Repository logo
  • Log In
Repository logo
  • Communities & Collections
  • All of DORA
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Santopietro, Simone"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Battle of Postdisaster Response and Restoration
    (American Society of Civil Engineers, 2020-06-10) Paez, Diego; Filion, Yves; Quintiliani, Claudia; Santopietro, Simone; Sweetapple, Chris; Meng, Fanlin; Farmani, Raziyeh; Fu, Guangtao; Butler, David; Zhang, Qingzhou; Zheng, Feifei; Diao, Kegong; Ulanicki, Bogumil; Huang, Yuan; Deuerlein, Jochen; Gilbert, Denis; Abraham, Edo; Piller, Olivier; Bałut, Alicja; Brodziak, Rafał; Bylka, Jędrzej; Zakrzewski, Przemysław; Li, Yuanzhe; Gao, Jinliang; Jian, Cai; Ou, Chenhao; Hu, Shiyuan; Sophocleous, Sophocles; Nikoloudi, Eirini; Mahmoud, Herman; Woodward, Kevin; Romano, Michele; Santonastaso, Giovanni Francesco; Creaco, Enrico; Di Nardo, Armando; Di Natale, Michele; Bibok, Attila; Salcedo, Camilo; Aguilar, Andrés; Cuero, Paula; González, Sebastián; Muñoz, Sergio; Pérez, Jorge; Posada, Alejandra; Robles, Juliana; Vargas, Kevin; Franchini, Marco; Galelli, Stefano; Kim, Joong Hoon; Iglesias-Rey, Pedro; Kapelan, Zoran; Saldarriaga, Juan; Savic, Dragan; Walski, Thomas
    The paper presents the results of the Battle of Post-Disaster Response and Restoration (BPDRR), presented in a special session at the 1st International WDSA/CCWI Joint Conference, held in Kingston, Ontario, in July 2018. The BPDRR problem focused on how to respond and restore water service after the occurrence of five earthquake scenarios that cause structural damage in a water distribution system. Participants were required to propose a prioritization schedule to fix the damages of each scenario while following restrictions on visibility/non visibility of damages. Each team/approach was evaluated against six performance criteria that included: 1) Time without supply for hospital/firefighting, 2) Rapidity of recovery, 3) Resilience loss, 4) Average time of no user service, 5) Number of users without service for 8 consecutive hours, and 6) Water loss. Three main types of approaches were identified from the submissions: 1) General purpose metaheuristic algorithms, 2) Greedy algorithms, and 3) Ranking-based prioritizations. All three approaches showed potential to solve the challenge efficiently. The results of the participants showed that, for this network, the impact of a large-diameter pipe failure on the network is more significant than several smaller pipes failures. The location of isolation valves and the size of hydraulic segments influenced the resilience of the system during emergencies. On average, the interruptions to water supply (hospitals and firefighting) varied considerably between solutions and emergency scenarios, highlighting the importance of private water storage for emergencies. The effects of damages and repair work were more noticeable during the peak demand periods (morning and noontime) than during the low-flow periods; and tank storage helped to preserve functionality of the network in the first few hours after a simulated event.
Quick Links
  • De Montfort University Home
  • Library Learning Services
  • DMU Figshare (DMU's Data Repository)
Useful Links
  • Submission Guide
  • DMU Open Access Libguide
  • Take Down Policy
  • Connect with DORA

Kimberlin Library

De Montfort University
The Gateway
Leicester, LE1 9BH
0116 257 7042
justask@dmu.ac.uk

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback