Browsing by Author "Swinny, Jerome D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Embargo Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer’s patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability(Wiley, 2020-12-20) Kelly, Louise; Seifi, Mohsen; Ma, Roulin; Mitchell, Scott J.; Rudolph, Uwe; Viola, Kirsten L.; Klein, William L.; Lambert, Jeremy J.; Swinny, Jerome D.Aims Amyloid β oligomers (AβO) are potent modulators of Alzheimer’s pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AβO impact the spontaneous excitability of LC neurons. This parameter determines brain‐wide noradrenaline (NA) release, and thus NA‐mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer’s. Therefore, the aim of the study was to determine the expression profile of AβO in the LC of Alzheimer’s patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aβ production (APP‐PSEN1). Methods and Results Immunohistochemistry and confocal microscopy, using AβO‐specific antibodies, confirmed LC AβO expression both intraneuronally and extracellularly in both Alzheimer’s and APP‐PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP‐PSEN1 LC neuronal hyperexcitability accompanied this AβO expression profile, arising from a diminished inhibitory effect of GABA, due to impaired expression and function of the GABA‐A receptor (GABAAR) α3 subunit. This altered LC α3‐GABAAR expression profile overlapped with AβO expression in samples from both APP‐PSEN1 mice and Alzheimer’s patients. Finally, strychnine‐sensitive glycine receptors (GlyRs) remained resilient to Aβ‐induced changes and their activation reversed LC hyperexcitability. Conclusions The data suggest a close association between AβO and α3‐GABAARs in the LC of Alzheimer’s patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC‐NA system in this condition.Item Open Access Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators(Springer, 2021-06-08) Jackson, Torquil; Seifi, Mohsen; Górecki, Dariusz C.; Swinny, Jerome D.Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.