Water Advisory Demand Evaluation and Resource Toolkit

dc.cclicenceCC-BY-NCen
dc.contributor.authorIliya, S.en
dc.contributor.authorPaluszczyszyn, D.en
dc.contributor.authorGoodyer, E.en
dc.contributor.authorKubrycht, T.en
dc.date.acceptance2017-07-24en
dc.date.accessioned2017-09-06T13:09:11Z
dc.date.available2017-09-06T13:09:11Z
dc.date.issued2017-09-04
dc.description.abstractThe purpose of this feasibility study is to determine if the application of computational intelligence can be used to analyse the apparently unrelated data sources (social media, grid usage, traffic/transportation and weather) to produce credible predictions for water demand. For this purpose the artificial neural networks were employed to demonstrate on datasets localised to Leicester city in United Kingdom that viable predictions can be obtained with use of data derived from the expanding Internet-of-Things ecosystem. The outcomes from the initial study are promising as the water demand can be predicted with accuracy of 0.346 m3 in terms of root mean square error.en
dc.funderInnovate UKen
dc.identifier.citationPaluszczyszyn, D., Iliya, S., Goodyer, E. and Kubrycht, T. (2017) Water Advisory Demand Evaluation and Resource Toolkit. CCWI2017, 2017en
dc.identifier.doihttps://doi.org/10.15131/shef.data.5364553.v1
dc.identifier.urihttp://hdl.handle.net/2086/14467
dc.language.isoenen
dc.peerreviewedNoen
dc.projectidWADERen
dc.researchgroupDIGITSen
dc.researchinstituteInstitute of Artificial Intelligence (IAI)en
dc.subjectwater demanden
dc.subjectpredictionen
dc.subjectcomputational intelligenceen
dc.titleWater Advisory Demand Evaluation and Resource Toolkiten
dc.typeConferenceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F58FinalPaperCCWI.pdf
Size:
119.44 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.2 KB
Format:
Item-specific license agreed upon to submission
Description: