Integrated benchmark simulation model of an immersed membrane bioreactor
Date
Authors
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
This paper presents a new integrated model of an immersed membrane bioreactor (iMBR)for wastewater treatment. The model is constructed out of three previously published sub-models describing the bioreactor, the membrane, and the interface between them. Thebioreactor submodel extends a conventional activated sludge model with soluble and boundbiopolymers which have been found to cause irreversible and reversible fouling. The mem-brane model describes fouling as a function of biopolymer concentrations, permeate flow,and shear stresses on the membrane surface. The interface describes the dependency ofoxygen transfer rate on suspended solids concentrations and calculates shear stresses onthe membrane surface from air-scour rates. The paper serves three purposes. First, the inte-grated model is simulated on a plant layout of a previously published MBR benchmark modelwhich did not consider any interactions between the submodels. Hence, this paper presentsa new and upgraded MBR benchmark model. Secondly, the simulation results showcase howsimulations with an integrated model can be used to optimise plant performance and min-imise energy consumption. Finally, the paper introduces new measures of fouling whichcan be used for benchmarking different MBR plant layouts and control strategies.