Repository logo
  • Log In
Repository logo
  • Communities & Collections
  • All of DORA
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Sharma, Rajni"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemEmbargo
    Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme
    (Elsevier, 2017-11-07) Sharma, Rajni; Gatchie, Linda; Williams, Ibidapo Steven; Shreyans, K. J.; Vishwakarma, R. A.; Chaudhuri, Bhabatosh; Bharate, Sandip B.
    The development of multi-drug resistance to existing anticancer drugs is one of the major challenges in cancer treatment. The over-expression of cytochrome P450 1B1 enzyme has been reported to cause resistance to cisplatin. With an objective to discover cisplatin-resistance reversal agents, herein, we report the evaluation of Glycyrrhiza glabra (licorice) extracts and its twelve chemical constituents for inhibition of CYP1B1 (and CYP1A1) enzyme in Sacchrosomes and live human cells. The hydroalcoholic extract showed potent inhibition of CYP1B1 in both Sacchrosomes as well as in live cells with IC50 values of 21 and 16 mg/ mL, respectively. Amongst the total of 12 constituents tested, quercetin and glabrol showed inhibition of CYP1B1 in live cell assay with IC50 values of 2.2 and 15 mM, respectively. Both these natural products were found to be selective inhibitors of CYP1B1, and does not inhibit CYP2 and CYP3 family of enzymes (IC50 > 20 mM). The hydroalcoholic extract of G. glabra and quercetin (4) showed complete reversal of cisplatin resistance in CYP1B1 overexpressing triple negative MDA-MB-468 breast cancer cells. The selective inhibition of CYP1B1 by quercetin and glabrol over CYP2 and CYP3 family of enzymes was studied by molecular modeling studies.
  • No Thumbnail Available
    ItemMetadata only
    Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository
    (Royal Society of Chemistry, 2018-02-01) Joshi, Prashant; Sonawane, Vinay; Williams, Ibidapo Steven; McCann, Glen J. P.; Gatchie, Linda; Sharma, Rajni; Satti, Naresh; Chaudhuri, Bhabatosh; Bharate, Sandip B.
    CYP1A1 is thought to mediate carcinogenesis in oral, lung and epithelial cancers. In order to identify a CYP1A1 inhibitor from an edible plant, 394 natural products in the IIIM's natural product repository were screened, at 10 μM concentration, using CYP1A1-Sacchrosomes™ (i.e. microsomal enzyme isolated from recombinant baker's yeast). Twenty-seven natural products were identified that inhibited 40–97% of CYP1A1's 7-ethoxyresorufin-O-deethylase activity. The IC50 values of the ‘hits’, belonging to different chemical scaffolds, were determined. Their selectivity was studied against a panel of 8 CYP-Sacchrosomes™. In order to assess cellular efficacy, the ‘hits’ were screened for their capability to inhibit CYP enzymes expressed within live recombinant human embryonic kidney (HEK293) cells from plasmids encoding specific CYP genes (1A2, 1B1, 2C9, 2C19, 2D6, 3A4). Isopimpinellin (IN-475; IC50, 20 nM) and karanjin (IN-195; IC50, 30 nM) showed the most potent inhibition of CYP1A1 in human cells. Isopimpinellin is found in celery, parsnip, fruits and in the rind and pulp of limes whereas different parts of the Indian beech tree, which contain karanjin, have been used in traditional medicine. Both isopimpinellin and karanjin negate the cellular toxicity of CYP1A1-mediated benzo[a]pyrene. Molecular docking and molecular dynamic simulations with CYP isoforms rationalize the observed trends in the potency and selectivity of isopimpinellin and karanjin.
Quick Links
  • De Montfort University Home
  • Library Learning Services
  • DMU Figshare (DMU's Data Repository)
Useful Links
  • Submission Guide
  • DMU Open Access Libguide
  • Take Down Policy
  • Connect with DORA

Kimberlin Library

De Montfort University
The Gateway
Leicester, LE1 9BH
0116 257 7042
justask@dmu.ac.uk

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback