Repository logo
  • Log In
Repository logo
  • Communities & Collections
  • All of DORA
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Khaderi, S. N."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    ItemMetadata only
    The out-of-plane compressive response of Dyneema (R) composites
    (Elsevier, 2014-06-12) Attwood, J. P.; Khaderi, S. N.; Karthikeyan, K.; Fleck, N. A.; O'Masta, M. R.; Wadley, H. N. G.; Deshpande, V. S.
    Out-of-plane compression tests were conducted on six grades of ultra high molecular weight polyethylene fibre composites (Dyneema®Dyneema®) with varying grades of fibre and matrix, ply thickness, and ply stacking sequence. The composites with a [0°r/90°] lay-up had an out-of-plane compressive strength that was dictated by in-plane tensile fibre fracture. By contrast, the out-of-plane compressive strength of the uni-directional composites was significantly lower and was not associated with fibre fracture. The peak strength of the [0°/90°] composites increased with increasing in-plane specimen dimensions and was dependent on the matrix and fibre strength as well as on the ply thickness. A combination of micro X-ray tomography and local pressure measurements revealed the existence of a shear-lag zone at the periphery of the specimens. Finite Element (FE) and analytical micromechanical models predict the compressive composite response and reveal that out-of-plane compression generates tensile stresses along the fibres due to shear-lag loading between the alternating 0° and 90° plies. Moreover, the compressive strength data suggests that the shear strength of Dyneema®Dyneema® is pressure sensitive, and this pressure sensitivity is quantified by comparing predictions with experimental measurements of the out-of-plane compressive strength. Both the FE and analytical models accurately predict the sensitivity of the compressive response of Dyneema®Dyneema® to material and geometric parameters: matrix strength, fibre strength and ply thickness.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Surface instabilities in shock loaded granular media
    (Elsevier, 2017-08-30) Kandan, Karthikeyan; Khaderi, S. N.; Wadley. H. N. G; Deshpande, V. S.
    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker–Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.
Quick Links
  • De Montfort University Home
  • Library Learning Services
  • DMU Figshare (DMU's Data Repository)
Useful Links
  • Submission Guide
  • DMU Open Access Libguide
  • Take Down Policy
  • Connect with DORA

Kimberlin Library

De Montfort University
The Gateway
Leicester, LE1 9BH
0116 257 7042
justask@dmu.ac.uk

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback