB respectively for access to be permitted. However, the avail-

able memory of the device (during the access request) must be greater or equal to

1MB for all formats.

C4: In a u-learning system, the battery capacity and bandwidth of the network

are considered when the user requests a u-service in the video format. Therefore, if

the user’s device has a low bandwidth (such as 2G), the battery capacity must be

more than 10% (before the access request) in order for access to the video format

service to commence. However, during the access request the battery capacity must

be more than 5%.

C5: The u-learning system considers the battery capacity before and during the

access request of a u-test. Thus, the u-test service has two forms, which are defined

as part of test and full test. If the user requests a full test, the battery capacity must

be more than 10% in order to access this service. However, the battery capacity

must be more than 5% in order to access part of test

98

CHAPTER 5. CASE STUDY

5.3.2.4 Adaptation requirements

Adaptation requirements are defined as set of adaptation actions that are used by

the system to adapt when conditions do not hold. In the u-learning system, there

are several conditions, which have been explained in the previous section, and these

conditions must be fulfilled before and during the access request. Otherwise, spe-

cific actions are performed by the system in order to adapt to a new situation. In

addition, the system might issue an implicit request to access a specified alternative

object, when there are no adaptation actions available or the adaptation action fails.

Several adaptations are explained in the following paragraphs:

D1: If the context of the user is driving and the requested service is in video or

text formats, the adaptation action is that the system issues an alternative request

in order to deliver audio format instead.

D2: If the user requests the service in video or audio format when s/he is in a

public place, the adaptation action is such that the system issues an alternative

request that enables the user to access the service in text format instead.

D3: Again, if the user requests a u-service in video, audio or text formats, the

required minimum available spaces in the memory are 5MB, 2MB and 1MB, respec-

tively. The adaptation action in this case, if the conditions do not hold, is that

the system activates garbage collector software in an attempt to make more space

available in the memory.

Garbage Collector (GC) is a type of automatic memory management that at-

tempts to dispose of objects or data that are no longer required, releasing the space

99

CHAPTER 5. CASE STUDY

that they had engaged.

D4: if the user requests video or audio format when s/he is using low bandwidth

and battery capacity is less than 10%, the adaptation action (in this case) is such

that the system switches to an available high-bandwidth network.

D5: if the user requests a u-test in ’full test’ format when the battery capacity is

less than 10%, the adaptation action is such that the system issues an alternative

request that delivers a ’part of test’ format to the user instead.

5.3.3 Formalisation in CA-UCON

In this section, we present the formalisation of u-learning services based on the CA-

UCON model. We adopt a finite set S of subjects and a finite set O of objects. The

subjects are learners who are studying at a university and the objects are lecture,

tutorial and test.

5.3.3.1 Right

These are the set of rights that the learner must hold in order to access u-service:

download, submit and write. The download right means that the learner is allowed

to download a u-learning service (such as a u-lecture, u-tutorial or u-test) if all re-

quirements pertaining to this right have been fulfilled. The submit right is used by

the learner to submit a u-test. The write right means that the learner is allowed to

sit a test if the access right has been satisfied.

R= {download, submit, write}

100

CHAPTER 5. CASE STUDY

5.3.3.2 Authorization

This is the authorization predicate, which checks the attributes of the subject and

object in terms of the access right, both before the access and during the access.

In this u-learning system, there are no authorization requirements for accessing the

u-services. So, the authorization predicates are taken to be true. The authorization

predicates are specified as follows:

• PreA(ATT (s), ATT (o), r) = true.

• OnA(ATT (s), ATT (o), r) = true.

5.3.3.3 Obligation

Obligation consists of three elements OBS, OBO and OB. The OBS is the set of

subjects who perform the obligation action, while OBO is the set of objects on which

the obligation is to be performed. The OB is the set of obligation actions that the

subject must perform in order to access the object. Therefore, the obligation is

specified as follows:

• OBS = S.

• OBO = O.

• OB = {register, OpenAnnouncement}.

There are two obligation actions as shown above; the first one is register, which

means that the learner must register with the requested service. The second

obligation action is OpenAnnouncement, which means that when the learner

requests the u-service, s/he must open the module announcement during the

access in order to continue usage of the service.

101

CHAPTER 5. CASE STUDY

• PreOBL ⊆ OBS ×OBO ×OB.

• getPreOBL(s, o, r) = {(s, o, register)}.

This function means that for each user who would like to access any service by

using any right, s/he has to register to the module which includes the requested

service.

• OnOBL ⊆ OBS ×OBO ×OB × T

• getOnOBL(s, o, r) = {(s, o, OpenAnnouncement, 10)}.

This function means that each user has to open the module announcement for

at least 10 seconds in order to continue the usage of the service.

• PreB(s, o, r)⇒ PreFulfilled(getPreOBL(s, o, r)).

• allowed(s, o, r)⇒ PreB(s, o, r).

• OnB(s, o, r)⇒ OnFulfilled(getOnOBL(s, o, r)).

• stopped(s, o, r)⇐ ¬onB(s, o, r).

5.3.3.4 Condition

We use a variable StudentContext to denote the context of learner; its possible val-

ues are: driving, when the context of the learner is driving ; public, when the context

of the learner is in a public place and private, when the context of the learner is in

private place. Accordingly, the conditions are specified as follows:

102

CHAPTER 5. CASE STUDY

C1: The user should not be driving when requesting a u-video or u-text service.

This is specified by the condition:

(StudentContext 6= driving) (5.1)

C2: To access a u-video or u-audio, the user must be in a private place. This is

specified by the condition:

(StudentContext = Private) (5.2)

C3: The user must have sufficient memory available on her/his mobile device,

which must be more than 5MB if s/he requests the service in video format, more

than 2MB if in audio, and more than 1MB if the requested service is in text format

before the access request. However, during the access the memory available must

be greater or equal to 1MB for all formats. We use the variable AvailableMemory

to denote the amount of free space available in the memory. This is specified by the

conditions:

(AvailableMemory > 5MB) (5.3)

103

CHAPTER 5. CASE STUDY

(AvailableMemory > 2MB) (5.4)

(AvailableMemory > 1MB) (5.5)

(AvailableMemory >= 1MB) (5.6)

C4: The user may not access the service in video format, if s/he is using a low

bandwidth network and the battery capacity is less than 10% before and during the

access request. We use the variable Bandwidth to denote the signal bandwidth being

used for the communication, while we use the variable BatteryCapacity to denote

how much power the device has.

This is specified by the condition:

(Bandwidth = high ∨BatteryCapacity > 10%) (5.7)

C5: The user may not access a full u-test if the battery capacity is less than

10%.

This is specified by the condition:

104

CHAPTER 5. CASE STUDY

(BatteryCapacity > 10%) (5.8)

PreCon={Eq.(5.1),Eq.(5.2),Eq.(5.3),Eq.(5.4),Eq.(5.5),Eq.(5.7),Eq.(5.8)}

OnCon={Eq.(5.1),Eq.(5.2),Eq.(5.6),Eq.(5.7),Eq.(5.8)}

5.3.3.5 Adaptation

Adaptation requirements are a set of adaptation actions that are used by the system

to adapt when specific conditions do not hold. In particular, there are four adap-

tation actions: AdaptToVideo, AdaptToAudio, AdaptToText and skip. We use the

variable gc to model the garbage collector; this variable can only have two values:

1 (to mean that the garbage collector is activated) or 0 (to deactivate it). The ac-

tion skip does nothing and lasts for only one time-unit. The adaptation actions are

specified as follows:

AD= {AdaptToVideo, AdaptToAudio, AdaptToText, Skip}.

We partition the set O of objects as follows:

O = Ovideo

⋃
Oaudio

⋃
Otext.

where Ovideo is the set of video versions of u-lecture, u-tutorial and u-test; Oaudio

is the set of audio versions of u-lecture, u-tutorial and u-test; and Otext is the set of

text versions of u-lecture, u-tutorial and u-test.

105

CHAPTER 5. CASE STUDY

getPreADAPT(s, o, r) returns a tuple (c, a, t) where c is the set of all precon-

ditions required to grant the subject s the access right r upon the object o, a is the

adaptation action to be performed if any of the pre-conditions do not hold, and t is

the time-out for this adaptation process.

getOnADAPT(s,o, r) returns a tuple (c, a, t) where c is the set of all ongoing-

conditions required for the subject s to keep the right r upon the object o during

access, a is the adaptation action to be performed if any of the ongoing-conditions

does not hold, and t is the time-out for this adaptation process.

getPreADAPT (s, o, download) = getOnADAPT (s, o, download) = ({Eq.(5.1), Eq.(5.2),

Eq.(5.3), Eq.(5.7)}, AdaptToV ideo, 5)
(5.9)

for o ∈ Ovideo

This function means that if the user requests the video format and if one (or all) of

these Eq.(5.1),Eq.(5.2), Eq.(5.3), Eq.(5.7) conditions do not hold, the system will

adapt by performing the function AdaptToVideo; for a duration of 5 seconds. We

suppose that the time taken for the AdaptToVideo action to be performed in this

system is 5 seconds.

The action AdaptToVideo is defined as follows:

AdaptToVideo = (if¬(Eq.(5.1)) then Skip

106

CHAPTER 5. CASE STUDY

|| if¬(Eq.(5.2)) then Skip

|| if¬(Eq.(5.3)) then gc := 1

|| if¬(Eq.(5.7)) then Bandwidth := high

)

The function AdaptToVideo performs the action Skip, if the context of the user

is driving or public. However, the action gc:=1 is performed if the AvailableMemory

less or equal to 5 MB which means that turn on the Garbage collector. The action

Bandwidth:= high is performed if the bandwidth is low.

getPreADAPT (s, o, download) = getOnADAPT (s, o, download) = ({Eq.(5.2),

Eq.(5.4)}, AdaptToAudio, 4)
(5.10)

for o ∈ Oaudio

This function means that if the user requests the audio format and if one (or all) of

these Eq.(5.2), Eq.(5.4) conditions do not hold, the system will adapt by performing

the function AdaptToAudio; for a duration 4 seconds. We suppose that the time

taken for the AdaptToAudio action to be performed in this system is 4 seconds.

The action AdaptToAudio is defined as follows:

AdaptToAudio = (if¬(Eq.(5.2)) then Skip

|| if¬(Eq.(5.4)) then gc := 1

)

The function AdaptToAudio performs the action Skip, if the context of the user

107

CHAPTER 5. CASE STUDY

is public. However, the action gc:=1 is performed if the AvailableMemory less or

equal to 2 MB which means that turn on the Garbage collector.

getPreADAPT (s, o, download) = getOnADAPT (s, o, download) = ({Eq.(5.1),

Eq.(5.5)}, AdaptToText, 3)
(5.11)

for o ∈ Otext

This function means that if the user requests the text format and if one (or all) of

these Eq.(5.1), Eq.(5.5) conditions do not hold, the system will adapt by performing

the function AdaptToText ; for a duration of 3 seconds. We suppose that the time

taken for the AdaptToText action to be performed in this system is 3 seconds.

The action AdaptToText is defined as follows:

AdaptToText = (if¬(Eq.(5.1)) then Skip

|| if¬(Eq.(5.5)) then gc := 1

)

The function AdaptToText performs the action Skip, if the context of the user

is driving. However, the action gc:=1 is performed if the AvailableMemory less or

equal to 1 MB which means that turn on the Garbage collector.

108

CHAPTER 5. CASE STUDY

getPreADAPT (s, o, download) = getOnADAPT (s, o, download) = ({Eq.(5.8)}, skip, 1)

(5.12)

for O ∈ Otest

This function means that if the user requests a u-test service and if the Eq.(5.8)

condition does not hold, which is in this case would be that the battery capacity

is less than 10%, the system will perform the skip action for a duration 1 second,

because the system is unable to make this condition true. However, an alternative

request will be issued by system as detailed below.

getPreAltReq(s, o, r) this denotes the set of alternative requests that can be

made on behalf of the subject s when the initial request of the access right r upon

the object o fails before access due to environmental conditions.

getOnAltReq(s, o, r) denotes the set of alternative requests that can be made

on behalf of the subject s when the initial request of the access right r upon the

object o fails during access due to environmental conditions.

For the sake of simplicity, we will use the following functions:

V ideo : O −→ Ovideo; video(o)= the video version of object(o).

Audio : O −→ Oaudio; audio(o)= the audio version of object(o).

Text : O −→ Otext; text(o)= the text version of object(o).

PartOfTest : O −→ Opartoftest; PartOfTest(o)= the part of the test version of

object(o).

109

CHAPTER 5. CASE STUDY

getPreAltReq(s, o, download) = getOnAltReq(s, o, download) = {(Audio(o), download)}

(5.13)

for o ∈ Ovideo

⋃
Otext

In the functions above, if the user requests a u-service the video or text format

when driving, in this case the condition does not hold; the system then issues an

alternative request, which delivers that u-service in the audio format instead.

getPreAltReq(s, o, download) = getOnAltReq(s, o, download) = {(Text(o), download)}

(5.14)

for o ∈ Ovideo

⋃
Oaudio

The functions above mean that if the user requests a u-service in the video or

audio format when in a public place, the system then issues an alternative request,

which delivers that u-service in the text format instead.

getPreAltReq(s, o, download) = getOnAltReq(s, o, download) = {(PartOfTest(o), download)}

(5.15)

for o ∈ Otest

This function means that if the user requests a u-test service and if the condition

does not hold, the system then issues an alternative request, which in this case means

that the system delivers the ’part of test’ form.

110

CHAPTER 5. CASE STUDY

PreD(s, o, r) = PreAdapted(getPreADAPT(s, o, r)).

This is the adaptation predicate; it takes the form of true or false, which means

that if the adaptation process is successful, ’true’ will be returned, otherwise ’false’

is returned.

The access permission decision is defined as:

allowed(s, o, r)⇒ preD(s, o, r);

This predicate denotes that the subject s is granted the right r to access the object

o, if the adaptation process for this access request is successful.

ended(s , o, r)⇒


¬preD(s, o, r)

∧∨
(o′,r′)∈E

allowed(s , o ′, r ′)



This predicate denotes that the right r requested by the subject s to access the

object o is ended, if the predicate preD is false and an alternative request is issued.

where E = getPreAltReq(s , o, r) and the symbol ‘⇒’ denotes the logical implication.

111

CHAPTER 5. CASE STUDY

5.4 Formal specification in CCA

We now present the formalisation process of the CA-UCON model used in case study

above (i.e. in a u-learning system). This formalisation process is completed utilizing

the CCA notation explained in the previous chapter. We formalise and highlight

the important parts of this case study, which are represented by Adaptation and

Conditions.

5.4.1 CheckPreC Ambient

This ambient receives the request from requesting ambient in order to check the

condition of the current request, which in this case is the format of the u-service

and the context of the mobile user. Thus, the checkPreC ambient senses the context

of the user, the memory size of the mobile device and the bandwidth of the network,

and then sends the context, fm and bandwidth parameters to the SubjectCxt, Mem-

orySize and Bandwidth ambients, respectively. Then, if the u-lecture is in video or

text format and the context of the user is driving, and if the memory size of the

mobile device is more than 2MB, the checkPreC ambient will send the parameter

AltA to the requesting ambient; the latter then sends it to the preadapting ambient

for adaptation.

However, if the u-lecture is in video or audio format and the context of the user

is in a public place, and if the memory size of the mobile device is more than 1MB,

the checkPreC ambient will send the parameter AltT to the requesting ambient; the

latter then sends it to the preadapting ambient for adaptation. If the u-lecture is

in video or text format and the context of the user is driving, and if the memory

size of the mobile device is less than or equal to 2MB, the checkPreC ambient will

112

CHAPTER 5. CASE STUDY

send the parameter AltA1 to the requesting ambient; the latter then sends it to the

preadapting ambient for adaptation. If the u-lecture is in video or audio format and

the context of the user is in a public place, and if the memory size of the mobile

device is less than or equal to 1MB, the checkPreC ambient will send the parameter

AltT1 to the requesting ambient; the latter then sends it to the preadapting ambient

for adaptation.

If the u-lecture is in video format and the context of the user is private, and if

the memory size of the mobile device is more than 5MB and the bandwidth is low,

the checkPreC ambient will send the parameter action1 to the requesting ambient;

the latter then sends it to the preadapting ambient for adaptation. If the u-lecture

is in video format and the context of the user is private, and if the memory size of

the mobile device is less than or equal to 5MB and bandwidth is low, the checkPreC

ambient will send the parameter action2 to the requesting ambient; the latter then

sends it to the preadapting ambient for adaptation.

If the u-lecture is in audio format and the context of the user is private, and if

the memory size of the mobile device is less than or equal to 2MB, the checkPreC

ambient will send the parameter action2 to the requesting ambient; the latter then

sends it to the preadapting ambient for adaptation. If the u-lecture is in text format

and the context of the user is private, and if the memory size of the mobile device is

less than or equal to 1MB, the checkPreC ambient will send the parameter action2

to the requesting ambient; the latter then sends it to the preadapting ambient for

adaptation. If the u-lecture is in video format and the context of the user is pri-

vate, and if the memory size of the mobile device is less than or equal to 5MB and

bandwidth is low, the checkPreC ambient will send the parameter action3 to the

requesting ambient; the latter then sends it to the preadapting ambient for adapta-

tion. Otherwise, the checkPreC ambient will send 1 to the requesting ambient; the

latter then sends it to the accessing ambient. This behaviour is modelled as follows:

113

CHAPTER 5. CASE STUDY

PcheckPreC =̂ !requesting :: (requesterid, lectFormat, download).subjectCxt ↓ 〈requesterid〉.

subjectCxt ↓ (req, context).MemorySize ↓ 〈requesterid〉.MemorySize ↓ (req, fm).

Bandwidth ↓ 〈requesterid〉.Bandwidth ↓ (req, bandwidth).

(lectFormat = video) ∧ (context = driving) ∧ (fm > 2)?requesting :: 〈AltA〉.0

|(lectFormat = video) ∧ (context = public) ∧ (fm > 1)?requesting :: 〈AltT 〉.0

|(lectFormat = video) ∧ (¬(context = driving)) ∨ (¬(context = piblic)) ∧ (fm > 5)

∧(bandwidth = high)?requesting :: 〈1〉.0

|(lectFormat = video) ∧ (context = driving) ∧ (fm <= 2)?requesting :: 〈AltA1〉.0

|(lectFormat = video) ∧ (¬(context = public) ∨ (context = driving)) ∧ (fm <= 5)

∧(bandwidth = high)?requesting :: 〈Action2〉.0

|(lectFormat = video) ∧ (context = public) ∧ (fm <= 1)?requesting :: 〈AltT1〉.0

|(lectFormat = video) ∧ (¬(context = public) ∨ (context = driving)) ∧ (bandwidth = low)

∧(fm > 5)?requesting :: 〈Action1〉.0

|(lectFormat = video) ∧ (¬(context = public)) ∨ (context = driving) ∧ (fm <= 5)∧

(bandwidth = low)?requesting :: 〈Action3〉.0

|(lectFormat = audio) ∧ (context = public) ∧ (fm > 1)?requesting :: 〈AltT 〉.0

|(lectFormat = audio) ∧ (context = public) ∧ (fm <= 1) >?requesting :: 〈AltT1〉.0

|(lectFormat = audio) ∧ (¬(context = public)) ∧ (fm > 2)?requesting :: 〈1〉.0

|(lectFormat = audio) ∧ (¬(context = public)) ∧ (fm <= 2)?requesting :: 〈Action2〉.0

|(lectFormat = text) ∧ (context = driving) ∧ (fm > 2)?requesting :: 〈AltA〉.0

|(lectFormat = text) ∧ (¬(context = driving)) ∧ (fm > 1)?requesting :: 〈1〉.0

|(lectFormat = text) ∧ (¬(context = driving)) ∧ (fm <= 1)?requesting :: 〈Action2〉.0

|(lectFormat = text) ∧ (context = driving) ∧ (fm <= 2)?requesting :: 〈AltA1〉.0


(5.16)

114

CHAPTER 5. CASE STUDY

5.4.1.1 SubjectCxt Ambient

This ambient receives the parameter requesterid from the checkPreC ambient; this

parameter represents the ID of the subject. The SubjectCxt ambient sends the

parameters requesterid and context back to the checkPreC ambient, which represent

that the ID of the subject and his/her context. We model this ambient as the

simulation of a sensor in the real world, which randomly gives the context of subject.

PsubjectCxt =̂ ! ↑ (requesterid).
↑ 〈requesterid, driving〉.0|

↑ 〈requesterid, private〉.0|

↑ 〈requesterid, Public〉.0


5.4.1.2 MemorySize Ambient

This ambient receives the parameter requesterid from the checkPreC ambient; this

parameter represents the ID of the mobile user. We use the variable fm to denote

the free memory of mobile device. The MemorySize ambient sends the parameters

requesterid and fm back to the checkPreC ambient, which represent the ID of the

mobile user and the memory size of his/her device. We model this ambient as the

simulation of a sensor in the real world, which gives the memory size of the mobile

115

CHAPTER 5. CASE STUDY

device in a random manner.

PMemorySize =̂ ! ↑ (requesterid).

↑ 〈requesterid, 4〉.0|

↑ 〈requesterid, 7〉.0|

↑ 〈requesterid, 3〉.0|

↑ 〈requesterid, 8〉.0|

↑ 〈requesterid, 0〉.0|

↑ 〈requesterid, 5〉.0


5.4.1.3 Bandwidth Ambient

This ambient receives the parameter requesterid from the checkPreC ambient; this

parameter represents the ID of the mobile user. We use the variable bandwidth

to denote the network bandwidth. The Bandwidth ambient sends the parameters

requesterid and bandwidth back to the checkPreC ambient, which together repre-

sent the ID of the mobile user and the bandwidth of the network being used. We

model this ambient as the simulation of a sensor in the real world, which gives the

bandwidth of the network being used by the mobile device in a random manner.

PBandwidth =̂ ! ↑ (requesterid). ↑ 〈requesterid, low〉.0|↑ 〈requesterid, high〉.0|



116

CHAPTER 5. CASE STUDY

5.4.2 GC Ambient

This ambient represents the behaviour of the Garbage Collector software, which is

requested from the preadapting ambient in order to turn on the GC ambient to

make more space available in the memory device. The GC ambient receives the

parameter Areply from the preadapting ambient, and if Areply is memoryislow, the

GC ambient will start working for a duration of 5 seconds. Following this, the

GC ambient sends the parameter checkfm to the FMem ambient and receives the

parameter fm from the FMem ambient which is the memory capacity and sends it

back to the preadapting ambient. This behaviour is modelled as follows:

PGC =̂


!preadapting :: (Areply).

(Areply =MemoryisLow) ?FMem :: 〈checkfm〉.

FMem :: (fm).perAdapting :: 〈fm〉.0

 (5.17)

5.4.3 preadapting Ambient

This ambient receives the request from the requesting ambient, which means that the

conditions for this request have not been fulfilled in order to access the service. So,

the current request needs to be adapted to the new situation based on the current

context of the mobile user. If the reply is AltA, the preadapting ambient issues an

alternative request and sends the u-service in the audio format along with 1 to the

requesting ambient; this means that the adaptation has been successful. However,

if the reply is AltA1, the preadapting ambient sends the parameter memoryisLow to

the GC ambient in order to increase the memory capacity of the mobile device; it

then receives the parameter fm, and if fm is more than 2MB, the audio format will

117

CHAPTER 5. CASE STUDY

be sent along with 1 to the requesting ambient, which means that the adaptation

has been successful. Otherwise, 0 along with the audio format will be sent to the

requesting ambient, which means that the adaptation has failed.

However, if the reply is AltT, the preadapting ambient issues an alternative re-

quest and sends the text format along with 1 to the requesting ambient, which

means that the adaptation has been successful. However, if the reply is AltT1, the

preadapting ambient sends the parameter memoryisLow to the GC ambient in order

to increase the memory capacity of the mobile device; the preadapting ambient then

receives the parameter fm, and if fm is more than 1MB, the text format will be sent

along with 1 to the requesting ambient, which means that the adaptation has been

successful. Otherwise, 0 along with the text format will be sent to the requesting

ambient, which means that the adaptation has failed.

If the reply is action1, it means that the bandwidth of the network being used

by the mobile device is low; the preadapting ambient then sends the parameter

bandwidthislow to the HB ambient in order to switch to a high bandwidth network.

If HBreply returns with ’high’, the video format together with 1 is sent to the

requesting ambient. Otherwise, 0 is sent to the requesting ambient (as a result of

adaptation failure). If the reply is action2, it means that the memory size of the mo-

bile device is low; the preadapting ambient then sends the parameter memoryislow

to the GC ambient in order to increase the capacity of the memory. If fm is greater

than requested, the requested format together with 1 is sent to the requesting ambi-

ent. Otherwise, 0 is sent to the requesting ambient (as a result of adaptation failure).

If the reply is action3, it means that the network bandwidth being used by the

mobile device is low and that the memory capacity is low. In this case, the preadapt-

118

CHAPTER 5. CASE STUDY

ing ambient sends the parameters bandwidthislow and memoryislow to the HB and

GC ambients, respectively, in order to switch to a high bandwidth network and to

increase the memory capacity. If HBreply is returned with ’high’ and fm is greater

than requested, the video format together with 1 is sent to the requesting ambient.

Otherwise, 0 is sent to the requesting ambient (as a result of adaptation failure).

This behaviour is modelled as follows:

119

CHAPTER 5. CASE STUDY

Ppreadapting =̂ !requesting :: (requesterid, lectFormat, download, reply).{(5.18)|(5.19)}

Where:



(reply = AltA) ? requesting :: 〈1, audio〉.0

|(reply = AltA1) ? GC :: 〈MemoryisLow〉.GC :: (fm). (fm > 2)? requesting :: 〈1, audio〉.0

|(fm <= 2)? requesting :: 〈0, audio〉.0


|(reply = AltT) ? requesting :: 〈1, text〉.0

|(reply = AltT1) ? GC :: 〈MemoryisLow〉.GC :: (fm). (fm <= 1)? requesting :: 〈0, text〉.0

|(fm > 1)? requesting :: 〈1, text〉.0


|(reply = Action1)? HB :: 〈bandwidthislow〉.HB :: (HBreply). (HBreply = high)? requesting :: 〈1, video〉.0

|(HBreply = low)? requesting :: 〈0, video〉.0


|(reply = Action2) and (lectFormat = video)? GC :: 〈MemoryisLow〉.GC :: (fm). (fm > 5)? requesting :: 〈1, video〉.0

|(fm <= 5)? requesting :: 〈0, video〉.0


|(reply = Action2) and (lectFormat = audio)? GC :: 〈MemoryisLow〉.GC :: (fm). (fm > 2)? requesting :: 〈1, audio〉.0

|(fm <= 2)? requesting :: 〈0, audio〉.0




(5.18)

120

CHAPTER 5. CASE STUDY



(reply = Action2) and (lectFormat = text)? GC :: 〈MemoryisLow〉.GC :: (fm). (fm > 1)? requesting :: 〈1, text〉.0

|(fm <= 1)? requesting :: 〈0, text〉.0


|(reply = Action3)? HB :: 〈bandwidthislow〉.HB :: (HBreply).

(not(HBreply = high))? requesting :: 〈0, video〉.0

|(HBreply = high)? GC :: 〈MemoryisLow〉.GC :: (fm). (fm <= 5)? requesting :: 〈0, video〉.0

|(fm > 5)? requesting :: 〈1, video〉.0






(5.19)

5.4.4 Subject Ambient

This ambient sends the request with the parameters (requesterid, lectFormat, down-

load) to the requesting ambient in order to access the service. The requesterid

parameter is used to create a user profile. The lectFormat parameter represents

the lecture format that the user has requested. The download parameter represents

the right requested by the user. Thus, the subject ambient receives a reply from

the requesting ambient, which is permit if all the requirements have been fulfilled

or deny if otherwise. The user eventually ends the usage by sending the message

END_USAGE to the accessing ambient. This behaviour is modelled as follows:

Psubject =̂ !requesting :: 〈P1, video, download〉.requesting :: (reply , video, download).{

(reply = PERMIT)?accessing :: (x, o, r).0

| accessing :: 〈END_USAGE, video, download〉.0

}

121

CHAPTER 5. CASE STUDY

5.4.5 FMem Ambient

This ambient receives the parameters reply from the GC ambient to checks the mem-

ory capacity of the mobile device. Then, the FMem ambient sends the parameter fm,

which is the memory capacity, back to the GC ambient. We model this ambient by

using a random function that gives the capacity of the memory in a random manner,

as the simulation of a sensor in the real world. This behaviour is modelled as follows:

PFMem =̂ !GC :: (reply).GC :: 〈fm〉.0

5.4.6 HB Ambient

This ambient represents the behaviour of the network bandwidth. The HB ambi-

ent receives the parameter Areply from the preadapting ambient, and if Areply is

bandwidthislow, the HB ambient attempts to switch from a low bandwidth to a high

bandwidth in the mobile device. We model this ambient using a random function

that gives the bandwidth of the network in a random manner, as the simulation of

a sensor in the real world. This behaviour is modelled as follows:

PHB =̂

 !preadapting :: (Areply).

(Areply = bandwidthisLow) ?preadapting :: 〈HBreply〉.0

 (5.20)

5.5 Validation

In this section, we present the validation of our CA-UCON model vis-a-vis the above

case study (u-learning system). We illustrate how CA-UCON model properties can

be validated using the execution environment of CCA [96]. Firstly, we present the

122

CHAPTER 5. CASE STUDY

syntax and the execution environment of ccaPL. We then devise scenarios and ex-

ecute them in order to validate two main classes of system properties as proposed

by [71]:

Safety property: stating that nothing bad will happen.

Liveness property: stating that something good will happen, eventually

For the evaluation of our system we do not use the a metric (benchmark) because

the CCA is used to validate the above mentioned properties: Safety property and

Liveness property. Therefore, CCA is powerful language which has an execution

environment that can easy run the formal specification of mobile and context-aware

system to validate its properties. We advise a different scenarios and execute them

to validate a various properties of the system.

5.5.1 ccaPL: A Programming Language for CCA

In the previous chapter, we presented the mathematical notation of CCA. It is ap-

propriate notation for modelling systems that are mobile and context-aware. Our

CA-UCON model is modelled by using the CCA notation. In the following sub-

sections the syntax, context expression and execution environment of ccaPL are

presented.

5.5.1.1 Syntax of ccaPL

Using a normal text editor for reproducing the syntax of CCA is difficult because

of the special symbols that are used in the syntax of CCA (eg.′ ↑′ and ′ ↓′). Thus,

the syntax of ccaPL is presented in a manner that is readable by the computer.

Capabilities, processes and locations are shown in Tables 5.1,5.2, 5.3 below.

123

CHAPTER 5. CASE STUDY

Table 5.1: Capabilities of ccaPL

Capabilities M
CCA ccaPL Description
in n in n move into ambient n
out out move out
del n del n delete ambient n
α x〈z̃〉 (α)x(z̃) call to the process abstraction x
α (ỹ) (α)recv(ỹ) receive list of messages ỹ from α
α 〈ỹ〉 (α)send(z̃) send list of messages z̃ to α

Table 5.2: Processes of ccaPL

Processes P
CCA ccaPL Description

0 0 inactivity
n[P] n[P] ambient x
P |Q P |Q parallel composition
!P !(P) replication
(νn) P new n (P) restriction
κ?M.P < k > M.P context-guarded capability
x . (ỹ).P proc x(ỹ).P process abstraction x
{P} {P} brackets

Table 5.3: Location of ccaPL

Location α
CCA ccaPL Description
↑ @ any parent
n ↑ n@ parent n
↓ # any child
n ↓ n# child n
:: :: any sibling
n :: n :: sibling n
ε ε locally

124

CHAPTER 5. CASE STUDY

5.5.1.2 Context Expressions in ccaPL

In Table 5.4 below the context expressions of ccaPL are shown. In ccaPL the non

readable symbols which are utilized by CCA are changed to readable one that can

be written in normal text editor in order to represent context expression in a usual

manner.

Table 5.4: Context Expressions of ccaPL

Context Expressions κ
CCA ccaPL Description
T true true
n = m n = m name match
• this hole
¬κ not(κ) negation
κ1|κ2 κ1|κ2 parallel composition
κ1 ∨ κ2 κ1 or κ2 disjunction
κ1 ∧ κ2 κ1 and κ2 conjunction
⊕κ next (κ) spatial next modality
Gκ somewhere (κ) somewhere modality

5.5.1.3 ccaPL Execution Environment

The architecture of the execution environment of ccaPL is shown in Figure 5.2 below.

This architecture consists of the following components: editor, parser, interpreter,

manager and console. The editor component represents the development environ-

ment of the CCA program, which allows the user to write a CCA program in a

normal text editor. The second component is the parser, which is developed by uti-

lizing JavaCC (Java Compiler Compiler); the responsibility of this component is to

verify the syntax of any program that is written in ccaPL. The manager component

is mange the console and the interpreter components. The next component is the

interpreter; the responsibility of this component is the execution of the program in

ccaPL, based on CCA reduction semantics. The last component is the console; this

125

CHAPTER 5. CASE STUDY

is considered as part of the execution environment and is currently being created.

Figure 5.2: The architecture of the execution environment of ccaPL [96]

The comments can be written in ccaPL program using this symbol "//" if it is

a single line commentary or between these symbol "/*","*/" if it is multiple lines

commentary. So, the JDK (Java Development Kit) has to be installed in computer

in order to use the execution environment to execute ccaPL program. The following

example below shows how the ccaPL program is written:

BEGIN_DECLS

def has(n) = this | n[true] | true

END_DECLS

// Here goes the program

Abdul[::recv(sder,x).<x=hello or x=hi>let y = thanks_+sder in sder::send(y).0]

|

francois[::send(francois, hello).::recv(ack).0]

The declaration section of a ccaPL program starts with key word "BEGIN_DECLS"

and ending with another key word "END_DECLS", these key words must be writ-

126

CHAPTER 5. CASE STUDY

ten in capital letters. This is an optional section and is used to define the context

expression.

In order to present how the execution environment of ccaPL works in practice,

we will execute the above instance. The Figure 5.3 below shows the result of the

execution of the above example.

Figure 5.3: Reduction relation of execution environment of ccaPL

Now, the output of an execution will be explained as follows: the meaning of

the symbol ′ −−−−− >′ is the reduction relation of CCA as described in [96]. A

pair of curly brackets contains the explanation of each transition, which describes

the relationship between the ambients, such as "Parent to child", "Child to par-

ent" and "Sibling to sibling". In addition, it specifies the sender and the receiver

as well as the massage exchanged between them. For example, the notation C

======(X)===== > D represents that an ambient C sent a message ’X’ to

ambient D.

127

CHAPTER 5. CASE STUDY

5.5.2 Executing Scenarios

In following paragraphs, we design a different scenarios and execute them in order to

validate properties of CA-UCON model in u-learning system. The two main classes

of system properties are safety property and liveness property:

Scenario 1: the property to validate in this scenario is : " if the pre-authorization

or the pre-obligation requirement is not met before the access, then the access request

will be denied by the system". Suppose a learner requests to download a u-lecture

in the video format and the context of learner is in private place and the memory

capacity of her/his mobile device is more than 5MB. However, the pre-obligation

requirements of this access request are not met. In this case, the system has to deny

the access request.

128

CHAPTER 5. CASE STUDY

Figure 5.4: Execution of Scenario 1

Figure 5.4 illustrates the execution of scenario 1. The subject sends the access

request containing the subject ID, the u-lecture in the video format and the down-

loading right to the requesting ambient (line 2). The requesting ambient receives

the access request and checks the pre-obligation pertaining to this request (line 3).

So, the pre-obligation of this request is not met, and finally the system denied the

access request (lines 4-5). So, it can be seen from this scenario the safety property

is validated because the system deny the request if the pre-obligation is not met.

Scenario 2: The property to validate in this scenario is : " if the pre-authorization,

pre-obligation and pre-condition requirements are met at the time of access request

and on-authorization, on-obligation and on-condition requirements continuously hold

during the access, the access will end successfully". Suppose a learner requests to

download a u-lecture in the video format and the context of learner is in private

place and the memory capacity of her/his mobile device is more than 5MB. The

129

CHAPTER 5. CASE STUDY

service will be delivered to the learner by the system.

Figure 5.5: Execution of Scenario2

130

CHAPTER 5. CASE STUDY

Figure 5.5 presents a screen shot of the execution of Scenario 2, from which it can

be seen that the subject sends the access request to the requesting ambient (line 2).

The requesting ambient receives the access request and checks the pre-authorisation,

pre-obligation and pre-conditions pertaining to this request (lines 3-8). The ambi-

ent checkPreC checks the context of the subject, the memory capacity of the mobile

device and the bandwidth of the network before access. In this case, all the require-

ments before the access are met and the access is permit to the service(lines 16).

Moreover, the requesting ambient sends the access request to accessing ambient to

check on-authorisation, on-obligation and on-conditions pertaining to this request,

and all requirements are hold during the access (lines 22-27). In line(33) The sub-

ject ended the access successfully by sending this message END_USAGE to the

accessing ambient.

Scenario 3: The property we want to validate in this scenario is : " if the pre-

authorization and pre-obligation requirements are met, but the pre-condition require-

ments are not met and the pre-adaptation is successful, eventually the access request

will be permit". Suppose a learner sends a request to download a u-lecture in video

format and the context of learner is in private place and the memory capacity of

mobile device is less than 5MB. One condition for this service is that the available

memory in the mobile device must be more than 5MB. This condition is not met

by the current context, so the system will turn on a garbage collector (GC) in an

attempt to generate sufficient space to allow the downloading of the service to take

place.

131

CHAPTER 5. CASE STUDY

Figure 5.6: Execution of Scenario 3

Figure 5.6 illustrates that the execution of Scenario 3. The subject sends the

access request containing the subject ID, the u-lecture in the video format and the

downloading right to the requesting ambient (line 1), whereupon the requesting ambi-

ent receives the access request and then checks the pre-authorisation, pre-obligation

and pre-conditions pertaining to this request (lines 3-8). The ambient checkPreC

checks the context of the subject, the memory capacity of the mobile device and the

bandwidth of network (lines 9-14). In this case, the available memory on the mobile

device is less than 5MB (line 12), which means that the system has to adapt to a

132

CHAPTER 5. CASE STUDY

new situation. A garbage collector is activated to free more memory space (lines

15-20). The pre-adaptation is successful and the available memory space is increased

to 6MB as shown in (line 21) and the video format is then delivered (line 24). So, it

can be seen from this scenario the liveness property is validated because the system

adapts to new situation in order to continue the access for the user.

Scenario 4: The property to validate in this scenario is : " if the pre-authorization

and the pre-obligation requirement is met, but the pre-condition requirement is not

met and the pre-adaptation fails, eventually the access request will be denied". Sup-

pose a learner requests a u-tutorial in the video format in a private place and that

the memory capacity of the mobile device is more than 5MB. However, she/he is

using a low bandwidth network in attempting to download the video, which means

that the condition to download this service is not met. Therefore, the system adapts

to this new situation by switching the mobile device to a high bandwidth network

in order to download this service.

133

CHAPTER 5. CASE STUDY

Figure 5.7: Execution of Scenario 4

The execution of Scenario 4 is illustrated in Figure 5.7 the subject sends the

access request containing the subject ID, the u-lecture in the video format and

the downloading right to the requesting ambient (line 1). The requesting ambient

receives the access request and then checks the pre-authorization, pre-obligation

and pre-conditions pertaining to this request (lines 3-8). The ambient checkPreC

checks the context of the subject, the memory capacity of the mobile device and

the bandwidth of the network (lines 11-14). In this scenario, the bandwidth of the

network is low (line 14), so the system has adapt to this new situation by sending

134

CHAPTER 5. CASE STUDY

the parameter Action1 with the request to the pre-adapting ambient (line 16) in

order to switch to a high bandwidth. Then, the pre-adapting ambient receives the

current bandwidth of the network from the HB ambient is low bandwidth which the

adaptation is fail(line 20). Finally, the system is deny the service(line 22).

Scenario 5: In this scenario the property will be validated is : " if the pre-

authorization, pre-obligation and pre-condition requirements are met, but the on-

authorization or on-obligation requirements fails, the access will be revoked by the

system". Suppose a learner sends a request to download a u-tutorial in the text

format to her/his mobile device when s/he in a public place and that the memory

capacity of the device is more than 1MB. However, the on-authorization require-

ments are not hold, the system will revoke the access.

135

CHAPTER 5. CASE STUDY

Figure 5.8: Execution of Scenario 5

Figure 5.8 illustrates the execution of Scenario 5: the subject sends the access

request containing the subject ID, the u-tutorial in the text format and the down-

loading right to the requesting ambient (line 1). The requesting ambient receives

the access request and then checks the pre-authorisation, pre-obligation and pre-

conditions pertaining to this request (lines 2-8). The ambient checkPreC checks the

context of the subject, the memory capacity of the mobile device and the bandwidth

of the network (lines 9-15). So, in this case all requirements before the access are

met and the access request is permit (line 16). However, the system checks on-

136

CHAPTER 5. CASE STUDY

authorization during the access and it is not hold (lines 24-25). Finally, the system

revokes the access (line 26).

Scenario 6: the property to validate in this scenario is : " if the on-condition

requirements do not hold during the access and the on-adaptation is successful, the

access will continue". Suppose a learner requests a u-tutorial in the video format

in a private place and that the memory capacity of the mobile device is more than

5MB and using a high bandwidth at the time of request which means that all pre-

condition requirements are met by current context. When the system gives the

permission to the learner in order to download the video format, she/he starts using

a low bandwidth network in attempting to download the video, which means that the

on-condition requirements to download this service are not hold based on u-learning

system policies. Therefore, the system adapts to this new situation by switching the

mobile device to a high bandwidth network in order to download this service.

Figure 5.9 illustrates the execution of Scenario 6: the subject sends the ac-

cess request containing the subject ID, the u-tutorial in the video format and the

downloading right to the requesting ambient (line 1). The requesting ambient re-

ceives the access request and then checks the pre-authorisation, pre-obligation and

pre-conditions requirements pertaining to this request (lines 2-15). Here, the pre-

authorisation, pre-obligation and pre-conditions requirements are met and system

gives the permission to the learner to download the service (line 16). The ac-

cessing ambient receives the access request and then checks the on-authorisation,

on-obligation and on-condition requirements pertaining to this request during the

access line(19-30). As the bandwidth is low during the access(line 30), and it is not

allowed to access the video format in this context, the system has to adapt to a

new situation; it does so by sending the parameter Action1 with an access request

to the onadapting ambient (lines 31-35) in order to switch to a high bandwidth.

137

CHAPTER 5. CASE STUDY

Figure 5.9: Execution of Scenario 6

138

CHAPTER 5. CASE STUDY

Then, the onadapting ambient receives the current bandwidth of the network from

the HB ambient, which becomes a high one (line 34). This means the on-adaptation

is successful and the access is continue (line 35).

Scenario 7: In this scenario the property to validate is " if the on-condition re-

quirements do not hold during the access and the on-adaptation fails, the access will

be revoked". Suppose a learner requests a u-lecture in the video format in a private

place and that the memory capacity of the mobile device is more than 5MB and

using a high bandwidth at the time of request which means that all pre-condition

requirements are met by current context. When the system gives the permission

to the learner in order to download the video format, she/he starts using a low

bandwidth network in attempting to download the video, which means that the on-

condition requirements to download this service are not hold based on u-learning

system policies. Therefore, the system adapts to this new situation by switching the

mobile device to a high bandwidth network in order to download this service.

Figure 5.10 illustrates the execution of Scenario 7: the subject sends the ac-

cess request containing the subject ID, the u-lecture in the video format and the

downloading right to the requesting ambient (line 1). The requesting ambient re-

ceives the access request and then checks the pre-authorisation, pre-obligation and

pre-conditions requirements pertaining to this request (lines 2-15). Here, the pre-

authorisation, pre-obligation and pre-conditions requirements are met and system

gives the permission to the learner to download the service (line 16). The ac-

cessing ambient receives the access request and then checks the on-authorisation,

on-obligation and on-condition requirements pertaining to this request during the

access line(19-24). As the bandwidth is low during the access(line 30), and it is not

allowed to access the video format in this context, the system has to adapt to a

new situation; it does so by sending the parameter Action1 with an access request

139

CHAPTER 5. CASE STUDY

Figure 5.10: Execution of Scenario 7

140

CHAPTER 5. CASE STUDY

to the onadapting ambient (lines 31-34) in order to switch to a high bandwidth.

Then, the onadapting ambient receives the current bandwidth of the network from

the HB ambient, which still low (line 34). This means the on-adaptation is fail and

the access is revoked (line 35-36).

5.6 Summary

In this chapter, we have demonstrated the evaluation of CA-UCON model via real

world case study of ubiquitous learning system (u-learning system). We illustrate

how CA-UCON model properties can be validated using the execution environment

of CCA. We proposed some scenarios and run them in order to validate two main

property: safety and liveness properties.

In the following chapter 6, the architecture of CA-UCON reference monitor is

presented and the different types of enforcement architectures for CA-UCON model

are demonstrated.

141

Chapter 6

Enforcement of CA-UCON model

Objectives:
• Present Architecture of CA-UCON Reference Monitor.

• Present Enforcement Architectures of CA-UCON Model.

• Show different examples for enforcement architectures

142

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

6.1 Introduction

In this chapter, we demonstrate how the CA-UCON model will be enforced in a

system. Firstly, we propose the architecture of the CA-UCON reference monitor

(CA-UCON RM) and explain its main components. Secondly, we analyse the en-

forcement architectures for the CA-UCONmodel by discussing the three approaches,

namely: Centralised Enforcement Architecture, Distributed Enforcement Architec-

ture and Hybrid Enforcement Architecture. Finally, we show the difference between

these architectures in terms of enforcement of the CA-UCON RM, using examples.

6.2 Architecture of CA-UCON Reference Monitor

There have been some works conducted in term of usage control enforcement. In

spite of the short period of time from the time when the notion of usage control

was introduced, there are a lot of substantial efforts in order to create a appropriate

enforcement mechanisms. For instance, [87] proposed a new approach known as a

Trusted Reference Monitor (TRM in short) which is placed in client side in order to

enforce policies. So, the protocol that is used between TRM and application, as well

as between different TRMs is relied on challenge-response. Any access request from

receiver is followed by a challenge. The requester consequently confirms the applica-

tion, platform or environment throughout the means of a digital signature. Another

approach was proposed by [1] which is similar strategy to the above approach, it

is based on a hardware-based Trusted Platform Module (TPM in short) in order

to enforce usage policies on digital objects. It is known as self-enforcing objects

(SEOs in short) which is used as secure container for transferring objects and poli-

143

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

cies and also has the ability to enforce the attached policies on any trusted platform

autonomously. Moreover, a similar enforcement approach was proposed by [66] to

explain the notion of platform attestation. The system ensures via a WS-Attestation

procedure that receiving platform must act correctly before the information is re-

leased. Hardware UCON Engine (HUE in short) is another enforcement approach

proposed by [61] which is a different from the above mentioned approaches. HUE is

considered as secure co-processor with a designated software stack in order to offer

integration with the operating system. Next, the RightEnforcer was proposed by

[3] which known as a product that is used to enforce simple usage control restric-

tions i.e. limiting the capability to view, copy, print and store. This approach is

incorporated in an e-mail user, so whenever a usage controlled object is delivered to

a receiver, the RightEnforcer encrypts the content and then sends the term of use

to a centralised RightServer. Then the receiver is forced to use the RightEnforcer

in order to be able to decrypt the content and so the policy is always enforced.

However, Majority of these enforcement approaches have been done in usage control

model (UCON).

Unlike the above UCON enforcement approaches, we propose an architecture of

the CA-UCON reference monitor (CA-UCON RM, in short) as depicted in Fig. 6.1,

where computing components are represented in a rectangular shape, data storage

in a cylindrical shape, and arrows indicate interactions between components. In the

following subsections, we explain in detail each component along with its role in this

architecture.

144

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

Figure 6.1: Architecture of the CA-UCON Reference Monitor

6.2.1 Enforcement Point

The role of this component is to receive requests from the subject that wishes to

access an object and to issue decision requests to the decision point component in

particular to the usage decision (UD) component and to wait for the response from

it, whether PERMIT or DENY. It then lets the subject access the service if the

reply from decision point component is PERMIT; otherwise, it denies access to the

subject. This behaviour is typical to many access control models [84, 90].

145

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

6.2.2 decision point

Unlike in other access control models [84, 90], this component consists of two parts,

usage decision (UD) component and adaptation decision (AD) component. The re-

sponsibility of the UD component is the evaluation of each access request that it

receives from enforcement point component. UD checks the authorization, obliga-

tion and condition requirements of each request in order to permit or deny the access

request. To do so, UD communicates with the attribute manager component in or-

der to acquire the values of the attributes of the subject, object and environment.

If all the requirements are met, UD responds by PERMIT to the enforcement point

component to allow the access to take place.

However, if the authorization and obligation requirements are met, but the con-

dition requirement is not fulfilled by the environment, UD communicates with the

AD component in order to adapt to the new situation. AD interacts with the con-

text information manager component to identify the current context of the subject,

object and environment. It then performs appropriate actions in an attempt to

make the environment meet the condition requirement. This attempt will last for

a specified period of time after which the adaptation will be deemed successful or

unsuccessful. If successful, the access request will be granted, otherwise it will be

denied.

6.2.3 Attribute Manager

The responsibility to this component is to provide access to the database of subject

and object attributes in order to use them in access decision. All subject and object

attributes will be stored in a database and updated as they change.

146

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

6.2.4 Context Information Manager

This component is responsible for monitoring and evaluating the context information

such as subject context, object context and environment context. It uses a variety

of sensors to sense different types of contexts. It communicates with AD component

in order to provide the current context of the subject, object and environment.

6.3 Enforcement Architectures of CA-UCONModel

In this section, we present three different enforcement approaches in order to demon-

strate how the CA-UCON model can be implemented in real world situations. The

CA-UCON model can be enforced in a number of ways depending on the appli-

cation. These enforcement approaches are known as the centralized approach, the

distributed approach and the hybrid approach. The following subsection will ex-

plain each approach in detail to show the difference between these approaches, their

usages, and possible benefits/drawbacks.

6.3.1 Centralized Enforcement Architecture

A centralized architecture is dependent upon one node being designated as the com-

puter node or server. This node executes and runs the complete application locally

and all users share this central system. Hence control and failure is concentrated

in a single place, the server. The CA-UCON RM will be implemented in the server

side only. This entails control of the services being the responsibility of the server

alone as shown in Figure 6.2.

147

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

How does this model support adaptation? The server is installed with a variety

of sensors which are able to record the context and behaviour of the subject, object

and environment. The adaptation to the new situation and sending of the appro-

priate service to the user will occur based on these contexts and behaviours. Thus,

adaptation required for any service will be initiated by the server. This is a strict

method of enforcement since all controls and adaptations are carried out centrally

on the server where CA-UCON RM is implemented.

The centralized architecture presents a number of benefits. Firstly, avoidance

of duplication. A centralised approach facilitates having a single version of any in-

formation system for the entire organisation. They also help to ensure that every

piece of data is stored only once. Secondly, sharing resources, since centralised sys-

tem holds the information utilized across the organisation in single place, allowing

access to it for all staff. This makes the undertaking of organisation-wide activities

more efficient and straightforward.

Central process and planning also permits well-suited technology and skills to be

established. The sharing of resources other than data is simplified. The transferral

between units of hardware, software and employees becomes easier. Finally, scale

economies are attained, since centralised approaches permit most activities to be

carried out with lower unit cost.

From amongst the disadvantages of the centralized architecture is heavy time

consumption, since carrying out actions and decisions centrally is additional time-

consuming than non- centralized approach. This is due to the extra time it takes to

assemble information from various different distributed places as input to centralised

system decisions. Furthermore, when the central computer or database system fails,

148

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

then the system is inaccessible to anyone until the server/database recovers. Ad-

ditionally, rigidity and increased dependence and susceptibility are caused by the

centralized architecture.

Figure 6.2: Centralised Enforcement Architecture

The following example demonstrates how the CA-UCON RM has been enforced

in centralised architecture. We base our example on the case study mentioned in

the previous chapter.

6.3.1.1 Example 1:

Suppose a ubiquitous learning (u-learning) system that provides u-lectures in three

different formats: video, audio and text. The access to each format is restricted by

specific requirement on context of the user. If the user requests a u-lecture in the

video format when she/he is driving, the system will not deliver it to her/him in

149

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

the video format, but it will deliver it in the audio format which is suitable to the

user current context (driving). In the centralised approach, the server may use a

location tracking technique to sense the context of the user (whether driving or not)

and then decide in what format the u-lecture must be delivered.

6.3.2 Distributed Enforcement Architecture

The distributed architecture can be understood in two distinct ways. It can be

defined by the physical components or defined from the angle of the user or compu-

tation. These are known as the physical view and the logical view respectively. A

distributed system is a set of nodes (computers or portable devices) connected by a

communication network. The nodes in the network do not share their memory and

are loosely coupled. The nodes in the system communicate via passing messages

over the communication network using communication protocols.

The logical model is the view that an application has of the system. It includes

a set of simultaneous processes and communication routes between them. The cen-

tre network is treated as completely linked. Communication of processes is done

by transferring messages to each other. The CA-UCON RM will be enforced in the

Mobile devices that will be responsible for observation of the context of the subject,

object and environment. It can control the service or adapt to a new situation based

on these contexts or behaviours as can be seen in Figure 6.3. In other words, the

distributed architecture admits the implementing of the CA-UCON RM without a

central unit to control and adapt the services.

The enforcement of distributed architecture exhibits a number of benefits. Promi-

nent amongst these is greater compatibility between systems and local needs, since

150

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

users can develop their own information systems. These are more likely to corre-

spond with their needs than those developed by someone else. Another benefit is

greater system usage, as users show increased motivation by such approaches and

are thus more enthusiastic to adopt computing when it directly bolsters their own

interests, benefits and work. Finally, it supports quicker system development, since

the less the organisational distance between system user and system developer, the

swifter the development of that system is likely to be.

On the other hand certain negatives are displayed. This approach places barriers

to sharing data. Distributed approaches can produce information systems in indi-

vidual work units that are incompatible with each other and asynchronous. Further,

effort is duplicated, since units will often duplicate what others are doing. Therefore

distributed approaches tend to be very costly. Distribution can also lead to a failure

to achieve scale economies as activities are not pooled.

The example below illustrates how the CA-UCON RM has been enforced in

distributed architecture, which means that the control of services and adaptation

process will be done on the client side. We use the following example from the case

study mentioned in the previous chapter.

6.3.2.1 Example 2:

Following up from Example 1, suppose each u-lecture format requires some mini-

mum amount of free memory available on the user’s mobile device, e.g.: 5MB for a

video, 2MB for an audio, and 1MB for a text format. If a user requests a u-lecture in

video format and the available memory on her/his mobile device is less than 5MB,

151

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

Figure 6.3: Distributed Enforcement Architecture

the system needs to adapt to this new situation. In a distributed enforcement ar-

chitecture where CA-UCON RM is installed on each mobile device, the adaptation

can be done e.g. by turning on a garbage collector software on the mobile device

(client side). This will eventually increase the size of available memory on the mobile

device. If enough memory has been freed and the current available memory on the

mobile device is greater than 5MB, then the adaptation is successful and access will

be granted.

152

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

6.3.3 Hybrid Enforcement Architecture

Hybrid enforcement architecture is an interesting evolutionary architecture that has

combined features of centralised enforcement architecture and distributed enforce-

ment architecture. The purpose is to circumvent the disadvantages displayed by

these architectures whilst maintaining many of their advantages. In this architec-

ture the CA-UCON RM is enforced in both the client side and the server side as

can be seen in Figure 6.4.

Evaluation of the requested access right will take place on the mobile device side

or on the server side, or on both. This enables the controlling of service or adapt-

ing to a new situation to occur at any time anywhere without restrictions. Some

requested service accesses cannot be undertaken without adaptations from both the

server and client side. This is difficult to do in the previously discussed architec-

tures. On the other hand, the hybrid approach facilitates the implementation of the

CA-UCON policies in the real world on both server and client sides, enabling all

possible adaptations.

Hybrid architecture is a comprehensive and versatile approach. By combining

two different architectures, a third, more tailored architecture for the enforcement

of the CA-UCON RM has been evolved. Mobile devices and servers should be fitted

with a variety of sensors in order to monitor all contexts related to the subject,

object and environment. This is done so as to adapt to new situations and deliver

a suitable service for the majority of contexts. For example, if the user requests a

service in a certain context, but this service cannot be delivered in the given con-

text based on CA-UCON RM, the server can communicate with the mobile device

requiring it to adapt in order to receive a modified service.

153

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

The advantages of the hybrid architecture include reliability, because a fault

detected in one part of the system can be isolated from the rest. Therefore the

necessary corrective measures can be carried out, without disturbing the operating

of any other part of the system. Furthermore, hybrid architecture displays more

flexibility than other architectures since it integrates the benefits of both central-

ized and distributed architectures optimizing the existing resources whilst avoiding

many drawbacks. On the other hand, the hybrid architecture involves a larger scale

of work and therefore is normally more costly.

The subsequent instance shows how the CA-UCON RM has been enforced in

the hybrid architecture. It can be seen that the control of services and adaptation

process will be done on both sides, on the server side and on the client side. We

present the following example based on the case study mentioned in the previous

chapter.

6.3.3.1 Example 3:

In the u-learning system described in Example 1 and Example 2 above, if the user

requests a u-lecture in video format when she/he is driving and the available mem-

ory size in her/his mobile device is less than 2MB, the system in this case needs

to adapt to the new situation by performing actions on both sides (server side and

client side). So, in the server side the system has to deliver the audio format instead

of video format based on the user context which is in this case, driving. Meanwhile,

the system has to check the amount of free memory available on the mobile device

prior to delivering the service, which in this case is less than 2MB, i.e. lower than

154

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

Figure 6.4: Hybrid Enforcement Architecture

the minimum memory size requirement for accessing a u-lecture in audio format. In

this case the client side (mobile device) has to adapt as well, e.g. by executing a

garbage collector software in order to free more memory space. If both adaptation

actions are successful, then access will be granted; otherwise access will be denied.

