A Hybrid Approach to Sentiment Analysis with Benchmarking Results
dc.cclicence | CC-BY-NC | en |
dc.contributor.author | Appel, Orestes | en |
dc.contributor.author | Chiclana, Francisco | en |
dc.contributor.author | Carter, Jenny | en |
dc.contributor.author | Fujita, Hamido | en |
dc.date.accessioned | 2016-04-11T15:01:15Z | |
dc.date.available | 2016-04-11T15:01:15Z | |
dc.date.issued | 2016 | |
dc.description.abstract | The objective of this article is two-fold. Firstly, a hybrid approach to Sentiment Analysis encompassing the use of Semantic Rules, Fuzzy Sets and an enriched Sentiment Lexicon, improved with the support of SentiWordNet is described. Secondly, the proposed hybrid method is compared against two well established Supervised Learning techniques, Naïve Bayes and Maximum Entropy. Using the well known and publicly available Movie Review Dataset, the proposed hybrid system achieved higher accuracy and precision than Naïve Bayes (NB) and Maximum Entropy (ME). | en |
dc.funder | NA | en |
dc.identifier.citation | Appel, O. et al. (2016) A Hybrid Approach to Sentiment Analysis with Benchmarking Results. Accepted for presentation at IEA/AIE-2016. | en |
dc.identifier.uri | http://hdl.handle.net/2086/11859 | |
dc.language.iso | en | en |
dc.peerreviewed | Yes | en |
dc.projectid | NA | en |
dc.publisher | Springer | en |
dc.researchgroup | Centre for Computational Intelligence | en |
dc.researchinstitute | Institute of Artificial Intelligence (IAI) | en |
dc.subject | Sentiment Analysis | en |
dc.subject | Fuzzy Sets | en |
dc.subject | Semantic Rules | en |
dc.subject | Natural Language Processing | en |
dc.subject | Computational Linguistic | en |
dc.subject | SentiWordNet | en |
dc.title | A Hybrid Approach to Sentiment Analysis with Benchmarking Results | en |
dc.type | Conference | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 33.pdf
- Size:
- 332.49 KB
- Format:
- Adobe Portable Document Format
- Description:
- Authors' copy of the final accepted paper.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.2 KB
- Format:
- Item-specific license agreed upon to submission
- Description: