Towards Semantic Segmentation Using Ratio Unpooling

Date

2020-09

Advisors

Journal Title

Journal ISSN

ISSN

2194-5357

DOI

Volume Title

Publisher

Springer

Type

Conference

Peer reviewed

Yes

Abstract

This paper presents the concept of Ratio Unpooling as a means of improving the performance of an Encoder-Decoder Convolutional Neural Network (CNN) when applied to Semantic Segmentation. Ratio Unpooling allows for 4 times the amount of positional information to be carried through the network resulting in more precise border definition and more resilient handling of unusual conditions such as heavy shadows when compared to Switch Unpooling. Applied here as a proof-of-concept to a simple implementation of SegNet which has been retrained on a cropped and resized version of the CityScapes Dataset, Ratio Unpooling increases the Mean Intersection over Union (IoU) performance by around 5-6% on both the KITTI and modifi ed Cityscapes datasets, a greater gain than by applying Monte Carlo Dropout at a fraction of the cost.

Description

The file attached to this record is the author's final peer reviewed version.

Keywords

Semantic Segmentation, Ratio Unpooling, KITTI, CityScapes, Fully Convolutional Networks, Encoder-Decoder

Citation

Boland, D. and Malekmohamadi, H. (2020) Towards Semantic Segmentation Using Ratio Unpooling. Intelligent Systems Conference (IntelliSys 2020) , Amsterdam, September 2020.

Rights

Research Institute

Institute of Artificial Intelligence (IAI)