In this scenario, CA-UCON RM is installed on both the server and the user mobile

device (client).

155

CHAPTER 6. ENFORCEMENT OF CA-UCON MODEL

6.4 Summary

This chapter has investigated the enforcement architectures of CA-UCON model.

We have introduced the architecture of CA-UCON reference monitor and explained

its components. Moreover, we have presented three different enforcement architec-

tures, discussing their advantages and disadvantages and the role of the CA-UCON

RM within each. Finally, we presented an example for each type of enforcement

architecture.

156

Chapter 7

Conclusions and Future Work

Objectives:
• Summaries the work in this thesis.

• Give the statement of evaluation

• List the main contributions of this research.

• Present future work that follows on from this thesis.

157

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Work Summary

Producing an adaptive usage control model that is suited a dynamic environment,

such as the Ubicomp environment, has been the ultimate aim of our work. This

is needed because of the new security challenges that have been introduced by the

Ubicomp environment, where information can be accessed and shared by users any-

time, anywhere. In a Ubicomp system, the context of the environment is considered

in order to control the service being requested and to adapt to any new situation.

Producing such an adaptive usage control model has been a challenging task, due

to the rapidly changing context of the Ubicomp environment, but the need for such

a model to address the demands of a dynamic environment and to overcome the

limitations of existing models has now been satisfied.

In meeting this goal, in this thesis we have proposed a context-aware and adaptive

usage control model (CA-UCON) that extends the traditional usage control model

(UCON) to enable adaptation to environmental changes with the aim of preserving

continuity of usage in a pervasive computing system. In this model, we integrated

the adaptation decision with the usage decision to generate a unified usage control

model that is context-aware. The adaptation decision considers different types of

contexts, such as the context of the subject, the object, the environment and the

ICT before and during the access. Moreover, the formal definitions of the two newly

introduced adaptation models within CA-UCON were presented: pre-adaptation

and on-adaptation.

We then proposed a computational model for CA-UCON in order to demonstrate

158

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

how an access request on a resource is handled. This computational model was de-

scribed formally as a Finite State Machine (FSM), which gives a comprehensive

explanation of all the states and actions, in particular how and when the adaptation

takes place (both before and during the access). The development of CA-UCON as

an extension of UCON can be clearly seen from the FSM.

CCA was deemed the most appropriate formal notation for modelling and analysing

the CA-UCON model; it is a mathematical notation used for modelling a system

that is mobile and context-aware. We formally modelled CA-UCON using CCA

and analysed its properties via the execution environment of CCA for validation

purposes.

In order to assist in understanding the CA-UCON model and to evaluate its

performance, a real-world case study of a ubiquitous learning (u-learning) system

was presented. A modelling of this u-learning system in CA-UCON was given and

we formally specified the u-learning system using the CCA mathematical notations.

We then designed a number of scenarios and ran them using the CAA execution

environment in order to analyse certain properties within our CA-UCON model.

We then illustrated the enforcement architecture of the CA-UCON model in a

real situation. Firstly, we described a suitable reference monitor architecture and

described in detail its components as well as their behaviour. We then presented the

three types of enforcement architectures for CA-UCON and discussed their relative

advantages and disadvantages in ubiquitous environments. Finally, we used a num-

159

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ber of examples within ubiquitous environments in order to show in which situation

each architecture can be most appropriately enforced.

7.2 Statement of Evaluation

Several works have been done in the area of access control in order to remedy their

limitation in Ubicomp environment. Majority of these works have been conducted in

traditional access control models such as (RBAC) [26][62]. A few of these researches

have been accomplished in Usage control (UCON) model which is considered as

latest enhancement to traditional access control models [113][39]. However, none

of these extensions has wholly solved the limitation of access control models in

Ubicomp environment. Unlike the previous extensions, CA-UCON model enables

adaptation to environmental changes in the aim of preserving continuity of access

by triggering specific actions to adapt to new situations and its main innovative

feature is the integration of continuity of usage decision and dynamic adaptation to

changes in the environmental or system context, so as to ensure continuity of usage.

In addition to data protection, CA-UCON model enhances the quality of services,

striving to keep explicit interactions with the user at a minimum.

In term of the formal specification used in this thesis, there are many existing for-

mal specification which support mobility and/or context-aware, but majority of

them were not appropriated in order to model context-aware mobile applications.

For instance, one of these formal specification is called CONAWA proposed by [50]

as calculus for applications that are context-aware, and this formal specification is

inspired by calculus. The CONAWA’s syntax concentrates on constructs that make

it probable to navigate and describe via context. Another formal specification was

160

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

proposed by [65] which is known as Bigraphs, it is a unifying framework that used

to model concurrent mobile systems, but it does not support context-awareness.

Moreover, a UML specification of the infostation-based mLearning system was pro-

posed by [33]. Despite the fact that UML specification offers a number of benefits

like system analyses utilizing assistant tools and code generation, it has suffered

from the need of formal reasoning support which represent its limitation for the

design of critical systems. As consequence, we select CCA in order to model a

context-aware system, as it is a mathematical notation that support mobility and

context-awareness, as well as treats those primitive constructs as first-class citizens.

However, to the best of our knowledge, none of these formal specification or others

are used to model CA-UCON model.

Furthermore, regarding the case study that has been selected in this thesis, it

is provably correct. The case study is modelled rely on our CA-UCON model and

specified it utilizing the mathematical notation of CCA, then used the execution

environment of ccaPL in order to validate some property-based scenarios.

7.3 Success Criteria Revisited

To answer the research questions that we pointed out in Chapter 1, a Context-

Aware and Adaptive Usage Control model (CA-UCON in short) have been built

and evaluated throughout the thesis. The objective of this work was to integrated

the adaptation decision with usage decision in CA-UCON model to achieve a better

performance that suits the Ubicomp environment. The analysis of our proposed

model is presented using CCA and the validation of CA-UCON model properties is

illustrated via the execution of the devised scenarios.

161

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.4 Contribution to Knowledge

The major contributions of the research in this thesis can be summarised as follows:

1. A context-aware and adaptive usage control model (CA-UCON) is developed,

which is an extension of the UCON model, in order to function in a highly

dynamic environment (ubiquitous environment) and to overcome the short-

coming of all previously proposed models.

2. An architecture of CA-UCON model is illustrated and comprehensive defini-

tion of its components are presented.

3. A computational model of CA-UCON is presented in order to demonstrate the

behaviour of the various states when an access request is submitted.

4. The formal specification of CA-UCON is presented using the mathematical

notations of CCA.

5. Formalising and analysing a real-world case study of ubiquitous learning (u-

learning) system are successfully undertaken.

6. Analyzing some properties of CA-UCON, via proposing some scenarios in the

u-learning environment and executing them through the execution environ-

ment of CCA, is achieved.

7. The possible enforcement architectures of the CA-UCON model are investi-

gated and their advantages and disadvantages are presented.

7.5 Future Work

The Usage Control (UCON) model is still an active research area in the field of secu-

rity; many issues remain to be considered, particularly with regard to the ubiquitous

162

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

environment. According to this research done in this thesis, the first route for future

work is to extend our model to investigate further the enforcement mechanisms in

order to derive new techniques and algorithms. This would require extensive work

on security enforcement mechanisms in general and examining the existing proposed

enforcement mechanisms in a dynamic environment in particular.

Another avenue for future work is the real implementation of a u-learning system

using our CA-UCON approach for the purposes of further evaluation, where the

dynamic (context-aware) environment would require an adaptive usage control in

order to protect the resources and enhance the quality of services.

In terms of the extent of CCA, an additional route for future work is improving

the ccaPL execution environment animator in order to enhance its layout and to

enable any entity in the system to be visualised. This could be done by providing

highly developed animation for those entities and improving additional aspects in

the animation environment. In addition, there is a need for the model checker to be

developed and added to the execution environment; this is important for validating

any required specification of a system model. On the other hand, the CCA notation

is still being developing and several notations are still under construction; these

could be included in the syntax (for example, probability and time).

163

Bibliography

[1] H. Abie, P. Spilling, and B. Foyn. A distributed digital rights management

model for secure information-distribution systems. International Journal of

Information Security, 3:113–128, 2004.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.

Towards a better understanding of context and context-awareness. In Proceed-

ings of the 1st international symposium on Handheld and Ubiquitous Comput-

ing, HUC ’99, pages 304–307, London, UK, UK, 1999. Springer-Verlag.

[3] M. Alam, J.-P. Seifert, Q. Li, and X. Zhang. Usage control platformization

via trustworthy selinux. In Proceedings of the 2008 ACM symposium on In-

formation, computer and communications security, ASIACCS ’08, New York,

NY, USA, 2008. ACM.

[4] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes.

Software Engineering, IEEE Transactions on, 33(6):369–384, 2007.

[5] G. Bai, L. Gu, T. Feng, Y. Guo, and X. Chen. Context-aware usage control

for android. In Security and Privacy in Communication Networks, volume 50,

pages 326–343. Springer Berlin Heidelberg, 2010.

[6] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context aware systems.

Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, June 2007.

164

BIBLIOGRAPHY

[7] T. Batista, A. Joolia, and G. Coulson. Managing dynamic reconfiguration

in component-based systems. In Proceedings of the 2nd European conference

on Software Architecture, EWSA’05, pages 1–17, Berlin, Heidelberg, 2005.

Springer-Verlag.

[8] M. Beigl, A. Krohn, T. Zimmer, and C. Decker. Typical sensors needed in

ubiquitous and pervasive computing. In in Proceedings of the First Inter-

national Workshop on Networked Sensing Systems (INSS & apos;04, pages

153–158, 2004.

[9] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Context-aware

middleware for resource management in the wireless internet. Software Engi-

neering, IEEE Transactions on, 29(12):1086–1099, 2003.

[10] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A temporal role-based access

control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, Aug. 2001.

[11] C. Bettini, D. Maggiorini, and D. Riboni. Distributed context monitoring for

the adaptation of continuous services. World Wide Web, 10(4):503–528, Dec.

2007.

[12] M. Bishop. Computer Security, Art and Science. Addison-Wesley, 2003.

[13] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages

164–173, 1996.

[14] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca. A

data-oriented survey of context models. SIGMOD Rec., 36(4):19–26, Dec.

2007.

165

BIBLIOGRAPHY

[15] N. Boustia and A. Mokhtari. A dynamic access control model. Applied Intel-

ligence, 36(1):190–207, Jan. 2012.

[16] P. Brown. Triggering information by context. Personal Technologies, 2:18–27,

1998.

[17] P. Brown, J. Bovey, and X. Chen. Context-aware applications: from the

laboratory to the marketplace. Personal Communications, IEEE, 4(5):58–64,

1997.

[18] P. J. Brown. The Stick-e Document: a Framework for Creating Context-

aware Applications. In Proceedings of EP’96, Palo Alto, pages 259–272. also

published in it EP–odd, June 1996.

[19] L. Capra. Mobile computing middleware for context-aware applications. In

Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd International

Conference on, pages 723–724, 2002.

[20] S.-H. Chang, H. J. La, and S. D. Kim. A comprehensive approach to service

adaptation. In Service-Oriented Computing and Applications, 2007. SOCA

’07. IEEE International Conference on, pages 191–198, 2007.

[21] H. Chen, T. Finin, and A. Joshi. Using owl in a pervasive computing broker,

2003.

[22] L. Chen and J. Crampton. On spatio-temporal constraints and inheritance

in role-based access control. In Proceedings of the 2008 ACM symposium

on Information, computer and communications security, ASIACCS ’08, pages

205–216, New York, NY, USA, 2008. ACM.

[23] A. Corrad, R. Montanari, and D. Tibaldi. Context-based access control man-

agement in ubiquitous environments. In Network Computing and Applica-

166

BIBLIOGRAPHY

tions, 2004. (NCA 2004). Proceedings. Third IEEE International Symposium

on, pages 253–260, 2004.

[24] A. K. Dey. Understanding and using context. Personal Ubiquitous Comput.,

5(1):4–7, Jan. 2001.

[25] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci,

P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic

communications. ACM Trans. Auton. Adapt. Syst., 1(2):223–259, Dec. 2006.

[26] C. dong Wang, T. Li, and L.-C. Feng. Context-aware environment-role-based

access control model for web services. In Multimedia and Ubiquitous Engi-

neering, 2008. MUE 2008. International Conference on, pages 288–293, 2008.

[27] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. Utilising the event calcu-

lus for policy driven adaptation on mobile systems. In Policies for Distributed

Systems and Networks, 2002. Proceedings. Third International Workshop on,

pages 13–24, 2002.

[28] Y. Fan, Z. Han, J. Liu, and Y. Zhao. A mandatory access control model with

enhanced flexibility. In Proceedings of the 2009 International Conference on

Multimedia Information Networking and Security - Volume 01, MINES ’09,

pages 120–124, Washington, DC, USA, 2009. IEEE Computer Society.

[29] J. B. Filho and H. Martin. A generalized context-based access control model

for pervasive environments. In Proceedings of the 2nd SIGSPATIAL ACM

GIS 2009 International Workshop on Security and Privacy in GIS and LBS,

SPRINGL ’09, pages 12–21, New York, NY, USA, 2009. ACM.

[30] J. Fox and S. Clarke. Exploring approaches to dynamic adaptation. In Proceed-

ings of the 3rd International DiscCoTec Workshop on Middleware-Application

Interaction, MAI ’09, pages 19–24, New York, NY, USA, 2009. ACM.

167

BIBLIOGRAPHY

[31] M. Friedewald and O. Raabe. Ubiquitous computing: An overview of technol-

ogy impacts. Telematics and Informatics, 28(2):55 – 65, 2011.

[32] I. Ganchev and M. O’Droma. Mobile distributed e-learning center. In Pro-

ceedings of the Fifth IEEE International Conference on Advanced Learning

Technologies, ICALT ’05, pages 593–594, Washington, DC, USA, 2005. IEEE

Computer Society.

[33] I. Ganchev, S. Stojanov, M. ODroma, and D. Meere. An infostation-based

multi-agent system supporting intelligent mobile services across a university

campus. Journal of Computers, 2(3), 2007.

[34] S. Haibo and H. Fan. A context-aware role-based access control model for web

services. In e-Business Engineering, 2005. ICEBE 2005. IEEE International

Conference on, pages 220–223, 2005.

[35] R. Hamadi and B. Benatallah. Recovery nets: Towards self-adaptive workfow

systems. In in Proceedings of the 5th International Conference on Web Infor-

mation Systems Engineering (WISE 04), LNCS 3306, pages 439–453. Springer

Verlag, 2004.

[36] M. A. Hiltunen and R. D. Schlichting. Adaptive distributed and fault-tolerant

systems. International Journal of Computer Systems Science and Engineering,

11:125–133, 1995.

[37] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy

language for distributed usage control. In Proceedings of the 12th European

conference on Research in Computer Security, ESORICS’07, pages 531–546,

Berlin, Heidelberg, 2007. Springer-Verlag.

[38] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter. Usage control require-

ments in mobile and ubiquitous computing applications. In Proceedings of the

168

BIBLIOGRAPHY

International Conference on Systems and Networks Communication, ICSNC

’06, pages 27–, Washington, DC, USA, 2006. IEEE Computer Society.

[39] Z. Hong-jun. Study and application of special access control model based on

UCON. PhD thesis, Nanjing: Jiangshu University, May 2009.

[40] H. Janicke, A. Cau, and H. Zedan. A note on the formalisation of ucon.

In Proceedings of the 12th ACM symposium on Access control models and

technologies, SACMAT ’07, pages 163–168, New York, NY, USA, 2007. ACM.

[41] J. Joshi, E. Bertino, and A. Ghafoor. Hybrid role hierarchy for generalized tem-

poral role based access control model. In Computer Software and Applications

Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual International,

pages 951–956, 2002.

[42] E. B. W. Jr. An Introduction to Scientific Research. Dover Publications, 1991.

[43] K. Kakousis, N. Paspallis, and G. A. Papadopoulos. A survey of software

adaptation in mobile and ubiquitous computing. Enterp. Inf. Syst., 4(4):355–

389, Nov. 2010.

[44] V. Kapsalis, L. Hadellis, D. Karelis, and S. Koubias. A dynamic context-aware

access control architecture for e-services. Computers & Security, 25:507 – 521,

2006.

[45] A. Kayes, J. Han, and A. Colman. Icaf: A context-aware framework for access

control. In Information Security and Privacy, volume 7372, pages 442–449.

Springer Berlin Heidelberg, 2012.

[46] J. Kephart and R. Das. Achieving self-management via utility functions. In-

ternet Computing, IEEE, 11(1):40–48, 2007.

169

BIBLIOGRAPHY

[47] M. Khan and K. Sakamura. Context-aware access control for clinical informa-

tion systems. In Innovations in Information Technology (IIT), 2012 Interna-

tional Conference on, pages 123–128, 2012.

[48] K. K. Khedo. Context-aware systems for mobile and ubiquitous networks.

In Proceedings of the International Conference on Networking, International

Conference on Systems and International Conference on Mobile Communica-

tions and Learning Technologies, ICNICONSMCL ’06, pages 123–, Washing-

ton, DC, USA, 2006. IEEE Computer Society.

[49] M. Kirkpatrick and E. Bertino. Context-dependent authentication and access

control. In iNetSec 2009 – Open Research Problems in Network Security,

volume 309, pages 63–75. Springer Berlin Heidelberg, 2009.

[50] M. B. Kjrgaard, J. Bunde-pedersen, C. C, M. B. Kjrgaard, M. Baun, and K. J.

Bunde-pedersen. This document in subdirectoryrs/06/2/ conawa: A formal

model for context awareness, 2006.

[51] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.-J. Malm. Managing

context information in mobile devices. Pervasive Computing, IEEE, 2(3):42–

51, 2003.

[52] W. Ku and C. hung Chi. Survey on the technological aspects of digital rights

management. In In ISC, pages 391–403, 2004.

[53] A. Lazouski, F. Martinelli, and P. Mori. Survey: Usage control in computer

security: A survey. Comput. Sci. Rev., 4(2):81–99, May 2010.

[54] P. Lefrere. Activity-based scenarios for and approaches to ubiquitous e-

learning. Personal Ubiquitous Comput., 13(3):219–227, Mar. 2009.

170

BIBLIOGRAPHY

[55] N. Li. How to make discretionary access control secure against trojan horses.

In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pages 1–3, 2008.

[56] Q. Liu, R. Safavi-Naini, and N. P. Sheppard. Digital rights management for

content distribution. In Proceedings of the Australasian information security

workshop conference on ACSW frontiers 2003 - Volume 21, ACSW Frontiers

’03, pages 49–58, Darlinghurst, Australia, Australia, 2003. Australian Com-

puter Society, Inc.

[57] S. LOKE. Context-Aware Pervasive system: Architectures for new breed of

applications. Auerbach Publications, Wiley, 2006.

[58] M. A. Luo Xiaofeng, Li Ling and L. Wanbo. The contextual usage control

model. Zhejiang University Science (Computers & Electronics), 2012.

[59] K. Mandula, S. Meda, D. Jain, and R. Kambham. Implementation of ubiqui-

tous learning system using sensor technologies. In Technology for Education

(T4E), 2011 IEEE International Conference on, pages 142–148, 2011.

[60] F. Martinelli, P. Mori, and A. Vaccarelli. Towards continuous usage control on

grid computational services. In Proceedings of the Joint International Confer-

ence on Autonomic and Autonomous Systems and International Conference

on Networking and Services, ICAS-ICNS ’05, pages 82–, Washington, DC,

USA, 2005. IEEE Computer Society.

[61] M. Matson and M. Ulieru. The ’how’ and ’why’ of persistent information

security. In Proceedings of the 2006 International Conference on Privacy,

Security and Trust: Bridge the Gap Between PST Technologies and Business

Services, PST ’06, New York, NY, USA, 2006. ACM.

171

BIBLIOGRAPHY

[62] M. C. Matthew, . Matthew, J. Moyer, and M. Ahamad. Generalized role-based

access control for securing future applications, 2000.

[63] P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. A taxon-

omy of compositional adaptation. Technical report, Department of Compyter

Science and Engineering, Michigan State University, 2004.

[64] R. Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge

University Press, 1999.

[65] R. Milner. Pure bigraphs: structure and dynamics. Inf. Comput., 204(1):60–

122, Jan. 2006.

[66] M. Nauman and T. Ali. Hue: A hardware ucon engine for fine-grained con-

tinuous usage control. In Multitopic Conference, 2008. INMIC 2008. IEEE

International, pages 59–64, 2008.

[67] R. Nick, J. Pascoe, and D. Morse. Enhanced reality fieldwork: the context-

aware archaeologist assistant. In Exon, editor, Computer Applications &

Quantitative Methods in Archaeology, volume 0. Archaeopress, 1997.

[68] S. Oh and S. Park. Task-role-based access control model. Inf. Syst., 28(6):533–

562, Sept. 2003.

[69] Y. Oh, A. Schmidt, and W. Woo. Designing, developing, and evaluating

context-aware systems. In Proceedings of the 2007 International Conference

on Multimedia and Ubiquitous Engineering, MUE ’07, pages 1158–1163, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[70] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime software adaptation:

framework, approaches, and styles. In Companion of the 30th international

172

BIBLIOGRAPHY

conference on Software engineering, ICSE Companion ’08, New York, NY,

USA, 2008. ACM.

[71] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.

ACM Trans. Program. Lang. Syst., 4(3):455–495, July 1982.

[72] J. Park and R. Sandhu. Towards usage control models: beyond traditional

access control. In Proceedings of the seventh ACM symposium on Access control

models and technologies, SACMAT ’02, pages 57–64, New York, NY, USA,

2002. ACM.

[73] J. Park and R. Sandhu. The ucon ABC usage control model. ACM Trans. Inf.

Syst. Secur., 7(1):128–174, Feb. 2004.

[74] J. Park, X. Zhang, and R. S. Attribute mutability in usage control. In In Pro-

ceedings of the Proceedings of 18th Annual IFIP WG 11.3 Working Conference

on Data and Applications Security, pages 15–29. Kluwer, 2004.

[75] M. J. Pascoe. Adding generic contextual capabilities to wearable computers.

In Proceedings of the 2nd IEEE International Symposium on Wearable Com-

puters, ISWC ’98, pages 92–, Washington, DC, USA, 1998. IEEE Computer

Society.

[76] C. Piao and X. Gan. Research on trust management model for e-commerce

based on fuzzy clustering method. In e-Business Engineering, 2009. ICEBE

’09. IEEE International Conference on, pages 188–195, 2009.

[77] S. Poslad. Ubiquitous Computing: Smart Devices, Environments and Interac-

tions. Auerbach Publications, Wiley, 2009.

[78] A. Pretschner, M. Hilty, and D. Basin. Distributed usage control. Commun.

ACM, 49(9):39–44, Sept. 2006.

173

BIBLIOGRAPHY

[79] A. Pretschner, F. Massacci, and M. Hilty. Usage control in service-oriented

architectures. In C. Lambrinoudakis, G. Pernul, and A. Tjoa, editors, Trust,

Privacy and Security in Digital Business, volume 4657 of Lecture Notes in

Computer Science, pages 83–93. Springer Berlin Heidelberg, 2007.

[80] D. Salber, A. K. Dey, and G. D. Abowd. Ubiquitous computing: Defining an

hci research - agenda for an emerging interaction paradigm. Technical report,

1998.

[81] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: aiding the

development of context-enabled applications. In Proceedings of the SIGCHI

conference on Human Factors in Computing Systems, CHI ’99, pages 434–441,

New York, NY, USA, 1999. ACM.

[82] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research

challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[83] P. Samarati and S. D. C. d. Vimercati. Access control: Policies, models,

and mechanisms. In Revised versions of lectures given during the IFIP WG

1.7 International School on Foundations of Security Analysis and Design on

Foundations of Security Analysis and Design: Tutorial Lectures, FOSAD ’00,

pages 137–196, London, UK, UK, 2001. Springer-Verlag.

[84] P. Samarati and S. D. C. d. Vimercati. Access control: Policies, models,

and mechanisms. In Revised versions of lectures given during the IFIP WG

1.7 International School on Foundations of Security Analysis and Design on

Foundations of Security Analysis and Design: Tutorial Lectures, FOSAD ’00,

London, UK, UK, 2001. Springer-Verlag.

[85] R. Sandhu and J. Park. Usage control: A vision for next generation access

control. In V. Gorodetsky, L. Popyack, and V. Skormin, editors, Computer

174

BIBLIOGRAPHY

Network Security, volume 2776 of Lecture Notes in Computer Science, pages

17–31. Springer Berlin Heidelberg, 2003.

[86] R. Sandhu and P. Samarati. Access control: principle and practice. Commu-

nications Magazine, IEEE, 32(9):40–48, 1994.

[87] R. Sandhu, X. Zhang, K. Ranganathan, and M. J. Covington. Client-side

access control enforcement using trusted computing and pei models. Journal

of High Speed Networks, 15(3), May 2010.

[88] R. S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19,

Nov. 1993.

[89] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based

access control models. Computer, 29(2):38–47, Feb. 1996.

[90] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based

access control models. Computer, 29(2):38–47, Feb. 1996.

[91] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile Processes.

Cambridge University Press, New York, NY, USA, 2001.

[92] B. Schilit, N. Adams, and R. Want. Context-aware computing applications.

In Proceedings of the 1994 First Workshop on Mobile Computing Systems and

Applications, WMCSA ’94, pages 85–90, Washington, DC, USA, 1994. IEEE

Computer Society.

[93] B. Schilit and M. Theimer. Disseminating active map information to mobile

hosts. Network, IEEE, 8(5):22–32, 1994.

[94] P. Schneck. Persistent access control to prevent piracy of digital information.

Proceedings of the IEEE, 87(7):1239–1250, 1999.

175

BIBLIOGRAPHY

[95] F. Siewe, A. Cau, and H. Zedan. A compositional framework for access control

policies enforcement. In Proceedings of the 2003 ACM workshop on Formal

methods in security engineering, FMSE ’03, pages 32–42, New York, NY, USA,

2003. ACM.

[96] F. Siewe, H. Zedan, and A. Cau. The calculus of context-aware ambients. J.

Comput. Syst. Sci., 77(4):597–620, July 2011.

[97] J. Solworth and R. Sloan. A layered design of discretionary access controls

with decidable safety properties. In Security and Privacy, 2004. Proceedings.

2004 IEEE Symposium on, pages 56–67, 2004.

[98] T. Strang and C. Linnhoff-Popien. A context modeling survey. In In: Work-

shop on Advanced Context Modelling, Reasoning and Management, UbiComp

2004 - The Sixth International Conference on Ubiquitous Computing, Notting-

ham/England, 2004.

[99] K. Thi, T. Dang, P. Kuonen, and H. Drissi. Strobac: Spatial temporal role

based access control. In Computational Collective Intelligence. Technologies

and Applications, volume 7654 of Lecture Notes in Computer Science, pages

201–211. Springer Berlin Heidelberg, 2012.

[100] M. Toahchoodee, I. Ray, K. Anastasakis, G. Georg, and B. Bordbar. Ensuring

spatio-temporal access control for real-world applications. In Proceedings of

the 14th ACM symposium on Access control models and technologies, pages

13–22, New York, NY, USA, 2009. ACM.

[101] E. Uzun, V. Atluri, S. Sural, J. Vaidya, G. Parlato, A. L. Ferrara, and

M. Parthasarathy. Analyzing temporal role based access control models. In

Proceedings of the 17th ACM symposium on Access Control Models and Tech-

nologies, SACMAT ’12, pages 177–186, New York, NY, USA, 2012. ACM.

176

BIBLIOGRAPHY

[102] H. Wang, Y. Zhang, and J. Cao. Access control management for ubiquitous

computing. Future Generation Computer Systems, 24(8):870 – 878, 2008.

[103] J. Wang and X. Fu. Digital rights management (drm) in the mobile p2p

environment. In Wireless Communications Networking and Mobile Computing

(WiCOM), 2010 6th International Conference on, pages 1–4, 2010.

[104] S. Weeks. Understanding trust management systems. In Security and Privacy,

2001. S P 2001. Proceedings. 2001 IEEE Symposium on, pages 94–105, 2001.

[105] M. Weiser. The computer for the twenty-first century. In Scientific American,

pages 265(3):94-104, 1991.

[106] D.-Z. Xu, D. Xu, and Z. Lei. Bigraphical model of context-aware in ubiquitous

computing environments. Asia-Pacific Conference on Services Computing.

2006 IEEE, 0:389–394, 2011.

[107] S.-H. Yang and I. Chen. Providing context aware learning services to learn-

ers with portable devices. In Advanced Learning Technologies, 2006. Sixth

International Conference on, pages 840–842, 2006.

[108] G. Zhang and M. Parashar. Dynamic context-aware access control for grid ap-

plications. In Grid Computing, 2003. Proceedings. Fourth International Work-

shop on, pages 101–108, 2003.

[109] H. Zhang, Y. He, and Z. Shi. Spatial context in role-based access control.

In Proceedings of the 9th international conference on Information Security

and Cryptology, ICISC’06, pages 166–178, Berlin, Heidelberg, 2006. Springer-

Verlag.

177

BIBLIOGRAPHY

[110] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and

policy specification of usage control. ACM Trans. Inf. Syst. Secur., 8(4):351–

387, Nov. 2005.

[111] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logical specification

for usage control. In Proceedings of the ninth ACM symposium on Access

control models and technologies, SACMAT ’04, pages 1–10, New York, NY,

USA, 2004. ACM.

[112] Z. Zhang, L. Yang, Q. Pei, and J. Ma. Research on usage control model

with delegation characteristics based on om-am methodology. In Network and

Parallel Computing Workshops, 2007. NPC Workshops. IFIP International

Conference on, pages 238–243, 2007.

[113] B. Zhao, R. Sandhu, X. Zhang, and X. Qin. Towards a times-based usage

control model. In Proceedings of the 21st annual IFIP WG 11.3 working con-

ference on Data and applications security, pages 227–242, Berlin, Heidelberg,

2007. Springer-Verlag.

[114] X. Zhao, X. Wan, and T. Okamoto. Adaptive content delivery in ubiquitous

learning environment. In Wireless, Mobile and Ubiquitous Technologies in

Education (WMUTE), 2010 6th IEEE International Conference on, pages 19–

26, 2010.

[115] J. Zheng, kun Zhang, wen Zheng, and an Tan. Dynamic role-based access

control model. Journal of Software, 6(6), 2011.

178

	Dedication
	Abstract
	Declaration
	Publications
	Acknowledgments
	Table of Content
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction and Motivation
	Problem Description and Research Question
	Research Methodology
	Criteria for Success
	Thesis Structure

	Literature Review
	Introduction
	Background
	Traditional access control models
	Discretionary Access Control (DAC)
	Mandatory Access Controls (MAC)
	Role Based Access Control (RBAC)

	Trust Management (TM)
	Digital Right Management (DRM)
	Usage Control (UCON) Model
	Introduction
	Usage Control Conceptual Model
	Usage Control Components
	Subjects (S) and Subject Attributes (ATT(S))
	Objects (O) and Object Attributes (ATT (O))
	Attributes
	Rights
	Authorizations (A)
	oBligations (B)
	Conditions(C)

	The UCONABC family core modules
	Ubiquitous (Pervasive) Computing
	Introduction
	Ubiquitous System Properties
	Ubicomp Technologies
	Devices
	Connectivity
	User Interfaces

	Overview of Context-Aware Systems
	Definition of Term Context
	Context Model
	Context-Aware Systems
	Context Information Acquisition
	Context-Aware System Abstract Architecture

	Adaptive Systems
	Adaptation in Ubiquitous Computing
	Adaptation Approaches
	Parameter Adaptation
	Compositional Adaptation
	Action-Based Adaptation

	Comparison of Adaptation Approaches
	Related Work on Context-Aware Access Control Models
	Extensions of Role-Based Access Control (RBAC)Model
	Generalised Role-Based Access Control Model
	Spatio-Temporal Models
	Dynamic Role-Based Access Control Model
	CAAC-based Models with Architectural Components

	Extensions of Usage Control (UCON) Model

	Summary

	Context-Aware and Adaptive Usage Control (CA-UCON) Model
	Introduction
	Architecture of CA-UCON model
	Usage Decision (UD)
	Adaptation Decision (AD)
	Subjects (S) and subject Attributes (ATT(S))
	Object (O) and Object Attributes (ATT (O))
	Rights (R)

	Computational model of the CA-UCON model
	The CA-UCONABD Family Core Models
	The CA-UCONpreA Model
	 The CA-UCONOnA Model
	The CA-UCONpreB Model
	The CA-UCONonB Model
	The CA-UCONpreD Model
	The CA-UCONonD Model

	Expressive Power of the CA-UCON Model
	Summary

	Formal Specification of CA-UCON Model in CCA
	Introduction
	Overview of CCA
	Modelling in CCA
	Syntax of CCA
	Processes
	Location
	Capabilities

	Context model
	Context Expressions

	Ambient-based model for CA-UCON model
	Formalising the CA-UCON Model in CCA
	Notation
	Subject Ambient
	Requesting Ambient
	Accessing Ambient
	Preadapting Ambient
	Onadapting Ambient
	CheckPreA Ambient
	CheckPreB Ambient
	CheckPreC Ambient
	CheckOnA Ambient
	CheckOnB Ambient
	CheckOnC Ambient

	Summary

	Case Study
	Introduction
	Ubiquitous Learning (U-Learning)
	Overview
	U-learning Technologies and Infrastructure

	Modelling of a U-learning System in CA-UCON
	U-learning Services
	Requirements of the u-learning system
	Authorisation Requirements
	Obligation requirements
	Condition requirements
	Adaptation requirements

	Formalisation in CA-UCON
	Right
	Authorization
	Obligation
	Condition
	Adaptation

	Formal specification in CCA
	CheckPreC Ambient
	SubjectCxt Ambient
	MemorySize Ambient
	Bandwidth Ambient

	GC Ambient
	preadapting Ambient
	Subject Ambient
	FMem Ambient
	HB Ambient

	Validation
	ccaPL: A Programming Language for CCA
	Syntax of ccaPL
	Context Expressions in ccaPL
	ccaPL Execution Environment

	Executing Scenarios

	Summary

	Enforcement of CA-UCON model
	Introduction
	Architecture of CA-UCON Reference Monitor
	Enforcement Point
	decision point
	Attribute Manager
	Context Information Manager

	Enforcement Architectures of CA-UCON Model
	Centralized Enforcement Architecture
	Example 1:

	Distributed Enforcement Architecture
	Example 2:

	Hybrid Enforcement Architecture
	Example 3:

	Summary

	Conclusions and Future Work
	Work Summary
	Statement of Evaluation
	Success Criteria Revisited
	Contribution to Knowledge
	Future Work

	Bibliography

