
ATOM: An Object-Based Formal Method for Real-time Systems

Hussein Zedan1), Antonio Cau, Zhiqiang Chen, Hongji Yang

Software Technology Research Laboratory,

SERCentre,

De Montfort University,

The Gateway, Leicester LE1 9BH, England,

http://www.cms.dmu.ac.uk/STRL/

June 25, 1999

1)The author wishes to acknowledge the funding received from the U.K. Engineering and Physical Sciences Research Council

(EPSRC) through the Research Grant GR/M/02583

E-mail: zedan@dmu.ac.uk



Abstract

An object based formal method for the development of real-time systems, called ATOM, is presented. The

method is an integration of the real-time formal technique TAM (Temporal Agent Model) with an industry-strength

structured methodology known as HRT-HOOD. ATOM is a systematic formal approach based on the refinement

calculus. Within ATOM, a formal specification (or abstract description statement) contains Interval Temporal Logic

(ITL) description of the timing, functional, and communication behavior of the proposed real-time system. This

formal specification can be analyzed and then refined into concrete statements through successive applications of

sound refinement laws. Both abstract and concrete statements are allowed to freely intermix. The semantics of the

concrete statements in ATOM are defined denotationally in specification-oriented style using ITL.

keywords: object-based, wide-spectrum language, refinement calculus, Temporal Agent Model, HRT-HOOD, Interval

Temporal Logic

ii



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 1

1 INTRODUCTION

The ‘correctness’ of real-time systems’ design not only depends on satisfying functional requirements, as in

most information processing systems, but also on non-functional requirements, such as timing, limited resources and

dependability.

The development of a real-time system has been traditionally a somewhat ad-hoc affair. A system is designed

from an informal requirements specification as a number of tasks with associated deadlines, execution periods, and

resource requirements. The worst-case execution time is calculated for those tasks, and a resource allocation and

schedule is computed which guarantees deadlines. Worst-case execution time, allocation, and scheduling are all

complex procedures and research is still active in these areas; in the two latter cases the problems are known to be

NP-complete. Correctness of systems developed in this way can only be performed by testing and detailed code

inspection. However, when the consequence of system failure is catastrophic such as loss of life and/or damage to the

environment, testing and code inspection can not alone be relied upon.

Therefore, there is clearly scope for formalizing some of the development process, particularly in the area of

requirements specification and design [Fraser et al. 1991]. For this purpose, a large number of formalisms have been

developed, for example RTL [F. Jahanian and A. Mok 1986], Timed CSP [Davies 1991], RTTL [Ostroff and Wonham

1985], MTL [Koymans 1990], XCTL [Harel et al. 1990], ITL [Moszkowski 1985], TAM [Scholefield et al. 1993;

Scholefield et al. 1994b; Scholefield et al. 1994a; Lowe and Zedan 1995; He and Zedan 1996], TCSP [Schneider

et al. 1992], TCCS [Yi 1991], TACP [Bergstra and Klop 1984] and time Petri Nets [Petri 1962; Merlin and Segall

1976; Ramchandani 1974].

However, we have shown [Chen 1997] that there are a significant number of limitations with existing real-time

development formalisms. Most important of these is the lack of method or guidance on how to use a formalism for

both specification writing and proving correctness. In addition, it is not clear how such formalisms can cope with the

development of large scale real-time systems.

In real-time systems development we would benefit from a method which assists in the derivation of concrete

designs from informal requirements specifications through a ‘temporal’ refinement notion.

A number of refinement calculi already exist for real-time systems, but they are either incomplete or use

an unrealistic computational model. PLtime [He 1991] is a real-time design language which consists of a CSP-like

syntax with extensions for real-time. However, the formalism is based on the maximal-parallelism hypothesis (i.e., the

assumption that there are always sufficient resources available) which is too restrictive for most real time systems. In

addition, since PLtime does not provide a separate specification statement as a syntactic entity, the refinement remains

purely in the concrete domain. Similarly, RT-ASLAN [Auernheimer and Kemmerer 1986] is a refinement calculus

which refines a specification into concrete code, but this again relies on the maximal parallelism model. The Duration

Calculus [Zhou et al. 1991] (and to some extend timed Z [Hayes and Utting 1998] and B-method [Abrial et al. 1991]



2 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

in recent attempts), on the other hand, is a formalism based on ITL [Moszkowski 1985] and provides rules which are

only applicable at the logical level of development.

Furthermore, with the advent of Object-Oriented (OO) paradigm, as a powerful approach in modeling and

developing large-scale and complex software systems, research in object-oriented formalism has increased. This has

ranged from extending process-oriented formalisms to cater for object structure (e.g., Z++ [Lano 1990] and VDM++

[Lano 1995]) to the development of new formal OO models (e.g., HOSA [Goguen and Diaconescu 1994; Malcom and

Goguen 1994], Maude [Meseguer and Winkler 1992; Meseguer 1993], CLOWN [Battiston and Cindio 1993; Battiston

et al. 1995; Battiston et al. 1996], CO [Bastide 1992; Bastide and Palanque 1993], COOPN/2 [Biberstein et al. 1996;

Biberstein et al. 1997], TRIO+ [Morzenti and Pietro 1994] and OO-LTL [Canver and von Henke 1997]).

Although the use of formal methods in the development of real-time systems have their benefits, turning

them into a sound engineering practice has proved to be extremely difficult. Some “pure” formal methods may

keep practically-oriented software engineers from employing their benefits. This has led to investigating the inte-

gration of formal methods with well established structured techniques used by industry (e.g., System Analysis and

Design Methodology (SSADM) [Meldrum and Lejk 1993], Yourdon [Yourdon 1989] and Jackson [Jackson 1983],

for non-real-time systems, and ROOM [Celic et al. 1994] and HRT-HOOD [Burns and Wellings 1995] for real-time

applications). As a result, in [Mander and Polack 1995; Semmens and Allen 1991], both SSADM and Yourdon

were integrated with the formal notation Z respectively. An attempt to incorporate Data flow diagrams into the for-

mal specification notation VDM was done in [Fraser et al. 1991; Plat et al. 1991]. Recently, Liu, et al [Liu et al.

1998], provided a method that integrates both formal techniques, structured methodologies and the Object-Oriented

paradigm. However, they still lack mechanisms for the systematic development of concrete design/code from formal

specification. This has provisionally been addressed in [Chen et al. 1999].

The main objective of this paper is to provide a formal development technique whose underlying computational

model is realistic and supports the development of large-scale systems. By realistic we take the view that it must

reflect the basic developer’s intuition about the target application area and that the resulting system can be analyzed

for schedulability. In addition, to support large-scale system development, the computational model should adopt

features advocated to in the OO paradigm.

The systematic derivation of a concrete design from an abstract specification requires that the formal devel-

opment technique to be based on a wide-spectrum language in which concrete and abstract constructs can be freely

intermixed. Further, a set of sound refinement laws must be provided enabling the software developers to transform a

requirement specification into an executable program.

In this paper, we present a formal development technique ATOM. The formal language of ATOM contains

both abstract and concrete statements. The development technique uses a refinement calculus to get from an abstract

statement to a concrete statement. The concrete statements in the language include those of the Temporal Agent



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 3

Model (TAM) [Scholefield et al. 1993; Scholefield et al. 1994b; Scholefield et al. 1994a; Lowe and Zedan 1995].

The underlying computational structure of ATOM is an extension of TAM to cater for objects. The object structure in

ATOM is based on that found in the industry strength structured technique known as HRT-HOOD [Burns and Wellings

1995]. HRT-HOOD is a real-time extension to HOOD [Robinson 1992]. The abstract statements in the language are

Interval Temporal Logic [Moszkowski 1985] (ITL) formulae. ITL is also used to give a denotational semantics to

the concrete statements so that abstract and concrete statements can be freely intermixed. The refinement calculus of

ATOM is an extension of that of TAM to cater for the refinement into objects.

In Section 2, we introduce Interval Temporal logic. The computational object model of ATOM is detailed in

Sect. 3. The syntax and informal semantics of the ATOM language are given in Sect. 4. The refinement calculus of

ATOM is presented in Sect. 5. The systematic development technique is the outlined in Sect. 6 and illustrated with a

small case-study in Sect. 7.

2 INTERVAL TEMPORAL LOGIC

We base our work on Interval Temporal Logic and its programming language subset Tempura [Moszkowski

1985]. ITL will be used both as our abstract specification language and to define the specification-oriented semantics

of the concrete statements in ATOM.

Our selection of ITL is based on a number of points. It is a flexible notation for both propositional and first-

order reasoning about periods of time. Unlike most temporal logics, ITL can handle both sequential and parallel

composition and offers powerful and extensible specification and proof techniques for reasoning about properties

involving safety, liveness and projected time. Timing constraints are expressible and furthermore most imperative

programming constructs can be viewed as formulas in a slightly modified version of ITL [Cau and Zedan 1997].

Tempura provides an executable framework for developing and experimenting with suitable ITL specifications.

2.1 Syntax

An interval is considered to be a (in)finite sequence of states, where a state is a mapping from variables to their

values. The length of an interval is equal to one less than the number of states in the interval (i.e., a one state interval

has length 0).

The syntax of ITL is defined in Table 1 where µ is an integer value, a is a static variable (doesn’t change within

an interval), A is a state variable (can change within an interval), v a static or state variable, g is a function symbol, p

is a predicate symbol.

The informal semantics of the most interesting constructs are as follows:

� ıa: f : the value of a such that f holds.



4 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

Table 1: Syntax of ITL

Expressions

e ::� µ � a � A � g�e1� � � � �en� � ıa: f

Formulae

f ::� p�e1� � � � �en� � �f � f1 � f2 � �v � f � Skip � f1 ; f2 � f �

� Skip: unit interval (length 1).

� f1 ; f2: holds if the interval can be decomposed (“chopped”) into a prefix and suffix interval, such that f 1 holds

over the prefix and f2 over the suffix, or if the interval is infinite and f1 holds for that interval.

� f �: holds if the interval is decomposable into a finite number of intervals such that for each of them f holds, or

the interval is infinite and can be decomposed into an infinite number of finite intervals for which f holds.

These constructs enables us to define programming constructs like assignment, if then else, while loop etc. In table 2

some frequently used abbreviations are listed.

2.2 Data Representation

Introducing type system into specification languages has its advantages and disadvantages. An untyped set

theory is simple and is more flexible than any simple typed formalism. Polymorphism, overloading and subtyping can

make a type system more powerful but at the cost of increased complexity. While types serve little purpose in hand

proofs, they do help with mechanized proofs.

There are two basic inbuilt types in ITL (which can be given pure set-theoretic definitions). These are integers

N (together with standard relations of inequality and quality) and Boolean (true and false). In addition, the executable

subset of ITL (Tempura) has basic types: integer, character, Boolean, list and arrays.

Further types can be built from these by means of � and the power set operator, P (in a similar fashion as

adopted in the specification language Z).

For example, the following introduces a variable x of type T

��x : T� � f �� �x � type�T�� f

Here type�T� denotes a formula describing the desired type. For example, type�T� could be 0 � x � 7 and so

on. Although this might seem to be rather inexpressive type system, richer type can be added following that of

Spivey [Spivey 1996].



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 5

Table 2: Frequently used abbreviations

true �� 0 � 0 true value

false �� �true false value

f1 � f2 �� ���f1 � �f2� or

f1 � f2 �� �f1 � f2 implies

f1 � f2 �� �f1 � f2�� �f2 � f1� equivalent

�v � f �� ��v � �f exists
�f �� Skip ; f next

more �� �true non-empty interval

empty �� �more empty interval

inf �� true ; false infinite interval

finite �� �inf finite interval

�f �� finite ; f sometimes

�f �� ���f always

�a f �� finite ; f ; true some subinterval

�a f �� ���a �f � all subintervals

f 0
�� empty 0-chopstar

f n�1
�� f ; f n (n�1)-chopstar

if f0 then f1 else f2 �� �f0 � f1� � ��f0 � f2� if then else

fin f �� ��empty � f � final state

keep f �� �a �Skip � f � all unit subintervals
�e �� ıa:��e � a� next value

fin e �� ıa:fin �e � a� end value

A :� e �� �A � e assignment

e1 � e2 �� finite � �fin e1� � e2 temporal assignment

e1 gets e2 �� keep �e1 � e2� gets

stable e �� e gets e stability

intlen�e� �� � I � �I � 0� � �I gets I�1� � I � e� interval length e

len �� ıa: intlen �a� interval length

3 OBJECT-BASED COMPUTATIONAL MODEL

In this section we present our object-based model which is a conservative extension to that adopted in the

Temporal Agent Model (TAM) [Scholefield et al. 1993; Scholefield et al. 1994b; Scholefield et al. 1994a; Lowe and

Zedan 1995]. TAM was developed to be a realistic formal software development method for real-time systems. Such

an extension is based on an industry-strength structured methodology known as HRT-HOOD [Burns and Wellings

1995].

A real-time system is viewed as a collection of concurrent activities which are initiated either periodically or

sporadically with services which can be requested by the execution of the activities. The operations of the activities and

services, as threads and methods, are allocated to the corresponding objects (an encapsulated operation environment

for the thread or methods) according to their functional and temporal requirements and the relationships between them.



6 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

3.1 Object Structure

In ATOM we can identify five types of objects. These are defined as follows.

1. sporadic object — defines a unique thread which activates an operation sporadically by response to external

events. The thread can not be requested and executed by other methods’ invocations, however, it can invoke

methods provided by other objects. The thread may be concurrent with other activities in the system. A mini-

mum interval can be specified to restrain responses to continuous event occurrences. Sporadic objects are used

to model entities in a system which are involved in random activities.

2. cyclic object — is similar to a sporadic object except that its thread specifies an operation which is executed

periodically. A cyclic object defines a period to specify how often the operation is and it is fixed. Every execution

of the operation must be terminated within this period. Cyclic objects are used to model entities in a system

which are involved in periodic activities.

3. protected object — defines services which can be invoked. The services are implemented by methods which

can be requested by others for execution. The methods can be requested arbitrarily, but their executions must

be mutually exclusive. The execution order of invocations depends on their times of request. A method in a

protected object can only request the methods which are (in)directly implemented by passive objects. Protected

objects are used to model shared critical resources accessed by different objects or methods.

4. passive object — is similar to a protected object except there are no constraints on invocations of its methods. A

method in a passive object can be arbitrarily requested and immediately executed as a part of its client whenever

being requested. A method in a passive object can only request the methods which are (in)directly implemented

by other passive objects. Passive objects are used to define non-interfering operations on resources.

5. active object — defines a framework for a number of related objects which are referred to as its child objects.

An active object can be viewed as an independent system or subsystem. It encapsulates the methods of its child

objects. Any object outside an active object can not request the methods defined in its child objects directly

but through a method defined by it. The signature of a method defined in an active object must be consistent

with that of its counterpart except its name. An active object can not include itself as a child object directly or

indirectly and an object can not be a child object of different objects.

The environment of a non-active object is a set of data over which the methods of the object execute for

computations and communications. The data include constants, variables and shunts. For cyclic and sporadic objects,

an activation period and a minimum activation interval are specified in the environment declaration respectively. We

use ObjEnv�o� to denote the environment set of an object o.



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 7

Threads/methods are agents as defined in TAM. Threads activate and terminate with the corresponding objects

and are concurrent with each other. Methods are activated by invocations and their executions may be either concurrent

or sequential. Invocations of methods can be either asynchronous or synchronous. Recursive invocations between

methods are prohibited, neither directly nor indirectly.

3.2 Agent Structure

An agent is described by a set of computations, which may transform a local data space. Communication is

asynchronous via time-stamped shared data areas called shunts. Shunts are passive shared memory spaces that contain

two values: the first gives the time at which the most recent write took place, and the second gives the value that was

most recently written. Systems themselves can be viewed as single agents and composed into larger systems.

At any time, a system can be thought of having a unique state, defined by the values in the shunts and local

variables. The computation may be nondeterministic. In particular:

� Time is global, i.e., a single clock is available to every agent and shunt. The time domain is discrete, linear, and

modeled naturally by the natural numbers.

� No state change may be instantaneous.

� An agent may start execution either as a result of a write event on a specific shunt, or as the result of some

condition on the current time: these two conditions model sporadic and periodic tasks respectively.

� An agent may have deadlines on computations and communication. Deadlines are considered to be hard, i.e.,

there is no concept of deadline priority, and all deadlines must me met by the run-time system. We are currently

investigating the inclusion of prioritized deadlines into the language.

� A data space is created when an agent starts execution, with nondeterministic initial values; the data space is

destroyed when the agent terminates. No agent may read or write another agent’s local data space.

� A system has a static configuration, i.e., the shunt connection topology remains fixed throughout the lifetime of

the system.

� An agent’s output shunts are owned by that agent, i.e., no other agent may write to those shunts, although many

other agents may read them.

� Shunt writing is destructive, but shunt reading is not.



8 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

4 ATOM LANGUAGE

ATOM has the following syntactic form. An object consists of a declaration and method(s) in a structure. The

declaration presents the definitions of attributes and/or an execution environment for methods defined in the object.

The attributes of an object include:

� object type — indicates the object is either active, sporadic, cyclic, protected or passive.

� provided methods — signatures of the methods provided by the object for other objects.

We use ProvidedMethods�o� to denote the provided method set of an object o where o is sometimes dropped if

no confusion is caused. The signatures must be accordant with their definitions. They are declared in the form

of m�in�out�, where m is a method name which is free in the object. in and out are sets which present parameters

transfered between m and its clients. card�in�� 0 and card�out�� 0 (where card denotes cardinality of the set).

We use in�m� and out�m� to denote them.

� used methods — declare the methods invoked by the object and the objects which provide the methods.

We use UsedMethods�o� to denote the used method set of an object o where o is sometimes dropped if no

confusion is caused. The elements of the set UsedMethods�o� take the form of �o ��m��, where m� is a method

to be invoked by o and is defined in o �. UsedMethods�o� defines use relationships between o and objects in

UsedMethods�o�. Such relationships specify control flows between objects and together with in�m� and out�m�,

data flows are also specified.

Other attributes vary with the type of objects:

� the activation interval of the thread for a cyclic object.

� the minimum activation interval of the thread for a sporadic object.

� the child object set for an active object. We use ChildObjects�o� to denote the child object set of o if o is an

active object. ChildObjects�o� specifies an include relationship between o and its child objects based on which

the decomposition process is achieved.

The syntax of the ATOM language is defined in Table 3 where A is a TAM agent; ProvidedMethods is a set of provided

methods; Ev is a shunt; P, t and T are time variables; S a shunt name; w a set of computation variables and shunts; f

an ITL formula; x a variable; e an expression on variables; I some finite indexing set; g i a boolean expression; and n a

natural number.

Informally, the agents in Table 3 have the following meaning:



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 9

Table 3: Syntax of ATOM language

Method

m ::= �Method name	�in�out� : A end

Object

o ::= cyclic �Object name	 thread on P do A end �
sporadicT �Object name	 thread on Ev do A end �
protected �Object name	 ProvidedMethods �m1� � � � �mn� end �
passive �Object name	 ProvidedMethods �m1� � � � �mn� end �
active �Object name	 ProvidedMethods �o1� � � � �o2� end

Agent

A ::= w : f � Skip � ∆t � x :� e � x
 s � e� s � A ; A � �
var x : T in A � shunt s : T in A � �t� A � ift �i�I gi then Ai fi �
A � A � � A�s

t A � � A 
 A � � loop for n period t A

� w : f is a specification statement. It specifies that only the variables in the frame w may be changed, and the

execution must satisfy ITL formula f .

� The agent Skip may terminate after any delay.

� The agent ∆t terminates after t time units.

� x :� e evaluates the expression e, using the values found in variables at the start time of the agent, and assigns it

to x. The expression e may not include the values held in shunts: it may only use the values held in variables.

� x� s performs an input from shunt s, storing the value in x; the type of x must be a time–value pair.

� e� s writes the current value of expression e to shunt s, time-stamping it with the time of the write.

� A ; A � performs a sequential composition of A and A �.

� var x : T in A defines x to be a new local variable of type T within A ; its initial value is chosen nondeterministi-

cally.

� shunt s : T in A defines s to be a new local shunt of type Time�T within A ; its initial value is chosen nondeter-

ministically, but it is time-stamped with the time of its declaration.

� �t� A gives agent A a duration of t: if the agent terminates before t seconds have elapsed, then the agent should

idle to fill this interval; if the agent does not terminate within t seconds, then it is considered to have failed.

� ift �i�I gi then Ai fi evaluates all the boolean guards gi, and executes an Ai corresponding to a true guard; if

all the guards evaluate to false, then the agent terminates correctly. The evaluation of the guards should take

precisely t time units; if necessary, the agent should idle to fill this interval. We shall sometimes omit the



10 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

parameter t if we do not want to specify it. We shall sometimes write this construct as if t g1 then A1 � g2 then

A2 � � � � � gn then An fi.

� A 	 A � forms a nondeterministic choice between A and A �.

� A �s
t A � monitors shunt s for t time units: if a write occurs within this time, then it executes A �; otherwise it

times-out and executes A .

� A 
 A � executes the two agents concurrently, terminating when both agents terminate.

� loopfor n period t A executes A n times, giving each a duration of t.

We note here that no agent may share its local state space with concurrently executing agents, and only one

concurrent agent may write to any given shunt: these restrictions allow the development of a compositional semantics

and refinement calculus.

The formal semantics of the concrete part of the ATOM language is presented in Sect. A.

5 ATOM REFINEMENT CALCULUS

The refinement relation � is defined on a component (agent, method and object) in a similar fashion to that

of TAM. A component X is refined by the component Y , denoted X � Y , if and only if Y � X . A set of sound

refinement laws are derived to transform an abstract specification into concrete objects. The following are some useful

refinement laws. The soundness of these laws follows from the definition of the refinement relation.

The following law states that the operators in ITL are monotonic w.r.t. the refinement relation. Monotonicity

means that the ATOM refinement calculus is compositional.

Law 1 (Monotonicity) Let fi be an ITL formula then

��
1� If f0 � f1 and f1 � f2 then f0 � f2

��
2� If f0 � f1 and f2 � f3 then �f0 � f2�� �f1 � f3�

��
3� If f0 � f1 and f2 � f3 then �f0 � f2�� �f1 � f3�

��
4� If f1 � f2 then f0 ; f1 � f0 ; f2

��
5� If f1 � f2 then f1 ; f0 � f2 ; f0

��
6� If f0 � f1 then f �0 � f �1

��
7� If f0 � f1 then �v � f0 � �v � f1

The following law states that any interval of length 1 can be refined into the Skip statement.



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 11

Law 2 (Skip)

len � 1 � Skip

The following law states that any interval of length t can be refined into the delay statement ∆t.

Law 3 (Delay)

len � t � ∆t

The following law states that when variable x gets the value of exp in the next state of an interval this can be refined

into the assignment x :� exp.

Law 4 (Assignment) If x � w then

w : �x � exp � x :� exp

The following law states that shunt reading corresponds to reading of the stamp and the value of the shunt.

Law 5 (Shunt read) If x � w then

w : x1 �
�

s � x2 � read�s� � x� s

The following law states that shunt writing is like assignment but that also the stamp is increased by 1.

Law 6 (Shunt read) If x � w then

w : �s � �
�

s�1�x� � x� s

The following law states that sequential composition is associative and distributes over the �.

Law 7 (Sequential composition)

f0 ; �f1 ; f2� � �f0 ; f1� ; f2

�f0 ; f1� ; f2 � f0 ; �f1 ; f2�

f0 ; �f1 � f2� � �f0 ; f1� � �f0 ; f2�

�f0 ; f1� � �f0 ; f2� � f0 ; �f1 � f2�

The following law is for the introduction of a variable v.

Law 8 (New variable)

w : f � var v in w��v� : f

The following law is for the introduction of a new shunt.



12 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

Law 9 (New shunt)

w : f � shunt s in w��s� :
�
�s� � 0 � f

The following law is for the introduction of the deadline.

Law 10 (Deadline)

∆t � f ; true � �f � len �� t� � �t� f

The alternation is introduced with the following law.

Law 11 (Alternation)

�f0 � f1� � �f2 � f3� � if f0 then f1�f2 then f3 fi

The following law states that the nondeterministic choice corresponds to the � of ITL.

Law 12 (Nondeterministic choice)

f0 � f1 � f0 	 f1

The timeout is introduced with the following law.

Law 13 (Timeout)

�∆t � stable�s�� ; f0 � �∆t � �stable�s�� ; f1 � f0�s
t f1

The following law introduces the parallel composition.

Law 14 (Parallel composition) If w0�w1 � /0, then

w0�w1 : f0 � f1 � �w0 : f0� 
 �w1 : f1��

This law will introduce the loop.

Law 15 (Loop)

��t� f �n � loopfor n period t f

The following 5 laws is for the introduction of the ATOM objects.

Law 16 (Cyclic object)

finite � �len � P � �f ; true��� � cyclic �Object name� thread on P do f end



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 13

Law 17 (Sporadic object)

finite � �stable�Ev� ; �Skip �
�

Ev �� �
�

Ev� ; �f ; true � len � T��� �
sporadicT �Object name� thread on Ev do f end

Law 18 (Protected object) Let

Mut �� ��Σi�Statusi � Act�� 1��

If

mi �� �Statusi � Req� stable�Statusi�� ; Skip;

�Statusi � Act � stable�Statusi�� fmi� ; Skip;

�Statusi � Idle� stable�Statusi��

then

finite �
�

i mi�Mut � protected �Object name� ProvidedMethods �m1� � � � �mn� end

Law 19 (Passive object) If

mi �� �Statusi � Req� stable�Statusi�� ; Skip;

�Statusi � Act � stable�Statusi�� fmi� ; Skip;

�Statusi � Idle� stable�Statusi��

then

finite �
�

i mi � passive �Object name� ProvidedMethods �m1� � � � �mn� end

Law 20 (Active object) Let ProvidedMethods�o� �� /0.

�
i�oi� � active �Object name� ProvidedMethods �o1� � � � �on� end

6 ATOM DEVELOPMENT TECHNIQUE

In order to derive a concrete design from an abstract specification, a refinement calculus was developed. In

the first stage, the designer builds a system model and states the system’s requirements (or ‘expectation’) along with

assumptions/constraints of the environment. Using HRT-HOOD such system’s requirement may be decomposed into

sub-requirement. Each sub-requirement is formalized, using the specification statement which is subsequently refined

into objects using the refinement laws.

A development method is therefore suggested:

Given an informal requirement REQ of a system.



14 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

1. Use HRT-HOOD to decompose the system requirement REQ, to produce a set of sub-requirements: req 1, req2,

..., reqn.

2. Formalize each sub-requirement reqi using the specification statement of ATOM to produce spec1, spec2, ...,

specn. Note that the formal specification, SPEC, which corresponds to REQ, is given by

SPEC ��
�

i��1�n�

speci

3. Using the refinement calculus, each specification speci may be refined into an object obji:

speci�obji

4. The collection of resulting objects are then composed to produce the final concrete system.

5. Use HRT-HOOD to map the resulting concrete code to an equivalent Ada code.

We note the following:

(a) In Step 1, the decomposition of REQ is left to the designer of the system, and various visual techniques are offered

by HRT-HOOD. In this step, a logical architecture of the system is developed in which appropriate classes of

objects, together with their timing properties are identified. We note here that in the logical architecture we

do not address those requirements which are dependent on the physical constraints imposed by the execution

environment. Such constraints as scheduling analysis are dealt with in a similar fashion as in [Lowe and Zedan

1995].

(b) Due to compositionality, the final concrete system in the Step 4 is a refinement of SPEC as defined in the Step 2.

(c) Various properties may be proved at the specification level in the Step 2.

7 A SMALL CASE STUDY

The case study used here is a simplified version of “The Mine Control System” [Burns and Wellings 1995], by

keeping activities on motor and gas, and adding a sporadic activity initiated by the operator.

The requirement of the system is given as follows.

1. Every 20 time units, the gas level is checked. If the gas level is higher than 40 and the motor is on, then the

motor is switched off within 5 time units.

2. An operator can issue one of two commands: ‘Start’ or ‘Stop’. The System reacts upon receiving the operator’s

command whenever it is received at least 10 time units has elapsed since the last command. The reaction is as

follows:



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 15

� if the command is ‘Start’, the motor is switched off, and the gas level is not higher than 40, then the motor

is switched on within 5 time units.

� if the command is ‘Stop’ and the motor is switched on, then the motor is switched off within 5 time units.

We can decompose1) this requirement into the following three sub-requirements (or components).

1. React: The reaction of the system depends on the command received from the operator.

� The reaction is performed at least 10 time units since the last command was received.

� if the command is

(a) ‘Start’, the motor is switched off, and the gas level is not higher than 40, then the motor is switched

on within 5 time units.

(b) ‘Stop’ and the motor is switched on, then the motor is switched off within 5 time units.

2. Gas Check:

� Check the gas level every 20 time units.

� If the level is higher than 40 and the motor is in operation, then switch the motor off within 5 time units.

3. Switch: Switch the motor on or off if requested. Only one operation can be done at the same time.

We now give the formal specification of React.

fReact ��

�stable�Cmd�;

�Skip �
�

Cmd ���
�

Cmd� ; �len � 10 � fcmd ; true�

��

where

fcmd ��

�read�Cmd� � start � read�Motor� � off � Gas level� 40 �

len � 5 � stable�Motor� ; fon ; stable�Motor�

� �

�read�Cmd� � stop � read�Motor� � on �

len � 5 � stable�Motor� ; foff ; stable�Motor�

�

1)This decomposition may be done using various techniques provided by the various structured methodologies



16 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

and

fon �� Skip � �Motor � �
�

Motor�1�on�

foff �� Skip � �Motor � �
�

Motor�1�off �

fReact can be refined into the following object using law 17.

fReact �
sporadic10 �React� thread on Cmd do fcmd end

and fcmd can be refined, using law 11 and 10, into

fcmd �
if �read�Cmd� � start � read�Motor� � off � Gas level� 40� then �5� �fon�

� �read�cmd� � stop � read�Motor� � on� then �5� �foff �

fi

Since read�Cmd� and read�Motor� are not concrete constructs these should be further refined. This is done with the

introduction of variables X�Y with law 8 and 14 that will get, respectively the values of shunts Cmd and Motor, i.e,

�
varX�Y in

�X � Cmd 
 Y �Motor� 

if �X � start � Y � off � Gas level� 40� then �5� �fon�

� �X � stop � Y � on� then �5� �foff �

fi

The final step consists of refining fon and foff , using law 6, into respectively

fon � �on�Motor�

foff � �off �Motor�

Using law 1 we get the final concrete code.

varX�Y in

�X � Cmd 
 Y �Motor� 

if �X � start � Y � off � Gas level� 40� then �5� �on�Motor�

� �X � stop � Y � on� then �5� �off �Motor�

fi



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 17

8 DISCUSSION

In this paper we have introduced an object-based development technique called ATOM. IT is a wide-spectrum

formal design language that extends the Temporal Agent Model (TAM) with the capability of describing behaviors of

objects and method invocations. It also supports mixing of abstract statements, known as ‘specification’ statements,

and ‘concrete’ executable statements.

The novelty of our treatment lies in the underlying computational model. The model was particularly con-

structed so that the resulting concrete system can be easily analyzed for their schedulability in a distributed hard

real-time execution environment. The computational model prescribes the use of object structure which facilitates

the development of large scale systems. The object structure was based on an industry-strength object methodology

known as HRT-HOOD. Within an object, agents are statically allocated which may communicate asynchronously

using (single writer - multiple reader) shunts.

A characteristic of our approach is that during the refinement stages, all necessary timing information may

be gathered in the form of ‘proof-obligations’. These obligations are obviously proved correct (as a result of the

soundness of the refinement laws) and are vital to scheduling theorists. Once these obligations are available, various

scheduling tests and analysis may be applied. In fact these tests could also be applied after each refinement step; if the

test is not valid then the step is repeated until the obligation is satisfied.

It is clear that some of the timing characteristics may be left as ‘variables’ to be determined at a later stage of

development. These variables are constrained by the obligations themselves.

In addition, a graphical notation was provided for the presented object-based structure. For example, an spo-

radic object o with can be represented as Fig. 1.

o

obj type S
...

interval T
...

thread on Ev

A

end

Figure 1: Sporadic Object



18 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

REFERENCES

Abrial, J. R., M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H. Sørensen (1991), “The B-method,” In VDM’91:

Formal Software Development Methods, Volume 2, S. Prehn and W. J. Toetenel, Eds., volume 552 of LNCS,

Springer-Verlag, pp. 398–405.

Auernheimer, B. and R. Kemmerer (1986), “RT-ASLAN: a Specification Language for Real-Time Systems,” IEEE

Transactions on Software Engineering 12, 9, 879–889.

Bastide, R. (1992), “Objets Coopératifs: un formalisme pour la modélisation des systèmes concurrents,” Ph.D. thesis,

Université Paul Sabatier de Toulouse.

Bastide, R. and P. Palanque (1993), “Cooperative Objects : a Concurrent Petri Net Based Object-Oriented Language,”

In IEEE / System Man and Cybernetics 93, Elseiver Science Publisher, Le Touquet (France).

Battiston, E., A. Chizzoni, and F. D. Cindio (1995), “Inheritance and concurrency in CLOWN,” In Proceedings of the

Application and Theory of Petri Nets 1995 workshop on Object-Oriented Programming and Models of Concur-

rency, Italy.

Battiston, E., A. Chizzoni, and F. D. Cindio (1996), “Modeling a cooperative environment with clown,” In Proceedings

of the second international workshop on Object-Oriented Programming and Models of Concurrency within the

16th International Conference on Application and Theory of Petri Nets, G. Agha, F. D. Cindio, and A. Yonezawa,

Eds., Osaka, Japan, pp. 12–24.

Battiston, E. and F. D. Cindio (1993), “Class orientation and inheritance in modular algebraic nets,” In Proceedings

International Conference on Systems, Man and Cybernetics, volume 2, Palais de L’Europe Hôtel Westminster, Le

Touquet, France, pp. 717–723.

Bergstra, J. A. and J. W. Klop (1984), “Process Algebra for Synchronous Communication,” Information and Control

60, 109–137.

Biberstein, O., D. Buchs, and N. Guelfi (1996), “COOPN/2 : A Specification Language for Distributed Systems

Engineering,” Technical Report 96/167, Software Engineering Laboratory, Swiss Federal Institute of Technology,

Lausanne, Switzerland.

Biberstein, O., D. Buchs, and N. Guelfi (1997), “Object-Oriented Nets with Algebraic Specifications: The CO-OPN/2

formalism,” In Advances in Petri Nets on Object-Orientation, G. Agha and F. D. Cindio, Eds., LNCS, Springer-

Verlag, To appear.

Burns, A. and A. Wellings (1995), HRT-HOOD: A Structured Design Method for Hard Real-Time Systems, Elsevier.

Canver, E. and F. von Henke (1997), “Formal specification and verification of objectbased systems in a temporal

logic setting,” Technical report, University of Newcastle Upon Tyne, England, Department of Computing Science,

Technical Report Second Year Report of the Esprit Long Term Research Project 20072 Design For Validation.

Cau, A. and H. Zedan (1997), “Refining Interval Temporal Logic Specifications,” In Transformation-Based Reactive



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 19

Systems Development, M. Bertran and T. Rus, Eds., number 1231 In LNCS, AMAST, Springer-Verlag, pp. 79–94.

Celic, B., G. Gullekson, and P. Ward (1994), Real-Time Object-Oriented Modeling, John Wiley & Sons.

Chen, Z. (1997), “Formal Methods for Object-Oriented Paradigm Applied to the Engineering of Real-Time Systems:

A Review,” Technical report, De Montfort University.

Chen, Z., A. Cau, H. Zedan, and H. Yang (1999), “Integrating Structured OO Approaches with Formal Techniques for

the Development of Real-time Systems,” To appear in International Journal of Information and Software Technol-

ogy.

Davies, J. (1991), “Specification and Proof in Real-Time Systems,” Ph.D. thesis, Oxford University, Cambridge Uni-

versity Press.

F. Jahanian and A. Mok (1986), “Safety Analysis of Timing Properties in Real-Time Systems,” IEEE Transactions on

Software Engineering 12, 9, 890–904.

Fraser, M. D., K. Kumar, and V. K. Vaishnavi (1991), “Informal and Foraml Requirements Specification Languages:

Bridging the Gap,” IEEE Transactions on Software Engineering 17, 5, 454–466.

Goguen, J. and R. Diaconescu (1994), “Towards an algebraic semantics for the object paradigm,” In In RECENT trends

in data type specification: workshop on specification of abstract data types: COMPASS: selected papers, number

785 In LNCS, Springer Verlag.

Harel, E., O. Lichtenstein, and A. Pnueli (1990), “Explicit Clock Temporal Logic,” In Proceedings, Fifth Annual

IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Philadelphia, Pennsylvania, pp.

402–413.

Hayes, I. J. and M. Utting (1998), “Deadlines are termination,” Technical Report Technical Report 98-01, Software

Verification Reseach Centre (SVRC).

He, H. and H. Zedan (1996), “A Fast Prototype Tool for Parallel Reactive Systems,” Euromicro Journal of Systems

Architecture .

He, J. (1991), “Specification oriented semantics for ProCoS programming language PL time,” Technical Report PRG-

OU-HJF-71, Oxford University.

Jackson, M. A. (1983), System Development, Prentice Hall, New Jersey.

Koymans, R. (1990), “Specifying real-time properties with metric temporal logic,” Real-Time Systems 2, 4, 255–299.

Lano, K. (1990), “Z++,” In Proceedings of Z User Workshop Oxford, J. E. Nicholls, Ed., Springer-Verlag.

Lano, K. (1995), “Distributed System Specification in VDM++,” In Proceedings of FORTE’95, Chapman and Hall.

Liu, S., A. J. Offutt, Y. Sun, and M. Ohba (1998), “SOFL: A Formal Engineering Methodology for Industrial Appli-

cations,” IEEE Transactions on Software Engineering 24, 1.

Lowe, G. and H. Zedan (1995), “Refinement of complex systems: a case study,” The Computer Journal 38, 10.

Malcom, G. and J. Goguen (1994), “Proving correctness of refinement and implementation,” Technical Report Prg-



20 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

114, Oxford University, Oxford Technical Monograph.

Mander, K. C. and F. Polack (1995), “Rigorous Specification using Structured Systems Analysis and Z,” Information

and Software Technology 37, 5–6, 285–291.

Meldrum, M. and P. Lejk (1993), SSADM techniques: an introduction to Version 4, Chartwell-Bratt.

Merlin, P. M. and A. Segall (1976), “Recoverability of communication protocols - implications of a theoretical study,”

IEEE Transactions on Communications , 1036–1043.

Meseguer, J. (1993), Research Directions in Concurrent Object-Oriented Programming, chapter A logical theory of

concurrent objects and its realization in the maude language, The MIT Press, Cambridge, Mass., pp. 314–390.

Meseguer, J. and T. Winkler (1992), Parallel Programming in Maude, volume 574 of LNCS, Springer-Verlag, New

York, N.Y., pp. 253–293.

Morzenti, A. and P. S. Pietro (1994), “Object-Oriented Logical Specification of Time-Critical Systems,” ACM Trans-

actions on Software Engineering and Methodology 3, 1, 56–98.

Moszkowski, B. (1985), “A temporal logic for multilevel reasoning about hardware,” Computer 18, 2, 10–19.

Ostroff, J. S. and W. M. Wonham (1985), “A Temporal Logic Approach to Real Time Control,” In Proc. of 24th Conf.

Decision and Control, Fort Lauderdale, FL, USA, pp. 6565–6567.

Petri, C. A. (1962), “Communication with Automata,” Ph.D. thesis, Univ. Bonn.

Plat, N., J. Katwijk, and K. Pronk (1991), “A Case for Structured Analysis/Formal Design,” In Proceedings of VDM’91,

number 551 In LNCS, Springer-Verlag.

Ramchandani, C. (1974), “Analysis of asynchronous concurrent systems by timed Petri nets,” Technical Report MAC

TR 120, MIT.

Robinson, P. J. (1992), HOOD: Hierarchical Object-Oriented Design, Prentice Hall.

Schneider, S., J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe (1992), “Timed CSP: Theory and

Practice,” In Proceedings of Real-Time: Theory in Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and

G. Rozenberg, Eds., volume 600 of LNCS, Springer, Berlin, Germany, pp. 640–675.

Scholefield, D., H. Zedan, and J. He (1993), “Real-Time Refinement: Semantics and Application,” In Mathematical

Foundations of Computer Science 1993, 18th International Symposium, A. M. Borzyszkowski and S. Sokolowski,

Eds., volume 711 of lncs, Springer, Gdansk, Poland, pp. 693–702.

Scholefield, D., H. Zedan, and H. Jifeng (1994a), “A specification-oriented semantics for the refinement of real-time

systems,” Theoretical Computer Science 131, 1, 219–241.

Scholefield, D. J., H. Zedan, and J. He (1994b), “A Predicative Semantics for the Refinement of Real-Time Systems,”

In LNCS, number 802, Springer-Verlag, pp. 230–249.

Semmens, L. T. and P. M. Allen (1991), “Using Yourdon and Z: An Approach to Formal Specification,” In Z User

Workshop, Oxford 1990, J. E. Nicholls, Ed., Workshops in Computing, Springer-Verlag, pp. 228–253.



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 21

Spivey, J. M. (1996), “Richer Types for Z,” Formal Aspects of Computing 8, 565–584.

Yi, W. (1991), “CCS + Time = An Interleaving Model for Real Time Systems,” In Automata, Languages and Pro-

gramming, 18th International Colloquium, J. L. Albert, B. Monien, and M. Rodrı́guez-Artalejo, Eds., volume 510

of LNCS, Springer-Verlag, Madrid, Spain, pp. 217–228.

Yourdon, E. (1989), Modern Structured Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

Zhou, C., C. Hoare, and A. Ravn (1991), “A Calculus of Durations,” Information Processing Letters 40, 5, 269–276.

A ATOM FORMAL SEMANTICS

The semantics of the concrete statements in the language of ATOM is given denotationally in terms of a

formula in ITL. We begin by first introducing some extensions to ITL in order to describe the formal semantics of

ATOM. Let W be a set of state variables then frame�W� denotes that only the variables in W can possible change, i.e.,

the variables outside the frame don’t change. Here, we adopt a combined state-communication model for the system

behavior where the observables correspond to the following variables:

� The normal state variables of ITL.

� variables s representing shunts whose values are tuples �t�v� where t is a stamp and v the value written. The

stamp value of s will be denoted by
�

s and the value stored in s will be denoted by read�s�.

The ITL semantics of ATOM is given as follows

1. Agent Structure: The semantics is given in Table 4.

Table 4: Semantics of ATOM agents

w : f �� frame �w� � f

Skip �� Skip

∆t �� len � t

x :� e �� �x � e

x
 s �� x1 �
�

s � x2 � read �s�

x� s �� �s � �
�

s�1�x�

A ; A �
�� A ; A �

varx in A �� �x � A
shunt s in A �� �s � �s � 0 � A
�t� A �� ∆t � A ; true � �A � len �� t�

ift �i�Igi then Ai fi ��
�

i�I��t� �gi � Ai�� � �t� �
�

i�I �gi�

A � A �
�� A � A �

A�s
t A �

�� �∆t � stable�s�� ; A � �∆t � �stable�s�� ; A �

A 
 A �
�� A � A �

loop for n period t A �� ��t� A�n



22 Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems

2. Object Structure

� A cyclic object

cyclic �Object name� thread on P do A end ��

finite � �len � P � �A ; true���

� A sporadic object:

an object in which the agent A is executed whenever the shunt Ev is written to. The interval between two

successive executions can not be less than T:

sporadicT �Object name� thread on Ev do A end ��

finite � �stable�Ev� ; �Skip �
�

Ev �� �
�

Ev� ; �A ; true � len � T���

� For protected and passive objects, we need to identify all possible states for method invocation. Let

Statusi � �Idle�Req�Act�

denote the status of a method, idle (or terminated), requested or active respectively.

(a) A protected object:

is an object in which the method body A i is executed when method mi has been requested, but the

execution must be ‘mutually exclusive’ within the object.

protected �Object name� ProvidedMethods �m1� � � � �mn� end ��

finite �
�

i mi�Mut

where

mi �� �Statusi � Req� stable�Statusi�� ; Skip;

�Statusi � Act � stable�Statusi��Ami� ; Skip;

�Statusi � Idle� stable�Statusi��

and

Mut �� ��Σi�Statusi � Act�� 1�

(b) A passive object:

Is similar to the protected object except that it responds to all method invocations at anytime:

passive �Object name� ProvidedMethods �m1� � � � �mn� end ��

finite �
�

i�mi�



Zedan, Cau, Chen and Yang, ATOM: An Object-Based Formal Method for Real-time Systems 23

� An active object:

If ProvidedMethods�o� �� /0, then every method m � ProvidedMethods�o� is implemented by one of its

child object.

active �Object name� ProvidedMethods �o1� � � � �on� end ��

�
i�oi�



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


