Browsing by Author "Li, Ke"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Metadata only Evolutionary algorithms with segment-based search for multiobjective optimization problems(IEEE Press, 2013-10-10) Li, Miqing; Yang, Shengxiang; Li, Ke; Liu, XiaohuiThis paper proposes a variation operator, called segment-based search (SBS), to improve the performance of evolutionary algorithms on continuous multiobjective optimization problems. SBS divides the search space into many small segments according to the evolutionary information feedback from the set of current optimal solutions. Two operations, micro-jumping and macro-jumping, are implemented upon these segments in order to guide an efficient information exchange among “good” individuals. Moreover, the running of SBS is adaptive according to the current evolutionary status. SBS is activated only when the population evolves slowly, depending on general genetic operators (e.g., mutation and crossover). A comprehensive set of 36 test problems is employed for experimental verification. The influence of two algorithm settings (i.e., the dimensionality and boundary relaxation strategy) and two probability parameters in SBS (i.e., the SBS rate and micro-jumping proportion) are investigated in detail. Moreover, an empirical comparative study with three representative variation operators is carried out. Experimental results show that the incorporation of SBS into the optimization process can improve the performance of evolutionary algorithms for multiobjective optimization problems.Item Open Access A knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimization(Elsevier, 2019-02-11) Zou, Juan; Ji, Chunhui; Yang, Shengxiang; Zhang, Yuping; Zheng, Jinhua; Li, KeAmong many-objective optimization problems (MaOPs), the proportion of nondominated solutions is too large to distinguish among different solutions, which is a great obstacle in the process of solving MaOPs. Thus, this paper proposes an algorithm which uses a weighted subpopulation knee point. The weight is used to divide the whole population into a number of subpopulations, and the knee point of each subpopulation guides other solutions to search. Besides, Additionally, the convergence of the knee point approach can be exploited, and the subpopulation-based approach improves performance by improving the diversity of the evolutionary algorithm. Therefore, these advantages can make the algorithm suitable for solving MaOPs. Experimental results show that the proposed algorithm performs better on most test problems than six other state-of-the-art many-objective evolutionary algorithms.Item Open Access A multi-population evolutionary algorithm using new cooperative mechanism for solving multi-objective problems with multi-constraint(IEEE, 2023-03-22) Zou, Juan; Sun, Ruiqing; Liu, Yuan; Hu, Yaru; Yang, Shengxiang; Zheng, Jinhua; Li, KeIn science and engineering, multi-objective optimization problems usually contain multiple complex constraints, which poses a significant challenge in obtaining the optimal solution. This paper aims to solve the challenges brought by multiple complex constraints. First, this paper analyzes the relationship between single constrained Pareto Front (SCPF) and their common Pareto Front sub-constrained Pareto Front (SubCPF). Next, we discussed the SCPF, SubCPF, and Unconstrainti Pareto Front (UPF)’s help to solve constraining Pareto Front (CPF). Then further discusses what kind of cooperation should be used between multiple populations constrained multi-objective optimization algorithm (CMOEA) to better deal with multi-constrained multi-objective optimization problems (mCMOPs). At the same time, based on the discussion in this paper, we propose a new multi-population CMOEA called MCCMO, which uses a new cooperation mechanism. MCCMO uses C+2 (C is the number of constraints) populations to find the UPF, SCPF, and SubCPF at an appropriate time. Furthermore, MCCMO uses the newly proposed Activation Dormancy Detection (ADD) to accelerate the optimization process and uses the proposed Combine Occasion Detection (COD) to find the appropriate time to find the SubCPF. The performance on 32 mCMOPs and real-world mCMOPs shows that our algorithm can obtain competitive solutions on MOPs with multiple constraints.Item Metadata only Proceedings of the 12th EMO: International Conference on Evolutionary Multi-Criterion Optimization(Springer Cham, 2023-03) Emmerich, Michael; Deutz, André; Wang, Hao; Kononova, Anna V.; Naujoks, Boris; Li, Ke; Miettinen, Kaisa; Yevseyeva, Iryna