Browsing by Author "Wang, Zhu"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Augmented sparse representation for incomplete multiview clustering(IEEE, 2022-09-07) Chen, Jie; Yang, Shengxiang; Peng, Xi; Peng, Dezhong; Wang, ZhuIncomplete multiview data are collected from multiple sources or characterized by multiple modalities, where the features of some samples or some views may be missing. Incomplete multiview clustering aims to partition the data into different groups by taking full advantage of the complementary information from multiple incomplete views. Most existing methods based on matrix factorization or subspace learning attempt to recover the missing views or perform imputation of the missing features to improve clustering performance. However, this problem is intractable due to a lack of prior knowledge, e.g., label information or data distribution, especially when the missing views or features are completely damaged. In this paper, we proposed an augmented sparse representation (ASR) method for incomplete multiview clustering. We first introduce a discriminative sparse representation learning (DSRL) model, which learns the sparse representations of multiple views as applied to measure the similarity of the existing features. The DSRL model explores complementary and consistent information by integrating the sparse regularization item and a consensus regularization item, respectively. Simultaneously, it learns a discriminative dictionary from the original samples. The sparsity constrained optimization problem in the DSRL model can be efficiently solved by the alternating direction method of multipliers. Then, we present a similarity fusion scheme, namely, a sparsity augmented fusion of sparse representations, to obtain a sparsity augmented similarity matrix across different views for spectral clustering. Experimental results on several datasets demonstrate the effectiveness of the proposed ASR method for incomplete multiview clustering.Item Open Access Efficient sparse representation for learning in high-dimensional data(IEEE Press, 2021-10) Chen, Jie; Yang, Shengxiang; Wang, Zhu; Mao, HuaDue to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact in several fields, such as image processing, computer vision and pattern recognition. Learning sparse representations is often computationally expensive due to the iterative computations needed to solve convex optimization problems in which the number of iterations is unknown before convergence. Moreover, most sparse representation algorithms focus only on determining the final sparse representation results and ignore the changes in the sparsity ratio during iterative computations. In this paper, two algorithms are proposed to learn sparse representations based on locality-constrained linear representation learning with probabilistic simplex constraints. Specifically, the first algorithm, called approximated local linear representation (ALLR), obtains a closed-form solution from individual locality-constrained sparse representations. The second algorithm, called approximated local linear representation with symmetric constraints (ALLRSC), further obtains all symmetric sparse representation results with a limited number of computations; notably, the sparsity and convergence of sparse representations can be guaranteed based on theoretical analysis. The steady decline in the sparsity ratio during iterative computations is a critical factor in practical applications. Experimental results based on public datasets demonstrate that the proposed algorithms perform better than several state-of-the-art algorithms for learning with high-dimensional data.Item Open Access Fine-grained Emotion Role Detection Based on Retweet Information(ACM, 2018-03) Yu, Zhiwen; Chen, Liming; Guo, Bin; Ma, Chao; Yi, Fei; Wang, ZhuUser behaviors in online social networks convey not only literal information but also one’s emotion attitudes towards the information. To compute this attitude, we define the concept of emotion role as the concentrated reflection of a user’s online emotional characteristics. Emotion role detection aims to better understand the structure and sentiments of online social networks and support further analysis, e.g., revealing public opinions, providing personalized recommendations, and detecting influential users. In this paper, we first introduce the definition of a fine-grained emotion role, which consists of two dimensions: emotion orientation (i.e., positive, negative, and neutral) and emotion influence (i.e., leader and follower). We then propose a Multi-dimensional Emotion Role Mining model, named as MERM, to determine a user’s emotion role in online social networks. Specifically, we tend to identify emotion roles by combining a set of features that reflect a user’s online emotional status, including degree of emotional characteristics, accumulated emotion preference, structural factor, temporal factor and emotion change factor. Experiment results on a real-life micro-blog reposting dataset show that the classification accuracy of the proposed model can achieve up to 90.1%.Item Open Access Multi-view representation learning for data stream clustering(Elsevier, 2022-09-27) Chen, Jie; Yang, Shengxiang; Wang, ZhuData stream clustering provides valuable insights into the evolving patterns of long sequences of continuously generated data objects. Most existing clustering methods focus on single-view data streams. In this paper, we propose a multi-view representation learning (MVRL) method for multi-view clustering of data streams. We first introduce an integrated representation learning model to learn a fused sparse affinity matrix across multiple views for spectral clustering. Motivated by the optimization procedure of the integrated representation learning model, we propose three consecutive stages: collaborative representation, the construction of individual global affinity matrices using a mapping function, and the calculation of a fused sparse affinity matrix using Euclidean projection. These stages allow the effective capture of the global and local structures of high-dimensional data objects. Moreover, each stage has a closed-form solution, which determines the upper bound of the computational cost and memory consumption. We then employ the construction residuals of the collaborative representation to adaptively update a dynamic set, which is used to preserve the representative data objects. The dynamic set efficiently transfers previously learned useful knowledge to the arriving data objects. Extensive experimental results on multi-view data stream datasets demonstrate the effectiveness of the proposed MVRL method.Item Open Access Online sparse representation clustering for evolving data streams(IEEE Press, 2023-10) Chen, Jie; Yang, Shengxiang; Fahy, Conor; Wang, Zhu; Guo, Yinan; Chen, YingkeData stream clustering can be performed to discover the patterns underlying continuously arriving sequences of data. A number of data stream clustering algorithms for finding clusters in arbitrary shapes and handling outliers, such as density-based clustering algorithms, have been proposed. However, these algorithms are often limited in their ability to construct and merge microclusters by measuring the Euclidean distances between high-dimensional data objects, e.g., transferring valuable knowledge from historical landmark windows to the current landmark window, and exploiting evolving subspace structures adaptively. We propose an online sparse representation clustering (OSRC) method to learn an affinity matrix for evaluating the relationships among high-dimensional data objects in evolving data streams. We first introduce a low-dimensional projection into sparse representation to adaptively reduce the potential negative influence associated with the noise and redundancy contained in high-dimensional data. Then, we take advantage of the l2,1-norm optimization technique to choose the appropriate number of representative data objects and form a specific dictionary for sparse representation. The specific dictionary is integrated into sparse representation to adaptively exploit the evolving subspace structures of the high-dimensional data objects. Moreover, the data object representatives from the current landmark window can transfer valuable knowledge to the next landmark window. The experimental results based on a synthetic dataset and six benchmark datasets validate the effectiveness of the proposed method compared to that of state-of-the-art methods for data stream clustering.Item Open Access Two-stage sparse representation clustering for dynamic data streams(IEEE, 2022-09-28) Chen, Jie; Wang, Zhu; Yang, Shengxiang; Mao, HuaData streams are a potentially unbounded sequence of data objects, and the clustering of such data is an effective way of identifying their underlying patterns. Existing data stream clustering algorithms face two critical issues: 1) evaluating the relationship among data objects with individual landmark windows of fixed size and 2) passing useful knowledge from previous landmark windows to the current landmark window. Based on sparse representation techniques, this article proposes a two-stage sparse representation clustering (TSSRC) method. The novelty of the proposed TSSRC algorithm comes from evaluating the effective relationship among data objects in the landmark windows with an accurate number of clusters. First, the proposed algorithm evaluates the relationship among data objects using sparse representation techniques. The dictionary and sparse representations are iteratively updated by solving a convex optimization problem. Second, the proposed TSSRC algorithm presents a dictionary initialization strategy that seeks representative data objects by making full use of the sparse representation results. This efficiently passes previously learned knowledge to the current landmark window over time. Moreover, the convergence and sparse stability of TSSRC can be theoretically guaranteed in continuous landmark windows under certain conditions. Experimental results on benchmark datasets demonstrate the effectiveness and robustness of TSSRC.