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Abstract Different weakening butter operators in time series model analysis usually result in different
model sensitivity, which sometimes affects the effectiveness of relevant operator-based methods. In this
paper, the stability of two classic weakening buffer operator-based series models is studied; then a
new data preprocessing method based on a novel fractional bidirectional weakening buffer operator
is provided, whose effect in improving model stability is tested and utilized in prediction problems.
Practical examples are employed to demonstrate the efficiency of the proposed method in improving
model stability in noise scenarios. The comparison indicates that the proposed method overcomes the
disadvantage of many weakening buffer operators in too subjectively biased weighting the new or the
old information in forecasting. These expand the application of the proposed method in time series
analysis.

Keywords Time series, sequence operator, model stability, model perturbation analysis.

1 Introduction

Time series prediction models play important roles in many real-world applications, includ-

(1, 2]

ing economic and social forecasting problems . However, data noise and missing data are

often encountered in model applications and they affect the effectiveness of prediction results.
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The existence and stability of stationary solutions is one of the basic problems of the models

subject to exogenous random perturbations!® 4. Researchers have proposed ways and methods

to improve the accuracy of model solutions!® ¢

Sequence operators play an important role in reducing the interference information in collect-
ed data and highlighting the potential development process of analyzed objects. Among them

are the widely used exponential smoothing operatorsl”), especially the seasonal exponential s-

8, 9]

moothing method in application of forecasting[® 9. The buffer operators in the grey systems

(10]

theory also exhibit similar features!*®!. They are based on the three axioms of buffer operator

and suitable for small sample analysis. They greatly improve the performance of grey predic-

(11]. These operators can be further subdivided into weakening

[12, 13]

tion models in real applications
operators and strengthening operators . When it comes to the system development trend
analysis or the series prediction, the weakening buffer operators (WBO) is preferred. These
kind of operators include the average weakening buffer operator (AWBO), the geometric av-
erage weakening buffer operator (GAWBO), and the weighted WBOs (WAWBO,WGAWBO),

[14, 15]

etc. The main disadvantage of these operators is their subjective determination of the

weight coefficients of datalt6l.

This will undoubtedly miss some useful information under cer-
tain conditions and limit their applications.

Wu et al.'” 19 first studied the essence of WBOs in grey prediction models. Based on the
perturbation theory, they found that series prediction models are more sensitive to earlier data
than newer data in a given sequence. Their findings reveal that the classic integral accumulated
generating operator 1-AGO and extended fractional accumulated generating operator attach
more importance to the earlier data than to recent data, and both operators dont satisfy the
priority theory of new information in grey systems theory. To solve this problem, they later
proposed some reverse operators in Wu et al.[!”) and Wu et al.l!?!, which attach more importance
to the more recent data and thus are consistent with the priority theory of new information.
Recent studies show that these new operators could improve the prediction performance of time
series models?° 22l However, these new operators emphasize either the new data or the old
data, and thus are only suitable for series analysis with special time preferences.

To solve the above problems, this paper applies a data preprocessing method based on a
novel fractional bidirectional weakening buffer operator which is first proposed by Li et al.[23].
Recent studies [23, 24] have showed the good performance of this weakening buffer operator in
prediction against data noise interference. The effect of this adopted operator, together with
two other widely used operators, on improving the stability of time series models are examined
and compared. Applying the perturbation theory, this study demonstrates the effectiveness of
the fractional bidirectional weakening buffer operator in improving the stability of time series
models. The proposed operator-based data preprocessing method enlarges the application of
series prediction models by taking into account more objectively both the old and the new data
in samples.

The paper is structured as follows: Section 2 introduces three important fractional weakening
buffer operators used in series models. Section 3 analyzes the performance of the proposed

operator-based data preprocessing method on the sensitivity of a fractional order accumulate
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discrete grey model DGMP(1,1). Section 4 shows the model perturbation analysis result of the
proposed method and its comparison operator on another model — the new information prior
grey model NIGM (p,1). Case studies in Section 5 demonstrate the effect of the new method

in improving model stability. Finally, conclusions are drawn in Section 6.

2 Fractional weakening buffer operators

Weakening buffer operators are commonly used in series prediction models for finding the
implicit pattern in samples. In order to show the advantage of the adopted fractional bidirec-
tional weakening buffer operator in the proposed data preprocessing method, two other widely
used classic weakening buffer operators are introduced in Definition 2.1 and Definition 2.2.
They are chosen as the comparative objects of the proposed one.

Definition 2.1 (see [18]) Let X = {2 (1), 2 (2),..,2(0(n)} be the original se-
quence, and DPX(©) = XP = {2P(1),2P(2),...,2P(n)} be the fractional p-order(0 < p < 1)
accumulated generating operator sequence of non-negative X (0), with

k

(k) =Y Oyl 1@ O0),  (k=1,2,.n) (1)
i=1
where C_, =1, Cf_, =0, Cf:f+p71 = (k‘_“'p_1)(k(_kifg!_2)"'(p+1)(p).

Definition 2.2 (see [19]) Let X© = {2O(1), 2 (2),...,2(0(n)} be the original se-
quence, and D" X(©) = Xy = {2)(1),239(2), ...,z (n)} be defined as the reverse fractional

r-order accumulated generating operator sequence of non-negative X (), with operator D" sat-

isfying:
:E(r)<k7) = Zcz:lg%wflx(())(i)a (k =1,2, n) (2)
i=k
where C0_, =1, C"_, =0, Cii:l’chrrfl - (i—k+r—1)(i(;fz—;—Q)'“(T-&-l)r-

If order parameters p in Definition 2.1 and r in Definition 2.2 are limited to positive integers,
the p-AGO and the r-IAGO are obtained. Important properties of these operators have been

(19.25] Tn this study, the fractional bidirectional weakening buffer operator

intensively studied
adopted in the proposed data preprocessing method of time series prediction models is given in
the following definition:

Definition 2.3 (see [23]) For the original sequence X (@ = {2(0)(1),z(9(2), ...,z (n)},
an operator sequence X, = {x,(1),2,(2),...,z,(n)} is obtained by D,X(® = X,, where time
series operator D, (v € RT) is a fractional bidirectional weakening buffer operator, and elements

in sequence X, satisfy:

i i)
X w06+ Y w( e ®0)
n(i) = — . i=12.m (3)
> wl—j)+ X w(j—i)
j=i—a(i) j=it1

https://mc03.manuscriptcentral.com/jssc
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where (i) = min (i — 1,7 — ¢), and

( (v+1-n) —i—(n—l)vﬂ)/l"(v—i—Q), i=n
( 1) gl 4 )t )/F(v 12), i=1,2,..(n—1) (4)
1/T(v +2), i=0

It has been proved in [23] that the fractional bidirectional weakening buffer operator D,
defined in equation (3) is a weakening buffer operator. According to Definition 2.3, value
adjustment of an element in a given series is determined by both the older and the newer
data, while it is exclusively determined by the old or the new data if applying Definition
2.1 or Definition 2.2. In the following sections, we will test the performance of operator D,
in improving the stability of two grey prediction models, which are based on the operators
presented in Definition 2.1 and Definition 2.2, respectively.

3 Perturbation analysis of model 1: the fractional order accumulate

discrete grey model DGMP(1,1) in [18]

Whether a time series model is sensitive to data samples plays different functions in different
applications. In this section, perturbation theory is employed to test the effect of the fractional
bidirectional weakening buffer operator D, on the sensitivity of the fractional order accumulate
discrete grey model DGMP(1,1) designed in [18].

Lemma 3.1 (see [26]) Let matrizes A € C"*" F € C™", vectors b € C™,¢c € C".
Assume that matriz or vector norm ||.|| is tolerant, rank(A) = rank(A + F) = n and matriz
norm ||A7Y|||[F|| < 1 is true, then the least squares estimation solution x of linear system
models Az = b and the least squares estimation solution x + h of model (A+ F)(x +h) =b+c¢
satisfy:

st (IFN el | el | s 1E Iy el
Al < 24 [ B2 o=R 4 o LI t2 e (5)
A 1AL " 42

where kg = ||A7Y 2l A]], 9 = 1= [A7Y[2|[Fll2, 7 = b — Ax.

To keep the consistency of parameters, the fractional order parameter p/q used in [18] is
replaced by parameter p in the rest of this paper.

Definition 3.2 (see [18]) Let X© = {zO)(1),2(2),...,2(0(n)} be the original se-
quence, and XP = {zP(1),2P(2),...,2P(n)} be its fractional p-order accumulated generating
operator sequence based on Definition 2.1, then the following time series model is called a

fractional order accumulate discrete grey model DGMP(1,1):
2P(k+1) = p1aP(k) + P2, k=1,2,.m—1 (6)

The least squares estimate of model parameters $; and By in model (6) are:

P2

ol = (BTB) 'BTY (7)
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where _ i _ -
1 2P (1) P (2)
1 zP(2) 2P (3)
B= v =
1 2P(n—2) 2P(n—1)
1 aP(n— 1)_ I aP(n) |

For simplicity, let 5 = [52, 61]T. Perturbation analysis result of model (6) in [18] is summa-

rized in following Theorems 3.3 to 3.5.

Theorem 3.3 (see [18])  For the DGMP(1,1) model with original data X© ={z© (1), ...,2) (n)},
let B be its least squares estimation. When the raw data is disturbed, DGMP(1,1) becomes
(B + AB)E = (Y + AY), where AB and AY are determined by the disturbance item €. As-
sume that the matriz norm condition ||[B71||s||AB|l2 < 1 hold for DGMP(1,1). Let ry =
[|B72l|B|, v+ = 1—||B7Y|2||ABl||2, 74 = Y — BB. If the disturbance occurs in the first data

of the original sequence, that is T (1) = z(O(1) + ¢, then the difference between solutions &}

and [ satisfies:

S (i) \/m \/W ol
sy <o [ VR Vi T

T

K
+— . (8)
1Bl 1Bl M IB|?
Theorem 3.4 (see [18]) For the same model and parameters as those in Theorem 3.3, if
the disturbance occurs in the non-boundary nodes, that is T (k) = (O (k) 4-¢, (k=2,3,..n—1),
then the difference between solutions of model DGMP(1,1) satisfies:
n—=k i 2 n—k+1 i 2 n—~k i 2
. 2:1 (CH;LQ) 18]l Zl (Ci+;72) . 231 (CH;LQ) ||'Yﬂ||
6O < lel 2| 5 - e - )
H M 1Bl 1Bl M 1B|?

Theorem 3.5 (see [18]) For the same model and parameters as those in Theorem 3.3, if
the disturbance occurs in the end node of the original sequence, that is T (n) = (O (n) + ¢,
then the difference between solutions of model DGMP(1,1) satisfies:

Kt el
6O m)|| < 2
H v+ 1Bl
Based on above theorems, Wu et al.l'¥! demonstrates that the proposed DGMP(1,1) has
better solution stability than the classic GM(1,1) model. Now, to test the advantage of the

fractional bidirectional weakening buffer operator D, in improving model stability, we apply

(10)

a first preprocessing step to the original time series based on operator D,,, then carry out the

https://mc03.manuscriptcentral.com/jssc
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DGMP(1,1) analysis. Perturbation theory is employed to test the effect of operator D, on the
solution stability of DGMP(1,1).

Let X© = {2(0(1), 2(9(2), ..., 2 (n)} be the original sequence, X, = {z, (1), 2,(2), ..., z,(n)}
be its weakening buffer operator sequence based on operator D,. Apply DGMP(1,1) model to
sequence X, let 3, be the new model solution values of parameters [, Bl]T. Then we have:

-1

By = (B,”B,)” B,TY, (11)
where 28(k) = S0, CfZ1, ay(i), and
1 a2(1) zh(2)
1 z2(2) 24 (3)
BU = : ) YU = :
1 zP(n—2) aP(n —1)
1 2B(n—1) af(n)

When the raw data is disturbed, let AB, and AY, be the disturbance items of B, and Y,
respectively, and 3, be the new model solution. Assume that ||B;!||2||AB,|]2 < 1 and set
ot = 1B BllBull, 2t = 1= [1B7 1aI|AByllz and 7up = Yy — Byfy. Parameters a(i) and
w(i) used in the rest part of this section are same as those defined in model (3). The main

results are stated in the following theorems.

Theorem 3.6 If raw data disturbance occurs in the first data of the original sequence,
that is O (1) = 2(0(1) + ¢, then the difference between B, and B, satisfies:

v M, || Byl N, Kot My H'YU,BH
5<x<0>(1))H < e| But + + : (12)
H Yot | B. |l [ Bol Yot ||Bv||2
where: (i). if sequence size n is even, then:
2 2
v n/2 i ijl U}(’L—]) n—1 n/2 Cifj w(j—l)
v = Z Z -2 (i) + Z Z Hp-1 a(y) ’
e GO e i S ) BEZE R ORE 3
h=1 h=1
2 2
v n/2 i Cj_l U}(Z*j) n n/2 C,i_j w(]fl)
v = Z Z P2 (i) +‘ Z Z Hp-1 a(y)
i=2 | j=1 w(0)+2 Z w(h) i=n/2H | j=1 w<0)+2 Z U)(h)
h=1 h=1

https://mc03.manuscriptcentral.com/jssc
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(ii). if sequence size n is odd, then:

11 (n+1)/2 | n—1 (ntl1)/2

) - y -
12 My= | > [DClhs wgujﬁn + 2 > Ci w(;a(j))

13 =1 | =l w(0)+2 > w(h) i=(mt3)/2 | J=1 w(0)+2 > w(h)
h— h=1

16 (nt1)/2 | w(i—j) n (nt1)/2 w(j—1)
17 - 71 _ i —
18 N = Z Zcﬁﬂ a(i=H1) + 2 Z Cipi ald)
=\ w(0)+2 3 w(h) | =EE/2L = w(0)+2 > w(h)
h=1 h=1
20 (14)

Proof (i). Sequence size n is even. When () (1) = z(9)(1) + ¢, according to the logic of
23 DGMP(1,1), we have:

24 r q
0 e

1 w(l)
26 0 Cof + w730

29 0 Cn/271 Cn/2 2 w(l)e +. w(n/2—1)e
n/2—2 n/2—3 w(0)4+2w(1 a(n
30 p+n/ p+n/ (0)+2w(1) w(0)+2 22 w(h)

n/2 n/2—1 w(1l) w(n/2 1)e
0 Cp+n/2 1 +C+n/2 2w(0)+25}(1) "'ClT ,

AB,
32 w(0)+2 Z w(h)

n/2+1 n/2 w(1) w(n/Q 1)
34 0 Copet Cotnpimmrzem T Conn——am —
35 w(0)+2 Z w(h)

38 0 €2 eqponed _we L om2ol w(wphe
39 p+ 3 p+n—4w(0)+2w(1) p+n/2— 2w<0>+2a§:z o,
40 - i
41 i 1 w(1) .
42 Cpe + worizem

w(2)e

2 1 w(le
43 Crre+ Gy w(0)+2w(1) t TR Fe@)

n/2 n/2—1 w(1) w n/2 1)
46 C(;10—1-77,/2 1€ e+C p+n/2— 2w(0)+2§1( 1) Cl a(n/2) s
47 w2 5 (k)

48 n/2+1 n/2 w(l)e 2 w(n/2 1)
AY, = Cpinyee +C pin/2—1 w0 3w - Gy a(n/2)
49 pin/ v v w(0)+2 }Z:jl w(h)

n/2+2 n/2+1  w(l)e 3 w(n/2—1)e
51 Cp+n/2+1 €+ C p+n/2 w(0)+2w(1) +o CP+2 a(n/2)
52 w(0)+2 S w(h)

h=1

n—2 w(l)e /2 w(n/2—1)e
55 Cyr +n 2€ + Cp+n 3 w(0)+2w(1) +o C§+n/271 a(n/2)
56 w(0)+2 hZ w(h)

60 https://mc03.manuscriptcentral.com/jssc
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Now calculate the norms of matrixes AB, and AY,,, extract parameter € and apply Lemma

3.1, parameter expressions in equation (13) are obtained.

(ii). When sequence size n is odd, we have:

o €
1 w(l)e
0 Coe + w30
(n—1)/2 n—3)/2 w(l)e w((n—1)/2)e
0 Cp+(n73)/25 +Cy p+(n—5)/2 wO)F2w(@® T (0)+2a<<n§>/2) "
BBy = (n+1)/ (n-1)/ o) L b
n+1)/2 n—1)/2 w(l)e 1 w((n—1)/2)e
0 Cp+n 1)/ Cp+n 3)/2 w(0)+2w(1) "'Cp a((nt1)/2)
w(0)+2 > w
h=1
n—2 n—3 w(l)e (n—3)/2 w((n—1)/2)e
0 Coinse+ O unmmam T Cotns 52 a((nt1)/2)
2 w(h)
L h=1
i 1 w(l)e T
Cp 5+ w(0)+2w(1)
2 w( w(2)e
Cp+15 + Cl 11;(0)+21u(1) + w(0)+2w(1)+2w(2)
(n+1)/2 (n—1)/2 w(l)e 1 w((n—1)/2)e
CoinZ1y 28 + Cotn2sy 2 mozem T C ==
AY, = w0+ h;l v
(n+3)/2 (n+1)/2  w(i)e > w((n—1)/2)
Cp+(n+1 Cp+ (n—1)/2 w(0)+2w(1 ) e CP+1 a((n+1)/2)
w(0)+2 > w(h)
h=1
n-2 _ w()e (n-1)/2 w((n—1)/2)e
Cor +n 28 + Cp+n 3w (0)+2w(1) o Cp+(n73)/2 a((nt1)/2)
w(0)+2 hzzjl w(h)

Then calculate matrix norm ||AB,||2 and vector norm ||AY,||, extract parameter & and

apply Lemma 3.1, parameter expressions in equation (14) are obtained. |

Theorem 3.7 If raw data disturbance occurs in the non-boundary nodes of the first half
of the original sequence, that is T (k) = 2 (k) + ¢, then the difference between 3,, and
Bv satisfies expression (12), but the values of parameters M, and N, are determined by the
following scenarios. Let @1 be the largest integer less than k/2, oo be the largest integer less
than (k—1)/2, set cr=5—1, ca=j+p—2, cs=i+j—p1—1-n/2, ca=p+i+j—p1—2—n/2,
cs=i+j—pa—1—(n+1)/2, c¢=p+i+j—p2—2—(n+1)/2, then M, and N, are:

https://mc03.manuscriptcentral.com/jssc
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(i). if sequence size n is even, then k =2,3,..n/2 and
2 2
n/2+p1 | i~y .. n—1 n/2 .
_ o w(lk+j—i-1]) e W(k+ji—p1—-1-n/2|)
M, = _ Z Z Cez (i) +, Z Z Ces a(n/2Ho1H—j)
o | T w2 S ey | e (T w2
2
& w(lk+j =1 —1-n/2)
— 2 j—p1—14+n/2 J—p1—L1—n
No= | (My)* + ZCP-H p1—2+n/2 a(n/2+p1tl—j)
w0)+2 > w(h)
h=1
(15)

(ii). if sequence size n is odd, then k =2,3,...(n+1)/2 and

2

(nHl) /202 | i—p1 1|) n—1 (nHl) / 24+pa—p1

(n+1)/2])

- YT e Y | Y et

a((ntl)/2+patHl—j)

i=pitl | j=1 w(0+2 S w(h) i=(rtl) / 2Hpat j=1 w(0)+2

2
(n+1)/2+p2—¢p1

B ) j—pa—1+(n-1)/2 Ww(k+j—p2—1—(n+1)/2|)
= | (My)? + Z CP+] p2—2+(n—1)/2 a((ntl)/ 2Hpatl—j)
j=1 w(0)+2 > w(h)

h=1

Proof Please see the Appendix A.1.

Theorem 3.8 If raw data disturbance occurs in the second half of the original se

(16)

quence,

excluding the last point, then the difference between BU and B, satisfies expression (12). Let @3

be the largest integer less than (n — k)/2, @4 be the largest integer less than (n —k+1)/2, ¢;

and co are same as those defined in Theorem 3.7, set c;=i+j+ps—1—n, cs=p+it+j+ps—2—n,
then M, and N, are:

(i). if sequence size n is even, then k =n/2+1,n/2+2,..n— 1 and

h=1

2

n—p4 i—n/2Hpq n—1 n/2

_ o w(k+j—i-1|) e w(k+jt+pa—1-—n|)
- 2. >, Oy a(i—j+1) DI DI a(”“ip )

i=n/2Hl—p4 j=1 w(0)+2 Z w(h) i=ntl—ps | j=1 w(0)+2

/2
_ "ZCWF w(lk+j+pa—1-n])
N phftpa2 a(ntl=pa—)
w0)+2 Y w(h)
h=1

https://mc03.manuscriptcentral.com/jssc
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(7). if sequence size n is odd, then k= (n+1)/2+1,(n+1)/24+2,..n—1 and

2 2
n—p4 tHps—(n—1)/2 . n—1 (1) /2+ps—pa .

B o w(k+j—i—1]) er W(k+jt+pa—1-—n|)
Mo= . 2 Z Cea (1) + 2 Z Ces a(rnl—paij) :
i=(nt1)/2~p3 j=1 w(0)+2 > w(h) i=n—patl J=1 w(0)+2 > w(h)

h=1 h=1
2
(nHl) / 24p3—p4 .
_ ot W(k+i+psa—1-n|)
NU - (Mv)2 + Z Cz+jﬁ<p4*2 a(ntl—ps—j)
j=l1 w(0)+2 > w(h)
h=1

(18)

Proof Please see the Appendix A.2.
Theorem 3.9 If raw data disturbance occurs in the last time point of the original se-
quence, that is 7 (n) = (0 (n) + ¢, then the difference between f3, and 3, satisfies expression

(12), but the values of parameters M, and N, are determined by the size of samples.

(i). if sequence size n is even, then

2
n/2-1 i .
_ ij w(n/2—j)
M, = Z Zci-lﬂg—j—l a(n/24) ’
=1\ =t w(0)+2 > w(h)
h=1
19
2 (19)
n/2 i .
_ i—j w(n/2—j)
o= Z 2 Citpsa a(n/24)
I w(0)+2 > w(h)
h=1
(ii). if sequence size n is odd, then
2
(n1)/2 i :
_ i w((n+1)/2-j)
M= Z ZC““H‘l a((nH)/2H-1) ’
e R SR
h=1
20
2 (20)
(/2 | i

_ i w((n+1)/2—j)
No= Z Z Citpsa a((nt)/245-1)
=t w(0)+2 > w(h)

h=1

Proof Please see the Appendix A.3.
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4 Perturbation analysis of model 2: the NIGM(p,1) in [19]

The fractional order accumulate discrete grey model in Section 3 emphasizes old data in
modeling samples. To give more weight to new information, Wu et al.'¥) provides the following
model.

Definition 4.1 (see [19]) Let X = {2 (1), 2 (2),..,2(0(n)} be the original se-
quence, X(1_p) = {2(1—p)(1),2(1-p)(2), ..., T(1—p)(n) } (0 < p < 1) be the fractional (1—p)-order
reverse accumulated generating operator sequence of X(9) (see Definition 2.2). Set mean for-
mula 20 (k) = (2O (k) + 29 (k — 1)) /2 and formula dyri—py(k) = v1_p)(k) —2(1_p) (k= 1),
then the new information prior grey model NIGM (p, 1) is defined by:

dayza_py (k) + 1120 (k) = 7 (21)

The least squares estimation of model parameter 71 and 75 in (21) can be obtained by:

" = (eTE) 'ETU (22)
2
where
—Z(O)(2) 1 d(l)x(l_p)(Q)
o —Z(O)(3) 1 7 U d(l)l‘(l.,p)(gﬁ)
—Z(O)(n) 1 d(l)x(l_p)(n)

Let 7 = [T]_,TQ]T, AFE and AU be the disturbance items of model parameters F and U
respectively, € be the disturbance item on raw data. Assume that the matrix norm condi-
tion |[|E~Y|2||AE|l2 < 1 holds for model NIGM (p,1). Let uy = |[E7Y2||E|l, ny = 1 —
[|E~Y|2]|AE||2, nr = U — E7. Based on Lemma 3.1, the perturbation analysis results of
NIGM(p,1) is summarized in following Theorems 4.2 to 4.4. Theorem 4.2 directly comes from

Wu et al.['9 while Theorems 4.3 to 4.4 are derived from the corrected parameters.

Theorem 4.2 (see [19]) If the disturbance € occurs in the first data of the original se-

quence, that is T (1) = (0 (1) 4 ¢, then the difference between solutions T and T satisfies:

. L g el
@) < ey 2 (Lo Lt : v
[s@ | < Vo \oTEl BT  2m )

Theorem 4.3 If the disturbance occurs in the non-boundary nodes, that is (i) =
()4, (i=2,3,...,n—1), then the difference between solutions of model NIGM (p,1) with

and without data disturbance satisfies:

i G—1 2
p (VE VS ) 1y VBl
2
e\ ZIE] £l 2| B

[s@ @) <kl (24)
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Proof (i). When () (2) = 2(9)(2) + ¢, disturbance items of parameters AE and AU are:

—£/2 0 pe

—/2 0 —€

AE=| 0 of, av=1]o
0 0 0

Then ||AE||> = v2[el/2, [|AU]| = |e]v/p? +1.

(ii). When Z(©)(3) = (9 (3) + ¢, disturbance items of model parameters AE and AU are:

0 0 [—C7_¢]
—/2 0 pE
—/2 0 —e
AE = AU =
0 0 0
| O 0] | 0 |

Then [|AE|l2 = V2[el/2, ||AU]| = [e]/(p* — 2p% + 5p?) /4 + 1.
Likewise, (iii). when (i) = (i) + ¢,(i = 4,...n—1), disturbance items of model

parameters AE and AU are:

0 0 —Ci 5
—05:5735
0 0
—</2 0 e
PN . oau=| P
—/2 0 —e
0 0 0
0 0 0

i j— 2
Then [|AB|lz = v2Jel /2, |AU]] = ely/Si_, (¢973_,)° + 1.

Jj—=2-p
Summarize the above three scenarios, perturbation result (24) is obtained. |

Theorem 4.4  If the disturbance occurs in the last sample point, that is T (n) = 2(0) (n)+
e, then the difference between solutions of model NIGM (p,1) satisfies:

noitl
H(g(x(o)(n))H < |5|ﬁ I Z]—Q( Jj=2 p) 1t n-ll

— (25)
n \ 211E] 1E]l 2| B

https://mc03.manuscriptcentral.com/jssc
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Proof When 7 (n) = 2(9) (n) + ¢, disturbance items of parameters AE and AU are:

0 0 —Cn ) e
0 0 —Cn2 e
AE=| ¢ |, AU= :
0 0 —-C}_ e
—/2 0 pE

Then ||AE|l2 = |g|/2, ||AU|| = Je] E?:z (Cg:;fp)z. Apply these norms into Lemma 3.1,
perturbation bound (25) is proved. [ |

Now we consider the effect of operator D, on the stability of model NIGM (p,1). X©) =
{z©(1),2)(2),...,20(n)} and X, = {£,(1),2,(2), ..., 2,(n)} are the same as those defined in
Section 3. Set 2\ (k) = Py Cf:,’jfpa:v(i), d(l)xq(,lfp)(k‘) = 2P (k) — 28 (k — 1) and
sz’)(k) = (zy(k) + z,(k — 1)) /2. Let 7, be the least squares solution of model NIGM (p,1)

based on sequence X, then we have:

7, = (ETE,) 'ETU, (26)
where
—2902) 1 dyzs " (2)
o —21(,‘.))(3) 1 o d(l)xq(}.*p)(?,)
—zf)o)(n) 1 d(l)xq(}*p)(n)

Let AE, and AU, be the disturbance items of E, and U,, respectively, and 7, be the new
model solution. Assume that |[|E;![|2||AE,||2 < 1 holds and let n,+ = 1 — ||E; 2| AE,||2,
ot = ||Ey 2| Eyl|, nur = Uy — EyTy. Perturbation analysis results of model NIGM (p, 1) with
operator D, are stated in the following theorems.

Theorem 4.5 If raw data disturbance occurs in the first data of the original sequence,
that is T (1) = (0 (1) + ¢, then the difference between 7, and T, satisfies:

v P, HTUH Qw Mot Py ||77v7'||
80 (1)| < [e] 21 o (27)
H Mot HEUH HEUH Nt ||Ev||2

https://mc03.manuscriptcentral.com/jssc
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where (i). if sequence size n is even, then:

2 2
n/2-1 . 3
1 w(i—1) w(7) w(n/2-1)
Po=3 Z o) () + a(n/2) :
=L w(0)+2 > wk) w(0)+2 Y w(k) w(0)+2 > w(k)
k=1 k=1 k=1
2 2
g w(i—1) g w(itj—1) w(n/2—-1)
— — J — —
@ Z i) T Z Crr o (H) * a(n/2)
=l w(0)+2 Y wk) T w(0)+2 > w(k) w(0)+2 > w(k)
k=1 k=1 k=1
(28)
(ii). if sequence size n is odd, then:
2 2
(n—1)/2 . .
P 1 Z w(i—1) w() N w((n—1)/2)
Y2 . (i) a(iHl) a((ntl)/2) ’
=\ w0)+2 Y wk) w(0)+2 Y w(k) w(0)+2 w(k)
k=1 =1 k=1
2 2
0. ‘"‘z”:” w(i—1) +‘"+§52ﬂ'cj w(i+j—1) . w((n—1)/2)
v ‘ a(i) . Jp-L a(ig) a((n+l)/2)
=l w(0)+2 ST wik) =1 w(0)+2 > wk) w(0)+2 >, w(k)
k=1 k=1 k=1
(29)

Proof (i). Sequence size n is even. When (9 (1) = (9 (1) + ¢, according to the logic of

NIGM (p,1), we have:

_ e w@) T r n/2-1 .
2 (1+w(0)+2w(1)> 0 —e—€ 3. (Ci,) —20-
(1) (2) = w(OH2 hzl w(k)
- w + WA 0 n/2-2 -
2 | wOorzw() a(3) w(l) i w(i+l)
w(OH2 > w(h) —E 02w ¢ Z (sz 1 a(i
h=1 (OH2w(1) i=1 e ) w(0H2 (fz)w(h)
h=1
B P I
w(0H2 z:: w(h)  w(OH2 }zz:l w(h) w(OH2 ’E w(h) w(OH2 El w(h)
7% w(n/2-1) 0 —E%
a(n/2 s
w(0)2 ;é)w(m vl o e
0 0 0
L O 0_ - O

Then calculate matrix norm |[|AE,||2 and vector norm ||AU,||, extract parameter £ and

apply Lemma 3.1, parameter expressions in equation (28) are obtained.
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(ii). When sequence size n is odd, we obtain:
[ _& w(1) ] r (n—1)/2 .
s (s ’ —eme 3 (Chyy) —2—
B ) 1=1 w(OH2 }2—:1 w(h)
—g | b + w 0 (n-3)/2 "
2 w(0OH2w(1) a(3) w(l) i w (1)
w(0H2 w(h) —E e € Z ( Z 1) (i
= (OH2w(1) = —p— w(Op2 %Z)w(h)
h=1
—3)/2 n—1)/2 w((n=3)/2) w((n-1)/2)
AEv: _% wi((r(bn—l))/h)) + wl('lf(((LTH'l))//Q)) 0 7AU1): € a((n1)/2) tep allnd)/2)
wOH2 X wh) wOH2 Y w(h) w(OH2 )Zl w(h) w(OH2 hZI w(h)
h=1 h=1 h= v =
—1)/2 _ w((n-1)/2)
_% w(m(&»rl))/ﬂ)) 0 : )/
wOn2 S w(h) wOp2 3 w(h)
0 0 0
I 0 0) I 0
Then calculate matrix norm ||AE,||2 and vector norm ||AU,||, extract parameter & and
apply Lemma 3.1, parameter expressions in equation (29) are obtained. |
Theorem 4.6 If raw data disturbance occurs in the non-boundary nodes of the first half
of the original sequence, that is T (k) = (O (k) + ¢, then the difference between 7, and T,
satisfies expression (27), but the values of parameters P, and Q,, are determined by the following
scenarios. Let parameters w1 and po be the same as those defined in Theorem 3.7, then P, and
Q. are:
(i). if sequence size n is even, then k =2,3,..n/2 and
2 2
n/2p1—1 . .
pd || wtmem | YRR wllkeia) w(lk—i]) w(lk=n/2- 1)
v a(prHl) _ (1) (i) o(n/2Zhe1)
w(0)+2 > w(h) =t L w(0)+2 > w(h)  w(0)+2 Y w(h) w(0)+42 w(h)
h=1 h=1 h=1 h=1
2 2
p1 | n/2ter . n/2p1—1 | n/2+p1 . .
1 w(lk—jl) = w(lk—jl) w(|k—if)
Qu= Z Z 05%2 a(y) + Z Z Cj’ﬂ%? a(y) a(i)
S w2 Sy | e (T w2 Y wh) w042 3 w(h)
h=1 h=1 h=1
2
| w21
a(n/2+e1)
w(0)+2 > w(h)
h=1

https://mc03.manuscriptcentral.com/jssc
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(ii). if sequence size n is odd, then k =2,3,...(n+1)/2 and

2 2
(n41) /24po—1 . .
p L w(lk—p1—1|) . wlk—i-1l)  w(k=i)
D) a(pitl) ) a(iHl) (i)
w2 8wy | e w2 S e w(0)+2 Y wh)
h=1 h=1 h=1

w(lk—(n+1)/2—¢s|)

* a((ntl) /2+p2) ’
w(0)+2 > w(h)
h=1
1
- - (31)
P o R e (| I R (L CRRVVS2Y)
RE . 2 a() () /22)
i=L | et w(0)+2 Y w(h) w0)+2 > w(h)
h=1 h=1
2
(nH1) /2Hoo—1 [ (1) /242 \ .
j-1 w(|k—jl) w([k—il)
> 2 O oy T i)
e | o= w(0)+2 3 w(h) w(0)+2 3 w(h)
h=1 h=1
Proof The proof is similar to that of Theorem 3.7 and we omit the details here. |

Theorem 4.7 If raw data disturbance occurs in the second half of the original sequence,
excluding the last point, let p3 and p, be the same as those defined in Theorem 3.8, then
the difference between T, and T, satisfies expression (27), where parameters P, and @, are
determined by

(). if sequence size n is even, then k =n/2+1,n/2+2,..n—1 and

2 2
n—pq—1 . .
1 w(|k+ps—n/2-1]) < w(|k—i—1]) w(|k—il)
Po=; a(n/2H—pn) + > o) o)
w(0)+2 > w(h) i=n/2H—a | w(0)+2 Y. w(h) w(0)+2 > w(h)
h=1 h=1 h=1 (32)
2
w(|k+ps—nl)
a(n—pa) ’
w(0)+2 > w(h)
h=1

https://mc03.manuscriptcentral.com/jssc
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2 2
n/2—p4 n—p4 1
_ i w(lk=jl]) w(|k+pa—n)
Qv - Z Z CJ]—Z’-’—Q a(j) + a(n—pq)
S e w2 Y ey | w2 S wih)
h=1 h=1

2

n—pa—1 n—p4 . .
n i i o1 w(|k—jl) + w(|k—il)

_ L e a() a)
i=n/2Hpy | =it w(0)+2 3" w(h) w(0)+2 Y w(h)
h=1 h=1

(7). if sequence size n is odd, then k= (n+1)/2+1,(n+1)/24+2,..n—1 and

2 2
n —1 . .
p 1t w([k+ps—(n+1)2)) n _"2 w(|k—i—1]) w(|k—i)
v a((mtl)/2~p3) 4 a(itl) ali)
w0 +2 S wh) | =2 | w(0)+2 3 wh) w(0)+2 S w(h)
h=1 h=1 h=1
2
+ w(|k+ps—n])
a(n—pa) ’
w(0)+2 hz_:l w(h)
- - (33)
(n—1)/2~p3 n—p4 :
_ -1 w(|k—j) w(|k+pa—n|)
@o= Z Z i a(y) + a(n—pa)
i=1 j=(nt1)/2-p3 w(0)4+2 S w(h) w(0)+2 > w(h)
h=1 h=1

2

—1 (2 . .
"_i i o w(|k—j]) 4 w(|k—i|)
P2 a(y) a(d)

= /2 | (0) 42 Y w(h) w(0) 42 3 w(h)
h=1 h=1

Proof The proof is similar to that of Theorem 3.8 and we omit the details here. |

Theorem 4.8 If disturbance occurs in the last data of the original sequence: EE(O)(n) =
2O (n) + ¢, then the difference between 7, and T, satisfies expression (27) with the following

values of parameters P, and Q,:

https://mc03.manuscriptcentral.com/jssc
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(i). if sequence size n is even, then

2 n—1 . .
1 2—-1 —i—1 —
P,k R R S [t RS e S
2 w0 +2 555 w(n) ) @

=n/2 0\ w(0)+2 > w(h) w(0)+2 > w(h)
h=1 h=1
(34)
2 2
& - -1 w(n—j) 3 w(n—i) ~ w(n—j)
Q=2 | 2 e a(g) 2 w2 O a()
=1\ j=n/211 w(0)+2 > w(h) =n/2H | p(0)+2 S w(h) T w(0)4+2 > w(h)
h=1 h=1 h=1
(i1). if sequence size n is odd, then
2 2
1 w((n—1)/2) L w(n—i—1) w(n—i)
P,= : - y
5 a((7)/2) > ag )
w(0)+2 > w(h) =t)/2 | w(0)+2 Y w(h) w(0)+2 > w(h)
h=1 h=1 h=1
(35)
2
2
N N e wd) w(n—i) N w(n)
QU— Z Z J-*Ik2w(0)+2 Za(j) w(h) + Z (i) + Z Jp—2 a(g)
=1 \j=(ntl)/2 h=1 =) /2 | w(0)+2 > w(h) I w(0)+2 > w(h)
h=1 h=1
Proof The proof is similar to that of Theorem 3.9 and we omit the details here. |

5 Numerical performance of operator D, in improving model stability
5.1 Numerical study on model DGMP(1,1)

To evaluate the effect of the fractional bidirectional weakening buffer operator D, in im-
proving stability of model DGMP(1,1), we consider a real case presented in [18]. This example
predicts the annual cargo turnover in Jiangsu, one big coastal province in China. The original

data are shown in Table 1 and the forecasting values of four compared models are presented in
Table 2.

Table 1 The original data of the annual cargo turnover used in [18]. (unit: 100 million ton-km)

Modeling period Forecasting period
2003 2004 2005 2006 2007 2008 2009
Freight Ton-Kilometers 1817.44 2398.13 3068.3 3644.14 4098.42 4707.5 5154.46
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Table 2 The forecasting results of four different models.

DGMY? (1,1)*

D,+DGMY? (1,1)

DGM?3 (1,1)*

D,+DGM?3 (1,1)

Freight Ton-Kilometers(2009)

MAPE(%)

5236.45
1.59

5238.69

1.63

5303.33
2.89

5305.58
2.93

* values obtained from [18].

Table 2 reveals that forecasting results of the DGMP(1,1) model with data preprocessing

based on D,(v = 0.02) are very close to those without D,, which means the validity of the

predicted values is kept.

Then data noise interferences with different noise amplitudes (range from —10% to 10%

of the original value) are studied. The effectiveness of operator D, on prediction model is

evaluated via the variation of predicted values (VP) with and without noise interference. Let

yo(i)(i = 1,...n) be the predicted value based on the original modeling data without noise

interference and y;(7)(¢ = 1,...n) be the predicted value with data noise, then we define
VP =" |yi(i) — yo(i)|)/n and AVP=VP(DGMP?(1,1))-VP(D,+DGMP?(1,1)). If AVP
falls into the positive domain, it means D, improves the stability of model DGMP(1,1). Results

are shown in Table 3.

Table 3 The AV P values of DGMP(1,1) in the first noise scenario.

Model Noise Noise amplitude
parameter parameter —10% —8% —6% —4% —2% 2% 4% 6% 8% 10%

p=20.5 2003 2.6628 2.1243 1.5884 1.0552 0.5247 0.5285 1.0513 1.5715 2.0892 2.6044
2004 1.7216 1.5510 1.2953 0.9532 0.5230 0.6081 1.3126 2.1123 3.0087 4.0037
2005 0.7736  0.9582 0.9699 0.8125 0.4891 0.6420 1.4430 2.3964 3.4982 4.7444
2006 0.2291 0.6812 0.8729 0.8164 0.5230 0.7329 1.6756 2.8156 4.1435 5.6502
2007 12.6333 9.5106 6.7037 4.1937 1.9632 1.7191 3.1968 4.4470 5.4795 6.3032
2008 -3.4280 -2.7186 -2.0199 -1.3334 -0.6607 -0.6377 -1.2610 -1.8653 -2.4499 -3.0140

p=2/3 2003 2.8174 2.2531 1.6890 1.1250 0.5612 0.5660 1.1295 1.6928 2.2561 2.8194
2004 2.7897 2.3443 1.8434 1.2866 0.6732 0.7262 1.5134 2.3598 3.2661 4.2327
2005 1.5322 1.4354 1.2316 0.9234 0.5129 0.6054 1.3085 2.1042 2.9900 3.9635
2006 0.6858 0.8631 0.8772 0.7345 0.4410 0.5755 1.2875 2.1284 3.0930 4.1764
2007 12.5607 9.6861 6.9995 4.4937 2.1617 2.0047 3.8503 5.5440 7.0902 8.4931
2008 -4.5834 -3.6746 -2.7613 -1.8443 -0.9244 -0.9208 -1.8446 -2.7685 -3.6919 -4.6142
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It shows that operator D, improves the stability of prediction performance in most noise
samples, except for noises added on the last modeling point (year 2008). Variations of predicted
values increase with increasing noise amplitudes, but data preprocessing based on D,, effectively
reduce the noise effect on prediction results. Though D, fails when noise occurs in the last

modeling point, data interference occurs in other points are well controlled.

5.2 Numerical study on model NIGM (p,1)

We now consider the effect of operator D, (v = 0.06) in improving the stability of model

19, The forecasting

NIGM(p,1) in forecasting the annual electricity consumption in Russial
results of four compared models without data noise interference are shown in Table 4. It is clear
that operator D, improves the short-term (2004-2005) forecasting of NIGM (p,1). Though
its long-term (2006-2007) prediction performance is worse than those from NIGM (p,1), its

prediction accuracy is still acceptable and higher than models DGM (1,1) and GM(0.98,1).

Table 4 The forecasting results of NIGM (p,1) models with and without operator D,.

Modeling period Forecasting period

2000 2001 2002 2003 2004 2005 2006 2007

Actual value 52333 53151 53168 54372 55516 55898 58600 60281
DGM(1,1)* 52333 52953 53561 54176 54798 55428 56065 56709
GM(0.98,1)" 52333 53704 54858 55849 56704 57445 58087 58645

NIGM(0.997,1)" 52333 52627 53051 53666 54559 55855 57736 60464
D, + NIGM(0.997,1) 52333 52701 53193 53854 54742 55934 57534 59684

* values obtained from [19].

Applying the indicator V P defined in Section 5.1, the difference between NIGM (p, 1) with
and without D, can be expressed by AVP=VP(NIGM (p,1))—VP(D,+NIGM(p,1)). Table
5 shows AV P results in different noise amplitude scenarios. We can see that, when data
disturbance occurs in early modeling period (2000 or 2001 in this case), operator D, improves
the stability of prediction results in all thirty noise amplitude conditions. When noise occurs
in the later modeling time point 2002 (or 2003), prediction without D, outperforms that with
D, in only four (or five) out of thirty noise perturbations. These confirm the effectiveness of
operator D, in improving the stability of prediction model NIGM (p,1).

Numerical cases in this section demonstrate that the fractional bidirectional weakening
buffer operator D, reduces the one-sided reaction to sample disturbances, and on the other
hand it can effectively improve the stability of time series prediction models by taking into

account both the old and the new information.
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Table 5 The AV P values of NIGM (p, 1) in the first noise scenario.

Noise Noise amplitude(%)
position -0.03 -0.028 -0.026 -0.024 -0.022 -0.020 -0.018 -0.016 -0.014 -0.012
2000 26.90 36.95 46.95 56.91 66.82 76.69 86.51 96.28 106.00  115.66
2001 162.80 163.51 164.21 164.91 165.59 166.27 166.94 167.60 168.25  168.89
2002 143.20 144.05 145.33 148.15 150.84 153.40 155.83 158.14 160.33  162.40
2003 -85.52  -68.22  -50.94 -33.66 -16.40 0.85 18.09 35.31 52.52 69.71
-0.010 -0.008 -0.006 -0.004 -0.002 0.002 0.004 0.006 0.008 0.010
2000 125.28 134.84 144.35 153.80 163.20 170.73  168.87 166.94 164.95 162.89
2001 169.52 170.14 170.75 171.35 171.95 162.74 15294 143.13 133.30 123.47
2002 164.36  166.21  167.94 169.58 171.10 158.24 143.88 129.45 114.96 100.40
2003 86.89 104.05 121.19 138.32 155.44  172.27 17198 171.66 171.31 170.94
0.012 0.014 0.016 0.018 0.020 0.022 0.024 0.026 0.028 0.030
2000 160.77  158.57 156.31  153.98 151.58  149.10 146.55 143.93 141.23 138.45
2001 113.62  103.76 93.89 84.01 74.12 64.21 54.29 44.37 34.42 24.47
2002 85.78 71.10 56.37 41.58 26.74 11.86 -3.07 -18.04 -33.06 -43.95
2003 170.53  170.10 169.64 169.15 168.63 168.08 167.50 166.89 166.24  165.57

6 Conclusions

The performance of sequence operators in the stability of operator-based time series models
has a direct impact on the validity of model findings. Without a specific requirement for a par-
ticular part of information in a series object, all data elements in this series should be treated
equally. However, some widely used weakening buffer operators are too subjectively biased in
dealing with samples and sample disturbances. In contrast, the fractional bidirectional weaken-
ing buffer operator D, presents a more objective approach in data processing. Both theoretical
investigations and numerical experiments based on real cases show a favorable effectiveness of

the operator D, in improving the stability of time series models. Other features of the operator

and their effects in time series models worth further studies.
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APPENDIX

In this appendix, we provide the proof of error bound theorems in DGMP?(1,1) model.

A.1 Proof of Theorem 3.7

proof (i). Sequence size n is even and k = 2,3, ...,n/2. According to the proposed operator D,

sequences with and without disturbance applied to DGMP(1,1) satisfy:

xo(2), when 1<i<p; or n/24+¢1<i<n
511(1) = . ew(li—k|) . (Al)
Ty (2 —"0  _— when <1 <n/2+
+@ (w@+2 527 w(y) pr<isn/2te
Then we can obtain:
0 0
0 0
0 w(lk—¢p1—1|)e
a(p1tl)
w(0)+2 }; w(h)
1_ w(k—p1—-1))e w(lk—p1—2|)e
0 Cp 04(9911+1) + a(v’11+2)
w042 > wh) w042 > w(h)
h=1 h=1
AB, =
n/2—1 w(lk—¢p1—1])e n/2-2 w(lk—p1—2|)e . w(lk—p1—n/2|)e
0 CW/H a(prtl) + CW/%S a(p1+2) + a(n/2+e1)
w(0)+2 ; w(h) w(0)+2 ; w(h) w(0)+2 ; w(h)
m/2 w(lk—p1—1|)e n/2-1 w(lk—p1—2|)e Ll w(k—p1—n/2|)e

0 CW/%I a(pi+l) +C 2-2 a(p1+2) + CP a(n/2+e1)

w(0)+2 > w(h) w(0)+2 > w(h) w(0)+2 ¥ w(h)

h=1 h=1 h=1
n—p1—2 w(lk—p1—1]e n—p1—3 w(lk—p1—2|)e n/2—p1—1 w(lk—p1—n/2|)e
0 Cpleis a<¢11+1> + Cotnor a(sollﬁ) T Cpm/zﬂpﬁ a(nl/wl)
w(0)+2 h;1 w(h) w(0)+2 ’21 w(h) w(0)+2 ’21 w(h)
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0
0
w(lk—p1—1|)e
a(eg+l)
w(0)+2 };1 w(h)
1 w(k—¢p1—1])e w(lk—¢1—2|)e
CP a(eg+l) + a(p1+2)
w(0)+2 ’g w(h) w(0)42 ’g w(h)
AY, =
/21 w(lk—pi—1))e n/22 _ w(lk-g1-2De . w(k-g1-n/2])e
C’P‘Pﬂ/?—2 a(pgtl) + CP-PR/Q—3 a(p1+2) + a(n/2+p1)
w(0)+2 };1 w(h) w(0)+2 };1 w(h) w(0)+2 };1 w(h)
n/2 w(lk—p1—1))e n/21  w(lk—p1—2])e e w(lk—p1—n/2])e
Cp+n/2fl a(pH) +C 2-2 a(p1+2) + CP a(n/2+p1)
w(0)+2 ; w(h) w(0)+2 ; w(h) w(0)+2 ; w(h)
np1-l _ w(lk—p1—1]e np1-2 _ w(lk—g1—2])e /2 w(lk—p1—n/2])e
CPWWI*Q a(p1tl) + CWWI%S a(p1+2) + CP‘F‘"/?ﬂPlfl a(n/2te1)
w(0)+42 hgl w(h) w(0)+2 hgl w(h) w(0)+2 hgl w(h)

Then calculate matrix norm ||AB,||2and vector norm ||AY, ||, extract parameter € and apply Lemma
3.1, parameter expressions in equation (15) are obtained.

(ii). Sequence size n is odd and k = 2,3,...,(n + 1)/2. According to the fractional bidirectional
weakening buffer operator D,, sequences with and without disturbance applied to DGMP(1, 1) satisfy:

o xo(2), when 1<i<yp; or (n+1)/24+p2<i1<n
Ty (i) = (i) cw(|i—k|)

=) when <i<(n4+1)/2+
(w(0)+2 Zjil) w(j)) w1 ( )/ ®2

Then we can obtain:

0 0

0 0
w(lk—p1—1])e

0 Dt(wlfrl)

w(0)+2 > w(h)

h=1

w(lk—pa—(n+1)/2|)e

w(lk—pa—(n+1)/2|)e

w(|k—p2—(n+1)/2])e

1_ w(k—p1—-1])e w(lk—¢p1—2|)e
0 Cp alprt) + alert?)
w(0)+2 }21 w(h) w(0)+2 ’gl w(h)
AB, =
(ntl) /2+po—p1-1 w(lk—p1—1|)e (ntHl) / 2+po—p1—2 w(lk—p1—2|)e .
0 Cotntt) /20012 cer T Cpiinbl) /31013 oo T
w(0)+2 };1 w(h) w(0)+2 };1 w(h) w(0)42
(nHl) /2+p2—p1 w(lk—p1—1|)e (nHl)/ 2+po—p1—1 w(lk—p1—2|)e el
0 CpHn+)/2+<P2ﬂﬁ1*1 a(pyH) +CP+(”+1)/2+<P2ﬂpr2 a(p1+2) + CP
w(O+2 Y w(h) w(O)+2 Y w(h) w(0)+2
h=1 h=1
n—p1—2 w(lk—p1—1|)e n—p1—3 w(lk—p1—-2|)e (n—1)/2—~p2—1
0 CW;PI,:,, a(pr+l) + Cp+ﬂj~m4 a<¢11+2) +oe Cp+(n71)/24<p272
w(0)+2 3 w(h) w(0)+2 3 w(h) w(0)+
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oNOYTULT D WN =

13 0
14 w(lk—p1—1])e
a(pytl)
15 w2 % wh)
16 1 w(k—g1-1De . _ w(lk—g1-2])e
17 Cp a(pytl) + o (p142)
w2 8w w2 5w

18 h=1 h=
AY, :

20 C(n+1)/2+902—</’1—1 w(|lk—e1—1]e + C(n+1)/2+902—<(>1—2 w(|k—p1—2])e 4o w(|k—p2—(n+1)/2])e
21 pHnHL) /2Hp2—p1—2 alei+l) pHnH) /2Hp2—p1-3 ale1+2) a((ntl) /2+e2)
w(0)+2 21 w(h) w(0)+2 hzl w(h) w(0)+2 hzl w(h)
h= = =

Ot/ 2o w(lk—p1—1|)e + O/ 2er—p1-1 w(lk—p1—-2))e +...C1 w(lk—pa—(n+1)/2|)e
23 pHntL) /2Hpo—p1—1 a(prtl) pHtL) /2+po—p1—2 a(p1+2) P a((ntl) /2+e2)
w(0)+2 hg:l w(h) w(0)+2 hgl w(h) w(0)+2 hgl w(h)

ol w(lk—p1—1|)e 4 o2 w(lk—¢p1—2|)e 4. C("*U/2ﬂﬁ2 w(lk—pa—(n+1)/2|)e
27 pn—p1—2 a(piHl) ptn—p1—3 a(p1+2) pHn—1)/2—pa—1 a((ntl)/2+p2)
w(0)+2 3 w(h) w(0)+2 > w(h) w(0)+2 > w(h)

28 L h=1 h=1 h=1

29 Then calculate matrix norm |[|[AB,||2 and vector norm [|AY,]||, extract parameter ¢ and apply

Lemma 3.1, parameter expressions in equation (16) are obtained. The proof of Theorem 3.7 is now
complete. |

34 A.2 Proof of Theorem 3.8

proof (i). Sequence size n is even and k = n/2 + 1,n/2 + 2,...,n — 1. According to the frac-
tional bidirectional weakening buffer operator D,, sequences with and without disturbance applied to
DGMP(1,1) satisfy:

40 Ty (i), when 1<i<n/24+1—¢ps or n+l—gpa<i<n
Ty (i) = cw(|i—k|)

N ew(ick) Cwon < B
41 2o (i) + (@250 w0 when n/24+1—@ps<i<n+1-—¢s
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Then we can obtain:
0 0
0 0
0 w(lk+es—n/2—1))e
a(n/2H—py)
w(0)+2 };1 w(h)
| w(lktps—n/2—1])e w(lktea—n/2—2])e
0 CP a(n/2H1—py) + a(n/242—py)
w2 X W) w©+2 X wh)
AB, =
n/2—1 w(|k+pa—n/2—1])e n/2-2 w(|lk+pa—n/2—2|)e w(lk+ps—nl)e
0 pr/%Q a(n/2H—py4) + Cm—kn/%ii a(n/22—p4) + a(n—py4)
w(0)+2 hg:l w(h w(0)+2 hgl w(h) w(0)+2 hgl w(h)
n/2 w(|k+pa—n/2—1])e n/2-1 w(|k+pa—n/2-2|)e sl w(|lk+ps—nle
0 CPJF"E/Q*1 a(n/2H—py) + CP‘F”/Q*Z a(n/242—pyq) + Cp a(n—p4)
w(0)+2 > w(h) w(0)+2 > w(h) w(0)+2 3 w(h)
h=1 h=1 h=1
n/2+ps—2 w(lk+pa—n/2-1|)e n/2+pa—3 w(lk+ea—n/2-2|)e L el w(|k+ea—n|)e
0 CPJr‘n/Q‘HP4*3 a(n/2H—py4) + CPW/2+¢441 a(n/22—p4) + CW4—2 a(n—py4)
w2 D w25 wh) w2 ¥ wh)
0
0
w(lk+os—n/2-1])e
a(n/2tl—py)
w(0)+2 ’;1 w(h)
1 w(lktpa—n/2—1])e w(lktos—n/2-20)e
CP a(n/2H—pg) + a(n/22—pq)
w(0)+2 > w(h)  w(0)+2 > w(h)
h=1 h=1
AY, =
n/2-1 _ w(lktes—n/2-1])e n/22 _ w(lktea—n/2-2De | w(lktea—n)e
CVP‘*“’l/z—2 a(n/2H1—py4) + CP+”L/2—3 a(n/242—p4) + a(n—pyq)
w(0)+2 ; w(h) w(0)+2 ; w(h) w(0)+2 ; w(h)
n/2 _ w(lktes—n/2-1])e /21 w(ktes—n/2-2De o1 w(lktea—nle
Cp+”l/2—1 a(n/24l—py) + CP‘HL/Q—Q a(n/242—pq) + Cp a(n—pyq)
w(0)+2 }; w(h) w(0)+2 }; w(h) w(0)+2 }; w(h)
/%ol w(lbtea—n/2-1])e /202 w(ktea—n/2-2Dc | s w(lktpa—nl)e
CW/Q‘W4—2 a(n/2Hl—py) + CP"‘”/2+‘P4—3 a(n/2H2—py) + CP+<P4*1 a(n—py)
w(0)+2 ; w(h) w(0)+2 ; w(h) w(0)+2 ; w(h)

Then calculate matrix norm |[|[AB,||2 and vector norm [|AY,]||, extract parameter ¢ and apply

Lemma 3.1, parameter expressions in equation (17) are obtained.
(ii). Sequence size n is odd and k = (n +1)/2+1,(n+1)/2+ 2,...,n — 1. Based on operator D,
sequences with and without disturbance applied to DGMP(1,1) satisfy:

when 1<i<(n+1)/2—¢3 or
(n+1)/2—¢3§i<n+1—§04

cw(]i—k|)

(wO+2551) wn)’

when
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Then we can obtain:

0 0
0 0
0 w(lktes—(nt1)/2])e
a((ntl) /2—p3)
w(0)+2 ’gl w(h)
1_ w(lk+pz—(n+1)/2])e w(lk+ps—(n+3)/2|)e
0 Cp a((ntl) /2—p3) + a((nt3) /2—p3)
w(0)+2 ; w(h) w(0)+2 ; w(h)
AB, =
0 CmD/2eames _wlktes—(nt)/2e | o) /2eamps _wlktoa—(nt3)/2De | w(lktea—n]e
pHn—3)/2+p3—pa a((n+l)/2—p3) PHN—5)/2+p3—pa a((n3)/2—p3) a(n—pq)
w(0)+2 hgl w(h) w(0)+2 hgl w(h) w(0)+2 hgl w(h)
0 CH/2vnes _wllbtes—(nt1/2De | o(nD)/2va—es _wllbtes—(nt3)/2De | ol _wlktes—nl)e
pHn—1)/2+p03—p4 a((ntl)/2—p3) pHn—3)/2+p3—pa a((nt3) /2—p3) p a(n—pq)
w(0)+2 > w(h) w(0)+2 ) w(h) w(0)+2 3 w(h)
h=1 h=1 h=1
(n=3)/2+p3 w(lk+es—(n+1)/2|)e (n=5)/2+p3 w(lk+e3—(n+3)/2|)e L el w(lk+@s—n|)e
0 CPH”*5)/2+<P3 a((ntl)/2—p3) +CP+<"*7)/2+SP3 a((nt+3)/2—p3) + CPH"M—? a(n—=py)
w(0)+2 Xj w(h) w(0)+2 ; w(h) w(0)+2 Xj w(h)
0
0
w(lk+eps—(n+1)/2|)e
a((ntl)/2—p3)
w2 3w
) _w(ktes—(nt1)/2))e w(lk+p3—(n+3)/2|)e
p a((ntl) /2—p3) a((nt3) /2—p3)
w(0)+2 > w(h)  w(0)+2 > w(h)
h= h=1
AY, =
CD/3pa—ps _w(ltes—(ntD/2De | o)/Brosps _w(leg—(nt3)/2De | w(ktes-nDe
pHnN—=3)/2+p3—pa a((ntl)/2—¢3) pHnN—5)/2+Hp3—pa a((nt3)/2-¢3) a(n—py4)
w(0)+2 hgl w(h) w(0)+2 };1 w(h) w(0)+2 };1 w(h)
C(n+1)/2+<f>3—804 w(lk+pz—(n+1)/2))e + C(n—l)/2+¢3—<ﬂ4 w(lk+p3—(n+3)/2|)e +...¢C! w(lk+pa—nl|)e
pHn—1)/2Hp3—py a((ntl)/2—p3) pHn—3)/2+p3—p4 a((nt3)/2—e3) P a(n—pq)
w(0)+2 };1 w(h) w(0)+2 };1 w(h) w(0)+2 }; w(h)
C(n—l)/2+<P3 w(lk+pz—(n+1)/2))e + C("—3)/2+<P3 w(lk+pz—(n+3)/2))e 4O w(lk+ps—nl|)e
pH(n=3)/2+p3 a((ntl)/2—3) pHn=5)/2tp3 a((nt3)/2—p3) pHpa—1 a(n—py)
w(0)+2 ; w w(0)+2 ; w(h) w(0)+2 ; w(h)

Then calculate matrix norm |[|[AB,||2 and vector norm [|AY,]||, extract parameter ¢ and apply
Lemma 3.1, parameter expressions in equation (18) are obtained.

The proof of Theorem 3.8 is now complete. |
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A.3 Proof of Theorem 3.9

proof (i). When sequence size n is even, according to the logic of DGMP(1,1), we have :

0 0
0 0
w(n/2—1)e
0 a(n/2H)
AB. — w(0)+2 hgl w(h)
v = =
1 w(n/2—1)e w(n/2—2)e
0 CP «(n/2H) a(n/2+2)
w(0)42 }; w(h) w(0)+2 }; w(h)
n/2-2 w(n/2—1)e n/2-3 w(n/2—2)e w(l)e
0 Cpm/z—s a(n/2H + Cp-m/2—4 a(n/242) +o a(n1)
w(0)+2 ; w(h) w(0)+2 }; w(h) w(0)+2 }; w(h)
0
0
w(n/2—1)e
a(n/2+1)
AY. — w(0)42 };1 w(h)
N 1 w(n/2—1)e w(n/2—2)e
Cp a(n/2+1 + a(n/242)
w(0)+2 > w(h) w(0)+2 > w(h)
h=1 h=1
n/2-1 w(n/2—1)e n/2-2 w(n/2—2)e > w(0)e
Cp+n/272 a(n/2+1) + Cp+‘n/273 a(n/24+2) + a(n)
w(0)+2 hg:l w(h) w(0)+2 hgl w(h) w(0)+2 hgl w(h)

Then calculate matrix norm |[|[AB,||2 and vector norm [|AY,]||, extract parameter ¢ and apply

Lemma 3.1, parameter expressions in equation (19) are obtained.

(ii). When sequence size n is odd, we can obtain:

w(l)e

0 0
0 0
0 w((n—1)/2)e
(0)+20¢((n§)/2) )
ABv: h=1
1 w((n—1)/2)e w((n—3)/2)e
0 Cp a((ntl)/2) + a((nt3)/2)
wO+2 X wh)  wO+2 % wh)
(n—3)/2 w((n—=1)/2)e (n—5)/2 w((n—=3)/2)e
0 Cp+(n~5)/2 a((ntl)/2) + Cp+(n77)/2 a((nt3)/2)
w(0)+2 > w(h) w(0)+2 > w(h)
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oNOYTULT D WN =

1 0

12 w((n—1)/2)
13 w(0)+2 a((ng)/mw(h)
14 AY, = h=1
1 w((n—1)/2)e w((n—3)/2)e
15 Cp a((nt1)/2) + a((nt3)/2)
w(0)+2 hgl w(h) w(0)+2 hgl w

(h)

C(n—l)/2 w((n—1)/2)e + C(n—B)/2 w((n—3)/2)e N w(0)e

19 pHn-3)/2 a((ntl)/2) pHn—5)/2 a((nt3)/2) a(n)
w(0)+2 > w(h) w(0)+2 > w(h) w(0)+2 Y w(h)

20 L h=1 h=1 h=1 d

21 Then calculate matrix norm |[|[ABy||2 and vector norm [|AY,]||, extract parameter ¢ and apply

22 Lemma 3.1, parameter expressions in equation (20) are obtained.
23 The proof of Theorem 3.9 is now complete. |
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