Browsing by Author "Avoine, Gildas"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Deploying OSK on Low-Resource Mobile Devices(Springer, 2013-11-01) Bingol, Muhammed Ali; Avoine, Gildas; Carpent, Xavier; Kardas, SuleymanIt is a popular challenge to design authentication protocols that are both privacy-friendly and scalable. A large body of literature in RFID is dedicated to that goal, and many inventive mechanisms have been suggested to achieve it. However, to the best of our knowledge, none of these protocols have been tested so far in practical scenarios. In this paper, we present an implementation of the OSK protocol, a scalable and privacy-friendly authentication protocol, using a variant by Avoine and Oechslin that accommodates it to time-memory trade-offs. We show that the OSK protocol is suited to certain real-life scenarios, in particular when the authentication is performed by low-resource mobile devices. The implementation, done on an NFC-compliant cellphone and a ZC7.5 contactless tag, demonstrates the practicability and efficiency of the OSK protocol and illustrates that privacy-by-design is achievable in constrained environments.Item Open Access A framework for analyzing RFID distance bounding protocols(IOS Press, 2011-03-14) Bingol, Muhammed Ali; Avoine, Gildas; Kardas, Suleyman; Lauradoux, Cedric; Martin, BenjaminMany distance bounding protocols appropriate for the RFID technology have been proposed recently. Unfortunately, they are commonly designed without any formal approach, which leads to inaccurate analyzes and unfair comparisons. Motivated by this need, we introduce a unified framework that aims to improve analysis and design of distance bounding protocols. Our framework includes a thorough terminology about the frauds, adversary and prover, thus disambiguating many misleading terms. It also explores the adversary's capabilities and strategies, and addresses the impact of the prover's ability to tamper with his device. It thus introduces some new concepts in the distance bounding domain as the black-box and white-box models, and the relation between the frauds with respect to these models. The relevancy and impact of the framework is finally demonstrated on a study case: Munilla–Peinado distance bounding protocol.Item Open Access Optimal security limits of RFID distance bounding protocols(Springer, 2010-06-08) Bingol, Muhammed Ali; Kara, O.; Kardas, Suleyman; Avoine, GildasIn this paper, we classify the RFID distance bounding protocols having bitwise fast phases and no final signature. We also give the theoretical security bounds for two specific classes, leaving the security bounds for the general case as an open problem. As for the classification, we introduce the notion of k-previous challenge dependent (k-PCD) protocols where each response bit depends on the current and k-previous challenges and there is no final signature. We treat the case k = 0, which means each response bit depends only on the current challenge, as a special case and define such protocols as current challenge dependent (CCD) protocols. In general, we construct a trade-off curve between the security levels of mafia and distance frauds by introducing two generic attack algorithms. This leads to the conclusion that CCD protocols cannot attain the ideal security against distance fraud, i.e. 1/2, for each challenge-response bit, without totally losing the security against mafia fraud. We extend the generic attacks to 1-PCD protocols and obtain a trade-off curve for 1-PCD protocols pointing out that 1-PCD protocols can provide better security than CCD protocols. Thereby, we propose a natural extension of a CCD protocol to a 1-PCD protocol in order to improve its security. As a study case, we give two natural extensions of Hancke and Kuhn protocol to show how to enhance the security against either mafia fraud or distance fraud without extra cost.Item Embargo Privacy-Friendly Authentication in RFID Systems: On Sublinear Protocols Based on Symmetric-Key Cryptography(IEEE, 2013-10-10) Bingol, Muhammed Ali; Avoine, Gildas; Carpent, Xavier; Ors, BernaThe recent advent of ubiquitous technologies has raised an important concern for citizens: the need to protect their privacy. So far, this wish was not heard of industrials, but national and international regulation authorities, as the European Commission recently published some guidelines to enforce customers' privacy in RFID systems: "Privacy by designâ is the way to be followed as stated in EC Recommendation of 12.5.2009. Research on privacy is an active domain but there is still a wide gap between theory and everyday life's applications. Filling this gap will require academia to design protocols and algorithms that fit the real-life constraints. In this paper, we provide a comprehensive analysis of privacy-friendly authentication protocols devoted to RFID that: 1) are based on well-established symmetric-key cryptographic building blocks; 2) require a reader complexity lower than O(N) where N is the number of provers in the system. These two properties are sine qua non conditions for deploying privacy-friendly authentication protocols in large-scale applications, for example, access control in mass transportation. We describe existing protocols fulfilling these requirements and point out their drawbacks and weaknesses. We especially introduce attacks on CHT, CTI,YA-TRAP*, and the variant of OSK/AO with mutual authentication. We also raise that some protocols, such as O-RAP, O-FRAP, and OSK/BF, are not resistant to timing attacks. Finally, we select some candidates that are, according to our criteria, the most appropriate ones for practical uses.Item Open Access Security of distance-bounding: A survey(ACM, 2018-09-25) Bingol, Muhammed Ali; Avoine, Gildas; Boureanu, Ioana; Capkun, Srdjan; Gerhard, Hancke; Kardas, Suleyman; Kim, Chong Hee; Lauradoux, Cedric; Martin, Benjamin; Munilla, Jorge; Peinado, Alberto; Rasmussen, Kasper Bonne; Singelee, Dave; Tchamkerten, Aslan; Trujillo-Rasua, Rolando; Vaudenay, SergeDistance-bounding protocols allow a verifier to both authenticate a prover and evaluate whether the latter is located in his vicinity. These protocols are of particular interest in contactless systems, e.g., electronic payment or access control systems, which are vulnerable to distance-based frauds. This survey analyzes and compares in a unified manner many existing distance-bounding protocols with respect to several key security and complexity features.