A Multi-Attribute Data Mining Model for Rule Extraction with Applications in the Financial Services Industry

Hannan Amoozad Mahdirajia
aSchool of Strategy and Leadership
Faculty of Business and Law
Coventry University, Coventry, UK
E-mail: ad3989@coventry.ac.uk

Madjid Tavana b,c,*
bBusiness Systems and Analytics Department
Distinguished Chair of Business Analytics
La Salle University, Philadelphia, PA 19141, USA
E-mail: tavana@lasalle.edu
Web: http://tavana.us/

cBusiness Information Systems Department
Faculty of Business Administration and Economics
University of Paderborn, D-33098 Paderborn, Germany

Pouya Mahdianid
dFaculty of Management
University of Tehran, Tehran, Iran
E-mail: pouya.mahdiani@ut.ac.ir

Ali Asghar Abbasi Kamardi e
eFaculty of Management
University of Tehran, Tehran, Iran
E-mail: abbassikamardi@ut.ac.ir
A Multi-Attribute Data Mining Model for Rule Extraction and Service Operations Benchmarking

Abstract

Purpose. Considering customers’ differences and similarities play a crucial role in recent years. Specifically, service industries have to develop numerous strategies for various types of customers found on their action to reach performance improvement and customer loyalty. This study aims to understand the behavioral pattern of customers in the banking industry by proposing a hybrid data mining and decision-making approach resulting in rule extraction and service operation benchmarking.

Design/methodology/approach. We analyze customer data to identify the best customers using a modified Recency, Frequency, and Monetary (RFM) model and K-means clustering. The number of clusters is determined with a two-step K-means quality analysis based on the Silhouette, Davies-Bouldin, and Calinski-Harabasz indices and the Evaluation based on Distance from Average Solution (EDAS). The Best-Worst Method (BWM) and the Total Area based on Orthogonal Vectors (TAOV) are used next to sort the clusters. Finally, the associative rules and the Apriori algorithm are used to derive the customers’ behavior patterns.

Findings. As a result of implementing the proposed approach in the financial service industry, customers were segmented and ranked into six clusters by analyzing 20,000 records. Furthermore, frequent customer financial behavior patterns were recognized based on demographic characteristics and financial transactions of customers. Thus, customer types were classified as highly loyal, loyal, high-interacting, high-interacting, low-interacting, and missing customers. Eventually, appropriate strategies for interacting with each customer type were proposed.

Originality/Value. We propose a novel hybrid multi-attribute data mining approach for rule extraction and service operations benchmarking approach by combining data mining tools with a multi-layer decision-making approach. The proposed hybrid approach has been implemented in a large-scale problem in the financial services industry.

Keywords. data mining; rule extraction; K-means clustering; evaluation based on distance from average solution; total area based on orthogonal vectors; best-worst method.
1. Introduction

Satisfied customers are the key to a successful business, and a deep understanding of consumer expectations is critical to long-term success. The financial services industry has realized the significance of managing customer relationships due to high levels of competition (Öztaysi et al., 2011; Worthington and Welch, 2011). Loyalty in financial services is now more customer-centric, and customers expect to receive services that work for them (Leverin and Liljander, 2006; Reichstein and Salter, 2006). Customer segmentation enables companies to group customers and understand their needs. It also allows for individual and productive interaction with each group (Yao et al., 2014). Research shows 1% growth in customer retention could improve the value of an organization by as much as 5% (Farajian and Mohammadi, 2010). Therefore, customer loyalty and retention is a valuable strategy that guarantees long-term value to organizations. This is more perceptible in financial services organizations where a large percentage of the business originates from a small percentage of customers (Cheng and Chen, 2009; Liu and Shih, 2005). Kotler et al. (1991) have shown that the cost of attracting a new customer is often five times the cost of retaining an existing customer. Furthermore, the success of selling products to existing customers is usually much higher than selling to new customers (Griffin et al., 2001). Numerous methods have been proposed for customer segmentation in the literature. Among these methods, clustering is the most common pre-institutional approach (Wedel and Kamakura, 2000). Moreover, the Recency, Frequency, and Monetary (RFM) model has also been used to understand and group customers according to the activities and buying behavior (Fader et al., 2005; Newell, 1997). These methods have been widely used for customer analysis because of their simplicity, transparency, and applicability.

Today, customers with different needs enter the markets, and various product or service providers are looking to attract them. Hence, it is significant for service industries to develop their strategies found on target marketing for numerous types of customers instead of developing a mass marketing strategy (Çinar et al., 2020). Researchers have applied novel approaches like data mining tools (Çinar et al., 2020), multi-criteria decision-making techniques (Ghorabaee et al., 2017), and metaheuristic algorithms (Kuo et al., 2020) to segment the market. However, some lacunae should be discussed. The quality of the segments is a highlighted point that must be considered. Miscellaneous models have been proposed in previous researches. Nevertheless, these models should be extended regarding the characteristics of the industry. Moreover, the quantity, as well as the quality of the segments, is a highlighted point that has not been studied well. Furthermore, the behavior of the customers in each segment should be analyzed precisely to ensure that the strategies conforms to these
behaviors.

The competition to attract new customers has intensified in the banking sector to the extent that some banks have merged to raise capital and increase their customer base. Lack of attention to new marketing principles such as customer development, new service delivery, and target customer recognition in this competitive environment has resulted in customer loss in the financial services industry. Comprehensive customer service and support is the best strategy for customer loyalty and retention. In this study, we propose an integrated framework with the K-means clustering and the Distance from Average Solution (EDAS) method to improve clustering quality and select the optimal number of customer clusters. Furthermore, we use the Best-Worst Method (BWM), and the Total Area based on Orthogonal Vectors (TAOV) to rank the customer clusters. Finally, we use the Apriori algorithm to explore customer behavior patterns. By integrating these models with the Customer Lifetime Value (CLV) model, we formulate strategies for each customer cluster and move from mass marketing to limited (individual) marketing for customer retention.

The remainder of this paper is organized as follows. Section 2 presents the theoretical foundations by discussing the significance of big data applications, customer segmentation, RFM method, K-means clustering, the BWM, EDAS, TAOV, and association rules. In Section 3, we introduce the proposed integrated framework, and in Section 4, we present our analysis and results. Finally, in Section 5, we present our practical implications, and in Section 6, we present our conclusions.

2. Theoretical foundations
2.1. Significance of big data application

Nowadays, the impressive growth of data may be reached from any source, e.g., sensors, shopping transactions, and even social media networks. The speed of data advancement has indeed surpassed Moore’s Law (Chen and Zhang, 2014). Each day in 2011, more than 2.5 centillion data has been produced according to International Business Machines Corporation (IBM) reports (Hilbert and López, 2011). Figure 1 elaborates on the results of the global data forecast provided by the International Data Corporation (IDC). There is no doubt that the era of big data has arrived (Wang et al., 2016). In addition to high volume, big data is related to structural complexity, the complication of data acquisition, and data management (Casado and Younas, 2015).

Gutner indicates that big data will become one of the top ten technology of the next five
years, in a report in 2012. Big data creates huge value. These values are created as a chain through the processes of data discovery, integration, and exploitation (Miller and Mork, 2013). The McKinsey Institute has reported that over 50% of the 560 surveyed companies stressed that big data could help the selection of appropriate strategies and customer services (Manyika et al., 2011). This big data can support smart organization’s decisions. However, they also need to support themselves. Figure 2 demonstrates the big data value chain.

As shown in Figure 2, big-data-driven decision-making involves data acquisition, data preparation, data analysis, data visualization, and informed decision making. There are numerous definitions of big data formation (Ekbia et al., 2015). The product-oriented aspect emphasized data characteristics such as their size, speeds, and structures (Gobble, 2013). The process-oriented viewpoint highlights the characteristics of the processes involved in the storage, management, collection, search, and analysis of big data (Jacobs, 2009; Kraska, 2013). The cognition-based approach focuses on the challenges posed by big data due to their cognitive capacities and limitations (Manyika et al., 2011). Finally, the social movement perspective draws attention to the gap between view and reality, particularly the social, economic, cultural, and political movements that show the existence of big data (Ekbia et al., 2015). There are usually three main activities related to the high-focused data, including the acquisition, modification, and analysis of big data (Hey et al., 2009). Nevertheless, the purpose of big data processing is to exploit the knowledge extracted from the data to protect smart decision-making. The process of knowledge discovery from this data includes the steps of data collection, data pre-processing (cleaning and integration), data conversion, data mining, and interpretation, and data evaluation (e.g., visualization (Chen et al., 2014; Bhambri, 2011; Newton, 2004). Figure 3 displays data mining tools.

As shown in Figure 3, there are two different types of data mining tools: descriptive and predictive. The descriptive tools (i.e., associative rules, summarization, pattern recognition, and clustering) are used to scrutinize the data and the predictive tools (i.e., regression, time series, forecasting, and classification) are used to predict a relevant behavior or pattern in the data. More specifically, data mining is defined as an advanced information search that includes a statistical algorithm to discover patterns and relationships of data (Topi and Tucker, 2014). Data mining tools capture data and create a model of reality as a model. The resulting model describes the motifs and relationships of the data. Data mining tools
pictured above are used in various businesses and industries (Razavi et al., 2015; Beheshti et al., 2016; Mokhtarzadeh et al., 2018). Banks can employ the knowledge discovery process by data mining methods for plenty of their operations, including card marketing, pricing, and profitability from card owners, fraud discovery, predictive life cycle management, and customer segmentation (Mahdiraji et al., 2019). Among these various applications of data mining in banking, customer segmentation is presented further.

2.2. Customer segmentation
Customers have divergent needs, behaviors, and preferences. Equal treatment and service to these heterogeneous customers are challenging for companies (Peker et al., 2017). Customer segmentation was first introduced by Smith in 1956 and has been emerged to address this problem (Smith, 1956). Subsequently, it was supported by abundant companies in several fields. Customer segmentation is dividing the entire customer pool into smaller segments, each containing customers that have similar requirements and characteristics. In customer segmentation, the variables are generally separated into two categories. General variables include customer demographics (e.g., gender, age, income, education level) and lifestyle (e.g., urban, rural). Besides, specific product-based variables contain customer purchase behavior (e.g., number of purchases, uses, costs) and intentions. Either way, it is easier to stress and work with general variables. However, specific product and service-centered variables are more highlighted for understanding customer behavior and provide more opportunity to engage in differentiating customers to deal with them (Tsai and Chiu, 2004). Widely use of customer segmentation has been noted in recent years. As an illustration, the segmentation cashback website customers in the field of e-commerce was presented (Ballestar et al., 2018). Furthermore, air cargo customers by an intelligent model to maintain customers and increase profit margins were segmented (Yin et al., 2019). Moreover, customer loyalty in the field of local brand fashion by concentrating on customer segmentation was discussed (Dachyar et al., 2019). Furthermore, market segmentation in willingness to order private label brands from the viewpoint of e- grocery shoppers was illustrated (Jagani et al., 2020).

In this context, features of the RFM model, and the derivatives derived from this model is recognized as a highly applicable and effective model. Hence, it has been applied in bountiful studies to identify customer treatments. Considering the customers’ needs and paying attention to them can help companies maintain long-term relationships with their customers (Dibb, 1998). Moreover, companies can improve their revenues by attracting and retaining valuable customers at the lowest cost (Safari et al., 2016). Due to the significance of market segmentation, numerous techniques have been applied to propose an appropriate model to
perform it.

2.3. RFM model for predicting customer behavior

The RFM model was first introduced by Hughes in 1996 to analyze and predict customer behavior. The basic RFM model has three main functions:

a. **Recency (R).** The recency or recent transactions refers to the time from the last purchase (day or month). It provides information about the potential presence of the customer to re-purchase. The probability of a re-purchase or re-presence of the customer will be higher for nearer recency.

b. **Frequency (F).** Frequency is the number of times that a customer has been present. In other words, it points to the existence of a customer over a particular period, which indicates customer loyalty. Higher purchase frequency is a sign of higher customer loyalty.

c. **Monetary Value (M).** Monetary consists of the total amount of money spent. By way of explanation, it declares the average amount of money spent over a precise period that assesses the customer’s share of a company’s revenue. The larger this value, the greater the customer’s share of the company’s revenue.

Some extensions and similar versions of RFM are as follows:

- **RFMTC** for adding two other variables including time of first purchase and Churn Probability to recency, frequency, and monetary (Yeh et al., 2009).
- **Timely RFM**, or TRFM, refers to the periodicity of the product (Li et al., 2006).
- **RFD** is signifying recency, frequency, and duration. Which considers the length of time a website has been visited (Yan and Chen, 2011).
- **RML**, including recency, monetary value, and loyalty, adapted RFM to the annual transaction environment (Dursun and Caber, 2016).
- **RFR** consists of recency, frequency, and reach, which intends for social elements such as last post (post) and repetition (number of posts) or access (i.e., reach a network of friends) (Birant, 2011).
- **FRAT** contains frequency, recency, amount, and product types that perform the sorting task according to the types of products purchased (Woo et al., 2005).

The previous research shows the widespread use of the K-means clustering algorithm by the side of RFM models. An adapted RFM model to estimate passenger value in Taiwan was previously used (Wong et al., 2006). Furthermore, the RFM model to predict target market value in travel clubs was designed (Lumsden et al., 2008). Besides, customer value found on the weighted RFM to decide on the customer relationship management (CRM) system in the
banking industry was calculated (Khajvand et al., 2011). Alongside RFM, the K-means algorithm is applied in the field of classification and segmentation (Cheng and Chen, 2009). Moreover, self-organizing maps (SOM) and K-means with the RFM model in the hair salon area of Taiwan were employed (Wu, 2014). Moreover, the customer’s purchase treatments by considering market segmentation are analyzed, recently (Anitha and Patil, 2019).

2.4. K-means clustering

Clustering is a significant tool that has been popularly employed in customer segmentation (Chiu and Tavella, 2008; Sarstedt and Mooi, 2014). The purpose of clustering is to group a set of objects that have the most similarity and properties to each other (Jain et al., 1999). Figure 4 has pictured the types of clustering methods.

As shown in Figure 4, clustering methods are classified into hierarchical and partitioned methods. Hierarchical methods are used when the relationship among the clusters is dependent and partitioned methods are used when the relationship among the clusters is independent. Furthermore, hierarchical methods are divided into agglomerative and divisive models, and partitioned methods are divided into distance-based, model-based, and density-based models. The K-means algorithm (MacQueen, 1967) is one of the most common techniques (Jain, 2010). This algorithm can be run easily and rapidly (Cheung, 2003; Davidson, 2002). This method requires specifying the number of clusters (K). The steps to implement the K-means algorithm are as follows:

a) The K points are elected as the points of the centroids of the clusters;

b) Each data sample is assigned to the cluster whose center is the least distance to that data.

These distances can be computed by Euclidean as follows.

\[J = \sum_{j=1}^{k} \sum_{i=1}^{n} \| x_i - c_j \|^2 \]

(1)

Notably, J demonstrates the distance between \(i \)th data sample (\(x_i \)) and the center of the \(j \)th cluster (\(c_j \)). Moreover, \(n \) is the number of the data sample and \(k \) is the number of the clusters.

c) After all, data belongs to one cluster; a new point is calculated for each cluster as the center.

d) Steps 2 and 3 are repeated until no change in the center of the clusters is achieved.

K-mean clustering has been applied in numerous fields with Convex Hux to predict future disasters (Basak et al., 2019; Gupta et al., 2019). Furthermore, K-mean is employed to detect a brain Tumor (Khan et al., 2019). Notably, customer research and analysis are some highlighted fields in which k- means have been used. There are miscellaneous criteria for
evaluating clusters. Three of these criteria which are frequently used are Silhouette (SIH), Davies- Bouldin (DB), and Calinski- Harabasz (CH).

Silhouette. It is one of the methods to evaluate clustering (Rousseeuw, 1987). This criteria depends both on the cohesion of the clusters and the degree of their distinction. The value of SIH for each point measures its belonging to the cluster in comparison with the belonging to the adjacent cluster. The focus of the SIH criteria relies on the quality of the performed clustering. This criteria determines what the data distribution is in the clusters. The higher the SIH, the better the clustering quality. The following two concepts are measured in calculating the SIH:

- **Mean distance of a point to other points within a cluster.** Suppose \(x_i \) belongs to the \(C_j \) cluster. The mean distance of this point to other points within the cluster will be measured by Eq. (2).

\[
a(i) = \frac{1}{n_j} \sum_{i=1}^{n_j} d(x_i, x_i)
\]

(2)

Note that \(n_j \) is the size of cluster \(j \). Besides \(d(x_i, x_i) \) demonstrate the distance between data sample \(x_i \in C_j \) and other data samples in cluster \(j \) \((x_i) \). Indeed \(a(i) \) elaborates the belonging value of the \(x_i \) to its cluster, which is more for the lower values. This distance can be measured by divergent functions, e.g., Manhattan and Euclidean.

- **Minimum of a mean distance of a point to other clusters.** Suppose that \(x_i \) is a point belonging to cluster \(C_j \). The minimum of a mean distance of this point to cluster \(C_k \) is computed by Eq. (3).

\[
b(i) = \min_{1 \leq l \leq k} \frac{1}{n_l} \sum_{y_m \in C_k} d(x_i, y_m)
\]

(3)

It is notable that \(d(x_i, y_m) \) is the distance between data sample \(x_i \) and \(y_m \) which are the points belonging to \(C_k \). Moreover, \(n_l \) is the number of measured distances. A cluster that has the lowest mean distance to the point \(x_i \) is referred to as an adjacent cluster to this point. Thus, the value of the SIH criteria \(s(i) \) for point \(x_i \) is calculated by Eq. (4).

\[
s(i) = \frac{b(i) - a(i)}{\max(b(i), a(i))}
\]

(4)

Remarkably, \(a(i) \) is the mean distance of this point to other points within the cluster which is measured by Eq. (2) and \(b(i) \) is the minimum of a mean distance of this point to other clusters that are calculated by Eq. (3).
Calinski-Harabasz index. For a set of data E by the size of N which is clustered into K clusters, this index, which is also called the Variance Ratio Criteria (VRC) is computed by Eq. (5).

$$VRC_k = \frac{SS_B}{SS_W} \times \frac{(N - K)}{(K - 1)} \tag{5}$$

Note that SS_B is the sum of variance between clusters obtained by Eq. (6), and SS_W is the sum of variance within clusters measured by Eq. (7).

$$SS_B = \sum_{j=1}^{k} n_j (c_j - c_E)(c_j - c_E)^T \tag{6}$$

$$SS_W = \sum_{j=1}^{k} \sum_{x_i \in c_j} (x_i - c_j)(x_i - c_j)^T \tag{7}$$

Remarks that in Eq. (6), n_j is the size of cluster j, c_j is the centroid of cluster j and c_E is the centroid of E. Also, in Eq. (7), x_i represents the members of cluster j. The best number of clusters is determined by the largest VRC value (Calinski and Harabasz, 1974). It is illustrious that selecting the optimal number of clusters is one of the most remarkable steps in implementing clustering. Multi-Criteria Decision Making is a beneficial tool to find the optimal number of clusters.

Davies- Bouldin index. This index was introduced by Davies and Bouldin, two scientists in the field of electricity in 1979 (Davies and Bouldin, 1979). This index is not dependent on the number of clusters or the clustering algorithm. The two criteria introduced next are used to calculate this index.

- **The measure of scattering within a cluster.** Suppose that S_i is the measure of scattering corresponding to the cluster C_i and d is also a distance function. Then the scattering rate for this cluster will be calculated by Eq. (8) in case (r) denotes the order.

$$S_i = \left[\frac{1}{|C_i|} \sum_{x \in C_i} d^r(x, c_i) \right]^{\frac{1}{r}} \tag{8}$$

Note that C_i is the centroid of cluster i. This relation is, in fact, similar to Minkowski’s distance of the points of each cluster from its centroids.

- **Cluster separation.** The separation between the two clusters is also measured by the distance between their centroids. If V_i and V_j are the centroids of the clusters i and j and $d(V_i, V_j)^t$ is the distance between these two centroids considering the order of t, the distance between these two clusters is shown by D_{ij} and is obtained by Eq. (9) for a specific
order of \(t \).

\[
\begin{align*}
D_{ij} &= \left[\sum d(v_i, v_j)^t \right]^{\frac{1}{t}} \\
\end{align*}
\]

Considering \(S_i \) and \(S_j \) as the scatter of the cluster \(i \) and \(j \) obtained by Eq. (8), and \(D_{ij} \) for separation measured by Eq. (9), \(R_{ij} \) can be calculated by Eq. (10) which demonstrates how good is the clustering scheme.

\[
R_{ij} = \frac{S_i + S_j}{D_{ij}}
\]

The maximum distance of each cluster relative to the other clusters is computed by Eq. (11) to attain the Davis-Bouldin index for a clustering method.

\[
R_i = \max R_{ij}
\]

Then the mean of the maximum distances will be calculated for all clusters by Eq. (12), which indicates DB index.

\[
V_{DB} = \frac{\sum_i^k R_i}{k}
\]

It is noteworthy that \(k \) is the number of clusters, and the lower the DB index, the better the clustering. However, in this research, we proposed a decision-making approach to identify the optimal number of clusters. Stewart (1992) proposes that the purpose of any multi-criteria decision-making (MCDM) method is to assist the decision-maker in discovering the solution to the problem (Stewart, 1992). In the coming, some of the MCDM techniques used in this research are described, including BWM, EDAS, and TAOV.

2.5. Best-worst method

The best-worst method (BWM) was submitted by Rezaei 2015 (Rezaei, 2015). There are many MCDM methods available to calculate the weight and importance of criterias such as Analytical Hierarchical Process (AHP), Simultneaously evaluation of Criteria and Alternatives (SECA), etc. However, most of these methods are based on heuristic calculations and usually result in nearly optimal values. In this regard, the BWM is one of the newest and most effective MCDM techniques used to extract the weights of the criteria thru a nonlinear mathematical model with global optimal values. The following steps are required to perform this technique.

a) A set of decision criteria are elicited (\(\{C_1, C_2, \ldots, C_n\} \)),

b) The best and the worst criteria are determined; the best can be the most desirable or the most crucial,

c) Pair comparisons between the best criteria and the other criteria are made (\(A_B = \{a_{b1}, a_{b2}, \ldots, a_{bn}\} \)),
..., \{a_{bn}\}), \\
d) Pair comparisons between the other criteria and the worst criteria are made \((A_w = \{a_{1w}, a_{2w}, \ldots, a_{nw}\})\), \\
e) The optimal weights are extracted by solving the model of (13) \((\{W_1, W_2, \ldots, W_n\})\), \\
\[
\begin{align*}
\min \xi \\
st: \\
\left| \frac{W_B}{W_j} - A_{bj} \right| \leq \xi; \quad \text{for all } j \\
\left| A_{jw} - \frac{W_j}{W_W} \right| \leq \xi; \quad \text{for all } j \\
\sum W_j = 1 \\
W_j \geq 0
\end{align*}
\]
\[(13)\]

Note that, \(W_B\) and \(W_W\) elaborate the weight of the best and the worst criteria and \(W_j\) the weight of the \(j^{th}\) criteria. Moreover, the objective function (\(\xi\)) aims to minimize the difference between the \(W_j\) value resulted from the model and the \(A_{bj}\) and \(A_{jw}\) values gathered from the experts via questionnaire. Besides, the compatibility rate of comparisons (CR) or consistency ratio is computed by \(CR = \frac{\xi^*}{CI}\) to check the validity of the results emanated from experts. CR values less than or equal to 0.1 are acceptable. Note that \(CI\) is the compatibility index, which is determined based on the preference of the best criteria over the worst criteria (\(ABW\)). The \(CI\) values are mentioned in Table 1.

Insert Table 1 Here

It is preferred that the value of CR for each expert result is less than 0.5. Higher values are not recommended, and the expert should fill the questionnaire again or replace it with another possible expert. Numerous applications of BWM have been investigated in numerous fields. Some applied BWM to evaluate key factors of sustainable architecture (Amoozad Mahdiraji et al. 2018) or locating a hotel by a viewpoint of sustainability (Hashemkhani Zolfani et al., 2019). Recently, the combination of BWM and combinative distance-based assessment (CODAS) under the condition of interval-valued multi-granular 2-tuple linguistic was used for site selection in construction projects (Maghsoudi et al., 2020).

2.6. Evaluation based on distance from average solution technique

EDAS is an MCDM method to prioritize the alternatives. A wide range of methods are available in the MCDM era to rank alternatives based on specific criterias. As in this research SIH, CH, and DB criteria are used to evaluate the different number of clusters for customers
based on the k-mean method, then the distance from average values of these three criteria is critical. Hence, as in the EDAS method, two metrics are employed for alternative assessment containing Positive Distance from Average (PDA) and Negative Distance from Average (NDA), the authors have decided to benefit from this method to investigate the different number of clusters. The executive steps are as follows (Ghorabaee et al., 2017).

a) The most highlighted criteria that define alternatives are selected,
b) The decision matrix is constructed. X_{ij} symbolizes the performance of the value of the i_{th} alternative over the j_{th} criteria ($DM = [X_{ij}]$),
c) Average solutions are obtained by Eq. (14) ($AV = [AV_j]$),
$$AV_j = \frac{\sum_{i=1}^{n} x_{ij}}{n}$$ \hspace{1cm} (14)
d) PDA and NDA are measured by Eqs. (15) and (16) for beneficial criteria and Eqs. (17) and (18) for cost criteria,
$$PDA_{ij} = \frac{\max(0, (x_{ij} - AV_j))}{AV_j}$$ \hspace{1cm} (15)
$$NDA_{ij} = \frac{\max(0, (AV_j - x_{ij}))}{AV_j}$$ \hspace{1cm} (16)
$$PDA_{ij} = \frac{\max(0, (AV_j - x_{ij}))}{AV_j}$$ \hspace{1cm} (17)
$$NDA_{ij} = \frac{\max(0, (x_{ij} - AV_j))}{AV_j}$$ \hspace{1cm} (18)
e) Find the weighted sum of PDA (SP) and the weighted sum of NDA (SN) for all alternatives by Eqs. (19) and (20). Note that W_j is the weight of the j_{th} criteria,
$$SP_i = \sum_{j=1}^{m} w_j \times PDA_{ij}$$ \hspace{1cm} (19)
$$SN_i = \sum_{j=1}^{m} w_j \times NDA_{ij}$$ \hspace{1cm} (20)
f) SP and SN values are normalized for all alternatives by Eqs. (21) and (22).
$$NSP_i = \frac{SP_i}{\max_i(SP_i)}$$ \hspace{1cm} (21)
$$NSN_i = 1 - \frac{SN_i}{\max_i(SN_i)}$$ \hspace{1cm} (22)
g) The evaluation score for all alternatives (AS) is measured by Eq. (23) when $0 \leq AS \leq 1$,
Criteria ratings are based on AS devaluation. The criteria with the highest value are the most valuable ones.

Mention that NDA is zero for alternatives with positive PDA and PDA is zero for alternatives with positive PDA. Abundant studies have been performed by the EDAS technique. Some scholars applied EDAS for green supplier selection (He et al., 2019; Zhang et al., 2019). This method is recently employed by BWM and Wavelet Neural networks for cloud service selection (Gireesha et al., 2020).

2.7. Total area based on Orthogonal Vector Method

The total area based on Orthogonal Vector (TAOV) is an MCDM technique to rank alternatives (Razavi Hajiagha et al., 2018). Scoring (e.g. AHP), compromising (e.g. EDAS), and outranking methods are available to rank different alternatives in the MCDM era. In this regard, the TAOV algorithm is performed in three phases of initialization, segmentation, and comparison. This method benefits from principal component analysis (PCA) to create the matrix of the distance between each pair of alternatives. The implementation steps in each phase are as comings.

a) The decision alternatives are identified (\{A_1, A_2, \ldots, A_n\}),

b) The decision criteria are recognized (\{C_1, C_2, \ldots, C_n\}),

c) Decision Matrix is created (X = [X_{ij}]),

d) The weight vectors are found (w = \{w_1, w_2, \ldots, w_n\}),

e) Decision Matrix is normalized for cost-benefit criteria (C represent cost and B elaborates benefit criteria) by Eqs. (24) and (25) \(R = [r_{ij}]\),

\[
\begin{align*}
 r_{ij} &= \frac{x_{ij}}{\max_i (x_{ij})}, j \in B \\
 r_{ij} &= \frac{\min_i (x_{ij})}{x_{ij}}, j \in C
\end{align*}
\]

f) The weighted normalized matrix is calculated by Eq. (26) \(WN = [\tilde{r}_{ij}]\),

\[
\tilde{r}_{ij} = w_j \cdot r_{ij}
\]

g) The normalized weighted matrix is converted to the Y-equivalent matrix of (27) regarding the calculation of Eqs. (27) to (29) using the principal component analysis. Moreover, the distance of each two-element is computed by Eq. (29).

\[
Y^T = \begin{bmatrix} Y_1^T \\ \vdots \\ Y_n^T \end{bmatrix} = AY^t = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} \tilde{r}_1^T \\ \vdots \\ \tilde{r}_n^T \end{bmatrix}
\]
The attractiveness of each alternative is calculated by Eq. (30),

\[TA_i = \sum_{j=1}^{n-1} d_{j,j+1}^i \]

The attractiveness of alternatives is computed by applying the normalized total area by Equation (31).

\[NTA_i = \frac{TA_i}{\sum_{k=1}^{m} TA_k} \]

2.8. Association Rules

Exploring association rules is one of the remarkable data mining techniques, perhaps the most common ones for finding local patterns of non-supervised learning systems. These techniques can be very useful in predicting the behavior of customers. Association rules allow characterized conditional terms. An association rule consists of two sets of items:

a) The antecedent or Left-Hand Side (LHS),

b) Consequent or Right-Hand Side (RHS) which is combined with repeat-based statistics. It interestingly illustrates the relationship between support and confidence.

The Apriori algorithm is the most highlighted and classical algorithm for the discovery of repeated item sets (Tiwari et al, 2010). The Apriori is used to find the entire set of data items in the provided database. Table 2 illustrates the previous researches in the field of market segmentation, customer clustering, customer analysis, and related topics.

Although numerous models have been proposed to segment the customers, these models have to be extended considering the type of industry, customers, accessible data, and the aim of the segmentation. Inappropriate segments would lead to the loss of marketing investment. The quality of the segmentation is a remarkable indicator that should be evaluated. A huge amount of big data is provided by datasets. Nevertheless, an applicable model considering various characteristics of the market can extract more valuable information and knowledge (Hu et al. 2020). Moreover, the techniques that are applied to perform the segmentation, play a meaningful role in improving the quality of the (Kimiagari et al., 2021; Parikh and Abdelfattah 2020). Alongside the quality, the quantity of the segments is a
highlighted indicator for assessing the segmentations (Munusamy and Murugesan 2020). Furthermore, to evaluate the quality and quantity of the segments, analyzing the behavior of the customers in each segment is also critical (Reutterer et al., 2020). Understanding their action will lead to developing more convenient strategies for each group. This research tries to advance the market segmentation by developing the RFM model which is a traditional model for predicting customer behavior. Further, this research combines the k-mean clustering as a powerful tool for analyzing big data with TAOV that is a novel multi-criteria decision-making technique. Employing this integration would guarantee the quality of the segmentation. Likewise, a cluster analysis is performed joined with the EDAS technique to optimize the size of the clusters. Finally, the CRM models and their combination with CLV are considered, which focuses more on its qualitative concepts. The novel model combines these two tools with outputs derived from the Apriori algorithm that can provide short-term and long-term banking strategies for the studied case.

3. Methodology

In this study, the actual data of 20,000 real accounts from customers operating on their accounts were selected among a million customers by the studied bank. It should be noted that each customer has one or more real accounts because the information is classified according to the national customer code. The transactions of these clients are analyzed monthly over the past 24 months. Also, banking and information technology experts’ opinions are used in various steps of this research to access and analyze banking and business information. The following is an overview of the implementation of this article.

Step 1. to prepare data, duplicate accounts, as well as empty or noisy fields, are refined after logging into Excel software. In the end, 20,000 data are selected as clean data for the survey. Pre-processing operations include processes such as correction or deletion of inappropriate data, determination of permissible limits, and correction of unauthorized values, recalculation, and deletion of data with the highest standard deviation. Statistical methods are then used to normalize the data x by Eq. (32) (Mahdiraji et al., 2019).

$$\frac{x - \min}{\max - \min}$$ \hspace{1cm} (32)

Step 2. Following the data preparation, in this step, a novel model found on five criteria is developed by banking experts.

a. **Account Type (AT)**. This criteria specifies the type of customer account. The highest
value is assigned to a checking account with a value of 9, followed by a short-term account with a value of 5, and finally a long-term account with a value of 1. It should be noted that the valuation of these scores is carried out in a separate study by the bank experts under the supervision of the planning and marketing department.

Since this criteria is nominal and each customer may have between 1 and 3 accounts in the bank, so to extract the weights of its performance on all accounts, and to make a value distinction between the types of accounts, they will be weighted after a single weight is multiplied by the other criteria. Hence, an adjusted weighting model is created, which is similar to the Weighted RFM (WRFM) model in the previous literature. The pre-values are computed by Eq. (33).

\[
Pre - Values = \frac{\sum \text{sum weights of each individual's accounts}}{\sum \text{sum weights of all accounts}}
\] (33)

Pre-valued accounts are weighed and multiplied by the cumulative state of the other criteria by experts. These values are normalized by the standard method (MAX-MIN). The average deposits of Type I to III deposits (checking, short term, long term) are multiplied as a single weight by other criteria, and the \(A_T \) criteria plays the role of weight here.

- If one customer has only one account type, the other two accounts are considered zero.
- The value of each individual’s accounts is calculated by Eq. (34). It is then normalized linearly to obtain \(A_T \).

\[
A_T = \sum \text{value of checking accounts} + \sum \text{value of short term accounts} \\
+ \sum \text{value of long term accounts}
\] (34)

- According to the values accrued to each account, the maximum possible value per person is 15, i.e., it has all three accounts active. The minimum possible value is at least 1 in the sense that it has only one long-term account.

b. **Average money (M).** This criteria represents the daily average of the minimum remaining at the end of the day in the real customer’s account. It should be noted that the monthly interval is used to calculate the average. \(M \) is measured by Equation (35).

\[
M = \frac{\sum \text{Min of Remainings per day during a month}}{\text{number of month's day}}
\] (35)

c. **Average transaction frequency (F).** This criteria demonstrates the average number of customer transactions per month. \(F \) is obtained by Eq. (36).
d. **Average daily debt turnover** (D_c). This criteria speaks for the monthly average of money transferred from a customer’s account to other banks. D_c is calculated by Equation (37).

$$D_c = \frac{\sum \text{money transferred to other banks per day during a month}}{\text{number of month's day}}$$

(37)

e. **Average daily cash turnover** (C_c). This criteria introduces the monthly average of money transferred to customer accounts from other banks. C_c is attained by Eq. (38).

$$C_c = \frac{\sum \text{money transferred from other banks per day during a month}}{\text{number of month's day}}$$

(38)

- The start and the end of the month are following the Iranian calendar. The year starts from the 22nd of May 2017 and ends on the 22nd of May 2019.
- All criteria are positive from the bank’s point of view, which means that the larger the finance, the better the financial behavior of the customer. The only exception is C_c, which has a negative effect. The reason is that the customer has transferred the money to other banks. This is a detrimental performance from the bank’s viewpoint.
- The average mean of the M, F, D_c, C_c criteria calculated for the last 24 months (calculated as the cumulative sum of each criteria over the number of months that is 24 months).

Step 3. K-means clustering is performed for the value of K from 2 to 10. Cluster quality evaluation indices (SIH, DB, CH) are computed for each value of K. Then, the EDAS ranking method is implemented to select the optimal K, which is the optimal number of clusters.

Step 4. In the next step, before ranking the clusters, the weights of the criteria are extracted by BWM. To implement BWM and TAOV methods, questionnaires have been designed and completed by the banking industry experts in the emerging economy of Iran. In this research 10 experts participated as a panel including three from private banks, three from public banks, two academicians familiar with MCDM methods and clustering approaches, and two experts from the central bank of Iran. For the BWM method, two questionnaires were used, one for comparing the best criteria (most important criteria) with others and one questionnaire to compare other criteria with the worst criteria (least important criteria). These two questionnaires were completed during a one-hour face-to-face session after the briefing of the method that was presented by the research team. After the weight of the criteria is extracted, the cluster matrix is formed, and they are ranked using the TAOV method. For the TAOV
method, the third questionnaire was used to complete the decision-making matrix and evaluate each cluster of customers by each criteria. This questionnaire was completed through a two-hour session via the panel of experts. Afterward, the hidden rules of the clusters are excerpted by applying the associative rules and the Apriori algorithm. Finally, in the last step, strategy development is employed to improve CRM based on the concepts of customer lifetime value.

4. Analysis and Results

In the first step to prepare the data, the data were obtained based on criteria in collaboration with banking experts. In this step, the information of 1,100,000 customers is provided for the research. Most of the provided data lacked criteria values and were unusable. As a consequence, simple sampling is based on a simple 5% value of (n/N), which (n) signifies the number of samples selected and (N) is the total population number. Here, the information from 20,000 customers is gathered among all data for the data mining process. After selecting the data, in the next stage, the data is cleaned and merged. In this study, for the deletion of data, if the data distribution is between 3 to 5 times the standard deviation in both positive and negative directions, they are identified as outliers. Moreover, if the data distribution is not normal, it is used to identify boxed graphs, with data ranging from 25% to 75% of the data being selected as the desired data and other values replaced with minimum and maximum points to obtain reliable results after clustering. Later, a model similar to WRFM is employed to integrate them. Since customer information is found on national code and each customer may have multiple accounts, to facilitate the process of clustering with experts, a separate survey in the bank’s marketing unit evaluates all accounts by weighing them as a single weight. Finally, the data are normalized by Eq. (32).

In the second step, the AFMDC model is formed, and in the third step, the optimal number of clusters is determined. For this purpose, three indices of the internal of the clusters’ performance, including SIH, DC, and CH, are considered as the basis of the work. K-means clustering is performed, and values 2 to 10 are calculated as the number of clusters. Then the internal quality indices are measured by Eq. (2) to (12). A decision-making matrix is formed, which is eliminated in Table 3. In the following decision matrix, the EDAS technique is employed to find the optimal value of K. To apply this technique, the average distance is obtained by Eq. (13), and PDA and NDA are calculated by Eqs. (14) and (15) which are demonstrated in Table 3.

Therefore, the computation is performed by Eqs. (17) to (26), and the result is illustrated
in Table 4. The results determined the optimal value of 6 for K. Thus, six clusters are selected for classifying the customers.

In step 4, K-mean clustering is accomplished for $k = 6$ and gathered data of 20,000 customers. The frequency of each cluster is displayed in Table 5. As can be seen from Table 5, Cluster 6 has the highest number of observations, accounting for 33.65% of the items. Cluster 4 has the lowest number of observations. The comparative results have been depicted in the pie chart of Figure 6. The other highlighted information which is attained by K-means is the clusters’ centroids. This information is manifested in Table 5.

In consonance with Table 5,

- Concerning M, the centers of the two clusters 2 and 3 are very similar, and the most significant distinction is observed between the two clusters 2 and 6 for this criteria. Consequently, if clusters are analyzed by M, probably, similarities between two clusters 2 and 3 and significant differences between two clusters 2 and 6 will be found, which is further confirmed.
- Regarding F, centers of two clusters 1 and 2 have the most similarity, and centers of two clusters 2 and 6 also have the most difference.
- Respecting C_c, the centers of two clusters 2 and 3 have the most similarities, and the centers of two clusters 2 and 6 have the most differences.
- Taking into account D_C, the centers of two clusters 1 and 5 have the most similarities, and the centers of two clusters of 3 and 6 have the most differences. Figure 7 depicts the demographic information of clusters.

In the fifth step, after forming the clusters, the weights of the criteria are extracted by BWM. The average monetary (AVG-M) is determined as the best criteria for evaluating a customer, according to banking experts. This is because having more money in an account makes the bank more profitable by monetization. On the other hand, the standard deviation of the daily creditor turnover (STDEV-C_c) is the worst criteria from the banking experts’ point of view. Other criteria contain Average daily Creditor turnover (AVG-C_c), Average daily frequency (AVG-F), and standard deviation of monetary (STDEV-M). Next, the best and worst criteria are compared with other criteria and assigned numbers between 1 and 9. The number 1 represents the same value of the criteria, and 9 represents the highest priority. The results are
demonstrated in Table 6. To obtain the weights by BWM, the model of Eq. (13) is constructed by the data of Table 6 and solved. Table 6 shows the weight of each criteria.

After extracting the weight of the criteria in step 5, the clusters are ranked by the TAOV method. In Phase I, the decision matrix is formed, which is illustrated in Table 7.

Decision Matrix is normalized by Eq. (24) for beneficial criteria and Eq. (25) for cost criteria. Thence it is weighted applying Eq. (26). Table 8 demonstrates the weighted normalized matrix. Accordingly, the equivalent matrix is built as described by Eqs. (27) to (29) and is shown in Table 8. The value of TA and NTA is computed by Eqs. (30) and (31). The result of prioritization by TAOV is depicted in Table 8.

5. Practical implications

After ranking the clusters, rules are extracted, applying the Apriori algorithm. In this research, the minimum support is determined by 2%, and the minimum confidence is 70%. The lift criteria, which is employed to evaluate associative rules, is obtained by dividing the degree of confidence by the support. Any higher value than 1 indicates the attractiveness of the rule. The clusters’ rules are presented in Table 9.

Rules and implications of Cluster 1. The most remarkable correlation found in this cluster is the significant relationship between the two indices of daily creditor turnover (C_C) and daily debtor turnover (D_C). The results of these rules are presented in Table 9a.

The level of education in this cluster is relatively similar to that of clusters 4, 5, and 6 and is not high. In this cluster, the daily creditor turnover (C_C) is the result of the daily debtor turnover (D_C). The interpretation of this pattern may be related to the fact that whenever money is withdrawn from one of the accounts in this cluster, it is subsequently deposited into this account or possibly into other accounts in the bank under study. Moreover, 80% of the people in this cluster are men. One of the reasons that the number of men in this bank is higher than other banks is that this bank acts as the operating bank to pay the salaries of a large government agency, and often Employees and retirees are men. Furthermore, 24% of the people in this cluster are self-employed, meaning that about one-fourth of the people in the bank are outside of those with whom the bank has a paying relationship. One of the plans the bank has offered
to its customers in marketing is to purchase a commodity loan plan, whereby business owners and sellers sell their goods through bank credit, and the bank receives some of the sellers’ profits and loan repayments. The need for such a mechanism is to open an account by sellers and customers so that business owners and sellers can fall into this cluster of 24% of the population.

Rules and implications of cluster 2. The most highlighted correlation discovered in this cluster, which is also the most important cluster, is the relationship between the two indices of the daily debtor (Dc) and creditor turnover (Cc). Moreover, a significant relationship between the two indices of average monetary (M) and daily creditor turnover (Cc), the average frequency of transactions (F) with daily debtor turnover (Dc), and daily creditor turnover (Cc) is found. The results of these rules are given in Table 9b.

Approximately 70% of people in this cluster have a high level of education. Most of them are senior or senior bank employees with relatively higher salaries of the organization that the bank is responsible for paying. About 40% of the people in this cluster are self-employed, other than employees. These people are generally sellers who have used a POS machine from the bank to borrow money and provide this money to customers. In this cluster, the daily creditor turnover (Cc) is the result of the daily debtor turnover (Dc). The explanation of this set implies that whenever money is withdrawn from one of the accounts in the cluster, the money is subsequently deposited into this account or possibly into other accounts. For instance, whenever money is withdrawn from one of the seller’s accounts, a significant amount is deposited into their accounts because it is a bank loan repayment that is deposited into one of the seller’s accounts as a deduction. Here, the sellers have two types of accounts that are non-deductible until the confirmation of the purchase of the goods by ANK and the short-term account, which is available after 72 hours. The average amount of money (M) is the result of the daily turnover items (Cc), which means that when the money is deposited into the cluster (from other banks), their average money has increased. The average frequency of transactions (F) is also related to the average daily debit (Dc) turnover, proposing that numerous transactions cause the money to be withdrawn from their accounts and transferred to other banks. As with other clusters, males are the predominant population, and most of the staff in the organization are males, according to a report previously obtained from the bank. Besides, most vendors and business owners in the cluster are male.

Rules and implications of Cluster 3. In the third cluster, the relationship between the
monetary (M) and the daily creditor turnover (Cc) as well as the relationship between the daily creditor turnover (Cc) and the daily debtor turnover (Dc) has been treasured. The results of these rules are proposed in Table 9c.

This cluster, identified as the second top cluster, has the same characteristics as the second cluster. Thus, the daily creditor turnover (Cc) is the result of the daily debtor turnover (Dc). Those in this cluster are also well-educated, with about 71% having a bachelor’s degree or higher. Men are the dominant population in this cluster. About 37% of the people in the cluster are self-employed, reflecting the presence of a significant population of sellers and contractors with the bank and purchase lending. In this cluster, whenever the account holder transfers money from other banks to the bank under study (daily creditor turnover (Cc)), the average amount of money (M) is increased. Hence, the money that remains in the person’s account and into other accounts or banks is no longer transferred, and this factor is one of the important factors that has increased the value of this cluster compared to other clusters. This is due to this issue that the monetary value has a higher weight than other factors and indicators.

Rules and implications of cluster 4. In this cluster, there are frequent patterns between the daily creditor turnover (Cc) and the daily debit turnover (Dc), and so on between the average transaction frequency (F) and the daily debtor turnover (Dc). Moreover, a pattern is found between the daily debit turnover (Dc) and the average monetary value (M) and again the same factor with the average frequency of transactions (F). The results of these rules are presented in Table 9d.

In this cluster, the Daily Debtor turnover (Dc) is the result of the Daily Creditor turnover (Cc) items, meaning that whenever the money is deposited into other people’s accounts or other accounts, the money is transferred out of the person’s account and transferred to other banks. The dominant population is men. The level of education is not relatively high and this is probably due to the relatively lower remuneration of those present in the cluster compared to the other people mentioned in the contract with the bank. Daily Debtor turnover (Dc) is the result of the average frequency of transactions (F). This signifies that the money has been withdrawn from the customer’s account and transferred to the outside bank, which is a negative factor for customer ratings. The average amount of money (M) is the result of the daily creditor turnover (Cc). This represents that when the money is deposited into the accounts of the people in this cluster, their average money (M) is significant. Besides, the average frequency of
transactions (F) in this cluster resulted in a significant monetary average (M).

Rules and implications of Cluster 5. In this cluster, there is a recurring pattern between the daily debtor turnover (Dc) and the frequency of transactions (F) as well as the daily debtor turnover (Dc) and the daily creditor turnover (Cc), and the average monetary value (M) and the frequency of transactions (F). The results of these rules are given in Table 9e.

In this cluster, 31% of people have a bachelor’s degree or higher. The majority of the population is still male. The Daily Debtor turnover (Dc) is the result of the Daily Creditor turnover (Cc), which means that whenever money is deposited into these accounts, it is seen that it has been transferred to other accounts or banks. The daily debtor turnover (Dc) is associated with the average frequency of transactions (F), meaning that whenever the transactions are significant and volatile, the money is transferred to other accounts or banks from those in this cluster. Furthermore, the average monetary value (M) is shown by the mean frequency of transactions (F). Remark that 13% of the people in this cluster are self-employed business owners, which eliminates that there are fewer people involved in the bank’s marketing campaigns and fewer people outside the bank.

Rules and implications of Cluster 6. Cluster 6, which has the worst performance in terms of financial behavior, has recurring patterns between the average monetary value (M) and the daily debtor turnover (Dc), the transaction frequency (F) and the average monetary value (M), the daily debtor turnover (Dc) and daily creditor turnover (Cc). The results of these rules are given in Table 9f.

This cluster, which has the lowest rank among other clusters, has the highest number of customers, with 27% having a bachelor’s or higher level of education, indicating that the people contracted with the bank are in this cluster are in the bottom ranks of organizations. The dominant population is men. Here, the daily debtor turnover (Dc) is the result of the daily creditor turnover (Cc), which conveys that whenever money is deposited into these accounts, it is transferred to other accounts or banks. Note that 9% of the people are self-employed business owners, which is still the least involved in the bank’s marketing campaigns, and fewer people outside the bank are attracted to the bank’s marketing plans. The Daily Debtor turnover (Dc) is the result of the average amount of money (M), and whenever a person is making a change in their average amount of money (M) he is withdrawing money from his account to other accounts or banks. In this cluster, the average frequency of transactions (F) is the result
of the average value of money (M), which is probably the worst performing cluster in terms of performance. Thus, when the average value of money (M) is decreasing, one is performing frequent transactions to transfer money to other accounts or banks.

In the final step, the strategy for interacting with clusters is formulated with the inspiration of CLV. Customer value refers to the potential interaction of customers with the industry over specific periods. Once the industry understands customer value and realizes that customer value can deliver customized service to different customers, then CRM is achieved effectively. There are generally four steps in the customer life cycle as follows.

- **Potential customers.** People who are not yet customers but are targeted in the market.
- **Reacting customers.** Potential customers who are interested in and respond to a product or service.
- **Active customers.** People who currently use a product or service from the organization.
- **Former customers.** Such people are not good customers because they have not been targeted for a long time and have moved their purchases to compete with products.

Table 10 provides some suggested strategies for interacting with customers based on the characteristics of the individuals presented in each cluster.

| Insert Table 10 Here |

Some important guidelines for CRM and CLV enhancement are as follows.

- Making the most of employees’ ability to generate growth and a sense of belonging to the organization to form compassionate interaction with customers,
- Concentrating on developing employees’ abilities to improve their performance in banking processes to expedite client-side work,
- Holding communication skills training courses for staff,
- Creating relationships between managers and employees to build a constructive relationship and create a positive spirit in employees and enhancing their productivity and attracting customers,
- Paying more attention to the physical and hygienic environment and customer requirements in physical communication channels,
- Create an autonomous relationship for customers to create a sense of belonging to the organization,
- Congratulations to customers through brochures and other low-cost communication channels such as mobile banking and e-mail,
- Promoting the level of vitality of the staff by formulating the organized plans,
• Designing a performance appraisal system with a staff performance management approach,
• Establishing a merit-based appointment system.

6. Conclusion
In this study, a multi-attribute data mining model was used to segment the customers and group them into six clusters by analyzing 20,000 customer records in the financial services industry. Clusters 2, 3, 1, 5, 4, and 6 have the highest to lowest values, respectively. The Apriori algorithm was employed next to extract frequent patterns of customer financial behavior. Demographic characteristics and financial transactions of customers were among the factors analyzed in this study. As a result, the following six customer types of highly loyal, loyal, high-interacting, high-interacting, low-interacting, and missing customers were identified. Appropriate strategies for interacting with each customer type were proposed based on the opinions of banking experts and the literature reviewed regarding customer management systems and their lifetime value.

Theoretically, although relevant articles in the same area have implemented clustering methods such as k-mean to categorize customers in different groups (e.g. Anitha and Patil, 2019; Basak et al., 2019), integrating the categorized group of customers and then ranking them based on specific criteria and also extracting rules and plans to deal with each cluster has not been previously investigated in an integrated fashion. Moreover, besides other applications of BWM and TAOV method in manufacturing, construction, etc. decision-making problems (e.g. Amoozad Mahdiraji et al., 2018; Hajiagha et al., 2018; Mahdiraji et al., 2019), in this research, a new application of these MCDM methods in the banking industry and CLV analysis has been designed and scheduled in a novel approach. Practically, managers in financial organizations and especially the banking industry can benefit from the results of this research and the integrated decision making and data mining approach which was scheduled in this article. Combining different analytical tools can benefit banks categorize their customers and as a result design suitable marketing strategies for each group. Accordingly, service-oriented organizations can allocate their budget, plans, time, etc. more optimally toward increasing the satisfaction of each cluster of customers based on their value and preferences.

In this research, the BWM, EDAS, and TAOV were employed to accomplish the research objectives. The authors clarified why each of these methods was employed for criteria and alternative evaluations. There are some limitations regarding the methods applied in this research. First of all, from a certainty and uncertainty perspective, the methods used in this research were all based on crisp numbers and assuming certain situations. In problems
involving uncertainties, interval, grey, fuzzy, interval fuzzy, intuitionistic fuzzy, or hesitant fuzzy numbers and methods could be used to deal with ambiguity and uncertainty in real-world case studies. Considering the uncertain circumstances in today’s market, adopting uncertain approaches in quantitative methods engenders more reasonable outputs. From the methods perspective, other weighing methods, such as the Stepwise Weight Assessment Ratio Analysis (SWARA), or SECA method, could be used in conjunction with other alternative ranking methods such as the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) or AHP to establish some benchmarks for data analysis and interpretation. Moreover, the authors implemented the k-means method for clustering the customers in this research; however, as indicated in Figure 4 other methods are also applicable to compare and benchmark the clustering results instead of using SIH, CH, and DB criterias to identify the most appropriate number of clusters. Furthermore, the results of this research are based on limited data obtained from 20,000 customer records from the banking industry of the emerging economy of Iran. To generalize the results and present more inclusive implications, researchers can focus on similar approaches by employing big data in future studies in other industries, sectors, regions, or countries.
References

Chiu, S., and D. Tavella. (2008), *Data Mining and Market Intelligence for Optimal Marketing Returns*.

Figure 1. The global data volume forecast
Figure 2. Big data value chain
Figure 3. Data mining tools
Figure 4. Clustering methods (Source Saxena et al., 2017)
Figure 5. The proposed framework
Figure 6. Pie chart of clusters’ size
Figure 7. Demographic information for clusters
Table 1. Consistency Index found on the preference of the best criteria over the worst criteria

<table>
<thead>
<tr>
<th>ABW</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>0.00</td>
<td>0.44</td>
<td>1.00</td>
<td>1.63</td>
<td>2.30</td>
<td>3.00</td>
<td>3.73</td>
<td>4.47</td>
<td>5.23</td>
</tr>
<tr>
<td>Researcher / Year</td>
<td>Objective</td>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Song et al. (2017)</td>
<td>Validating Hidden Customers Applying Time Series, Segmentation Found on RFM Model in Big Data, MCA And RFM Integration</td>
<td>✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrella-Ramón et al. (2017)</td>
<td>Providing A CLV Model, Evaluating and Classifying Bank Customers with Individual Measures</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sivasankar and Vijaya (2017)</td>
<td>Customer Segmentation, Comparison of Clustering Methods In Combination with Decision Tree - Integration of Supervisory and Non-Supervisory Methods</td>
<td>✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiang, 2017</td>
<td>Taiwan Air Travel Market Segmentation, Finding More Valuable Markets, Extracting the Right Rules, Improving CRM</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peker et al. (2017)</td>
<td>Identifying distinct customer segments and clusters</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qadadeh and Abdallah (2018)</td>
<td>Investigation of data analytics algorithms especially K-means, SOM with Database (TIC)</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2018)</td>
<td>Clustering Customers, Cluster Analysis, Formulating Marketing Strategies</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson et al. (2018)</td>
<td>Discovery of Association Rules, Clustering Customers’ Unstable Treatment (TBS), Helping the Design of Smart Campaigns</td>
<td>✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Caigny et al. (2018)</td>
<td>Improving the performance of decision tree, improving the performance of Logistic Regression, Comparison of a Novel Model to RF and LMT</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phan et al. (2019)</td>
<td>Discovery of Customers’ Financial Attitudes and Behaviors in Switzerland and Vietnam</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maji et al. (2019)</td>
<td>Developing the Plan of Discovery and ELT of Data, Facilitating the estimation of the percentage of bank cardholders</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahdiraji et al. (2019)</td>
<td>Proposing a model for Iranian banks to analyze and distinguish customers’ needs for service suggestions</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motlagh et al. (2019)</td>
<td>Introducing a strategy to ease the limitations by converting any types of load time series into map models that could be readily clustered</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu et al. (2020)</td>
<td>Presenting an RFMT customer classification model based on customer behavior</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parikh and Abdelfattah (2020)</td>
<td>Studying the performance of RFM and Clustering on online transactions to provide strategies for customer purchasing behaviors. Employing 2010 retail data to generate meaningful business intelligence</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vohra et al. (2020)</td>
<td>Providing the company insight to assess their customers and improve marketing strategies</td>
<td>✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al. (2021)</td>
<td>Recognizing behavior observation and introducing an evaluation model from the perspective of market segmentation. Elaborating that applying cognitive analytics management methodology is a valid tool to describe new technology implementations for businesses</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Marco et al. (2021)</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Clusters</td>
<td>Decision Matrix</td>
<td>PDA Matrix</td>
<td>NDA Matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIH</td>
<td>CH</td>
<td>DB</td>
<td>SIH</td>
<td>CH</td>
<td>DB</td>
<td>SIH</td>
<td>CH</td>
<td>DB</td>
</tr>
<tr>
<td>2</td>
<td>0.624</td>
<td>17152.663</td>
<td>0.795</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.040</td>
<td>0.201</td>
<td>0.034</td>
</tr>
<tr>
<td>3</td>
<td>0.589</td>
<td>13644.855</td>
<td>0.720</td>
<td>0</td>
<td>0</td>
<td>0.063</td>
<td>0.093</td>
<td>0.364</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.652</td>
<td>21012.742</td>
<td>0.7474</td>
<td>0.002</td>
<td>0</td>
<td>0.028</td>
<td>0</td>
<td>0.021</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.661</td>
<td>24822.673</td>
<td>0.713</td>
<td>0.016</td>
<td>0.155</td>
<td>0.072</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.691</td>
<td>25261.984</td>
<td>0.711</td>
<td>0.062</td>
<td>0.176</td>
<td>0.074</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.700</td>
<td>24401.597</td>
<td>0.767</td>
<td>0.076</td>
<td>0.136</td>
<td>0.0021</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.666</td>
<td>24408.570</td>
<td>0.789</td>
<td>0.024</td>
<td>0.136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.026</td>
</tr>
<tr>
<td>9</td>
<td>0.661</td>
<td>24659.096</td>
<td>0.828</td>
<td>0.016</td>
<td>0.148</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.076</td>
</tr>
<tr>
<td>10</td>
<td>0.608</td>
<td>17924.661</td>
<td>0.848</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.064</td>
<td>0.165</td>
<td>0.102</td>
</tr>
</tbody>
</table>
Table 4. The optimal value of K by EDAS

<table>
<thead>
<tr>
<th>Number of Clusters</th>
<th>SP</th>
<th>NSP</th>
<th>SN</th>
<th>NSN</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.091</td>
<td>0.398</td>
<td>0.199</td>
</tr>
<tr>
<td>3</td>
<td>0.021</td>
<td>0.201</td>
<td>0.152</td>
<td>0</td>
<td>0.100</td>
</tr>
<tr>
<td>4</td>
<td>0.010</td>
<td>0.098</td>
<td>0.007</td>
<td>0.952</td>
<td>0.525</td>
</tr>
<tr>
<td>5</td>
<td>0.0814</td>
<td>0.779</td>
<td>0</td>
<td>1</td>
<td>0.889</td>
</tr>
<tr>
<td>6</td>
<td>0.104</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0.071</td>
<td>0.685</td>
<td>0</td>
<td>1</td>
<td>0.842</td>
</tr>
<tr>
<td>8</td>
<td>0.0537</td>
<td>0.514</td>
<td>0.008</td>
<td>0.941</td>
<td>0.7280</td>
</tr>
<tr>
<td>9</td>
<td>0.054</td>
<td>0.525</td>
<td>0.025</td>
<td>0.832</td>
<td>0.679</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.110</td>
<td>0.274</td>
<td>0.137</td>
</tr>
<tr>
<td>Cluster Number</td>
<td>Items Frequencies</td>
<td>Item Relative Frequencies Percentage</td>
<td>Rank of Size</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------------------------</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>3562</td>
<td>17.81</td>
<td>3</td>
<td>0.695</td>
<td>0.901</td>
</tr>
<tr>
<td>2</td>
<td>4269</td>
<td>21.34</td>
<td>2</td>
<td>0.933</td>
<td>0.951</td>
</tr>
<tr>
<td>3</td>
<td>1922</td>
<td>9.61</td>
<td>5</td>
<td>0.938</td>
<td>0.448</td>
</tr>
<tr>
<td>4</td>
<td>1341</td>
<td>6.70</td>
<td>6</td>
<td>0.372</td>
<td>0.730</td>
</tr>
<tr>
<td>5</td>
<td>2176</td>
<td>10.88</td>
<td>4</td>
<td>0.677</td>
<td>0.414</td>
</tr>
<tr>
<td>6</td>
<td>6730</td>
<td>33.65</td>
<td>1</td>
<td>0.027</td>
<td>0.018</td>
</tr>
</tbody>
</table>
Table 6. BWM paired comparisons and weights

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Comparison</th>
<th>Criteria weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best criteria</td>
<td>Worst criteria</td>
</tr>
<tr>
<td>AVG M</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>AVG Cc</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>AVG F</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ST DEV M</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>ST DEV Cc</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 7. TAOV decision matrix

<table>
<thead>
<tr>
<th>Cluster</th>
<th>AVG M</th>
<th>AVG Cc</th>
<th>AVG F</th>
<th>ST DEV M</th>
<th>ST DEV Cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.695</td>
<td>0.516</td>
<td>0.901</td>
<td>0.205</td>
<td>0.120</td>
</tr>
<tr>
<td>2</td>
<td>0.933</td>
<td>0.962</td>
<td>0.951</td>
<td>0.113</td>
<td>0.079</td>
</tr>
<tr>
<td>3</td>
<td>0.938</td>
<td>0.916</td>
<td>0.448</td>
<td>0.119</td>
<td>0.125</td>
</tr>
<tr>
<td>4</td>
<td>0.372</td>
<td>0.882</td>
<td>0.730</td>
<td>0.168</td>
<td>0.135</td>
</tr>
<tr>
<td>5</td>
<td>0.677</td>
<td>0.404</td>
<td>0.414</td>
<td>0.251</td>
<td>0.150</td>
</tr>
<tr>
<td>6</td>
<td>0.027</td>
<td>0.019</td>
<td>0.018</td>
<td>0.078</td>
<td>0.065</td>
</tr>
</tbody>
</table>

Criteria Type | B | B | B | C | C

B: benefit criteria, C: cost criteria
Table 8. TA and NA calculation

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Weighted normalized matrix</th>
<th>Equivalent matrix</th>
<th>TA</th>
<th>NTA</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVG M</td>
<td>AVG Cc</td>
<td>AVG F</td>
<td>ST DEV M</td>
<td>ST DEV Cc</td>
</tr>
<tr>
<td>1</td>
<td>0.331</td>
<td>0.154</td>
<td>0.132</td>
<td>0.031</td>
<td>0.022</td>
</tr>
<tr>
<td>2</td>
<td>0.444</td>
<td>0.288</td>
<td>0.139</td>
<td>0.057</td>
<td>0.033</td>
</tr>
<tr>
<td>3</td>
<td>0.447</td>
<td>0.274</td>
<td>0.065</td>
<td>0.055</td>
<td>0.021</td>
</tr>
<tr>
<td>4</td>
<td>0.177</td>
<td>0.264</td>
<td>0.107</td>
<td>0.038</td>
<td>0.019</td>
</tr>
<tr>
<td>5</td>
<td>0.322</td>
<td>0.121</td>
<td>0.060</td>
<td>0.026</td>
<td>0.017</td>
</tr>
<tr>
<td>6</td>
<td>0.013</td>
<td>0.005</td>
<td>0.002</td>
<td>0.083</td>
<td>0.040</td>
</tr>
</tbody>
</table>
Table 9. Clusters’ rules

9a. Cluster 1 rules

<table>
<thead>
<tr>
<th>Lift</th>
<th>Confidence</th>
<th>Support</th>
<th>Antecedent</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>82%</td>
<td>2%</td>
<td>D_c</td>
<td>C_c</td>
</tr>
</tbody>
</table>

9b. Cluster 2 rules

<table>
<thead>
<tr>
<th>Lift</th>
<th>Confidence</th>
<th>Support</th>
<th>Antecedent</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.5</td>
<td>95%</td>
<td>2%</td>
<td>D_c</td>
<td>C_c</td>
</tr>
<tr>
<td>38</td>
<td>76%</td>
<td>2%</td>
<td>C_c</td>
<td>M</td>
</tr>
<tr>
<td>36.5</td>
<td>73%</td>
<td>2%</td>
<td>D_c and C_c</td>
<td>F</td>
</tr>
</tbody>
</table>

9c. Cluster 3 rules

<table>
<thead>
<tr>
<th>Lift</th>
<th>Confidence</th>
<th>Support</th>
<th>Antecedent</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.5</td>
<td>89%</td>
<td>2%</td>
<td>D_c</td>
<td>C_c</td>
</tr>
<tr>
<td>39</td>
<td>78%</td>
<td>2%</td>
<td>C_c</td>
<td>M</td>
</tr>
</tbody>
</table>

9d. Cluster 4 rules

<table>
<thead>
<tr>
<th>Lift</th>
<th>Confidence</th>
<th>Support</th>
<th>Antecedent</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>96%</td>
<td>2%</td>
<td>C_c</td>
<td>D_c</td>
</tr>
<tr>
<td>38</td>
<td>76%</td>
<td>2%</td>
<td>F</td>
<td>D_c</td>
</tr>
<tr>
<td>37.5</td>
<td>75%</td>
<td>2%</td>
<td>D_c</td>
<td>M</td>
</tr>
<tr>
<td>35.5</td>
<td>71%</td>
<td>2%</td>
<td>F</td>
<td>M</td>
</tr>
</tbody>
</table>

9e. Cluster 5 rules

<table>
<thead>
<tr>
<th>Lift</th>
<th>Confidence</th>
<th>Support</th>
<th>Antecedent</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>74%</td>
<td>2%</td>
<td>F</td>
<td>D_c</td>
</tr>
<tr>
<td>36.5</td>
<td>73%</td>
<td>2%</td>
<td>C_c</td>
<td>D_c</td>
</tr>
<tr>
<td>35</td>
<td>70%</td>
<td>2%</td>
<td>F</td>
<td>M</td>
</tr>
</tbody>
</table>

9f. Cluster 6 rules

<table>
<thead>
<tr>
<th>Lift</th>
<th>Confidence</th>
<th>Support</th>
<th>Antecedent</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.5</td>
<td>99%</td>
<td>2%</td>
<td>C_c</td>
<td>D_c</td>
</tr>
<tr>
<td>48</td>
<td>96%</td>
<td>2%</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>45</td>
<td>90%</td>
<td>2%</td>
<td>M</td>
<td>D_c</td>
</tr>
</tbody>
</table>
Table 10. Suggested strategies for clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Rank</th>
<th>Customer Type</th>
<th>Characteristics</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>High- Interacted Actual Customers</td>
<td>People with Moderate education, Appropriate creditor turnover, Business interactions with the bank</td>
<td>24/7 customer service, Integrated organization of customer accounts, Marketing for business people through advertising, brochures, and informative ads, Offering new banking services at a reasonable fee</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Extremely Loyal Customers</td>
<td>Educated people, High creditor turnover, Moderate monetary value, More business interactions with other banks than other clusters</td>
<td>Digital and self-service branches, 24/7 customer service, Developing Electronic Wallet Services (Using Mobile as a Bank Card), Development of communication services and interactions with foreign banks, Providing attractive services such as insurance, guarantees, and lending facilities to loyal customers, Case Rewards, Delegating branches to handle such customers, Marketing for business people through advertisements, brochures, and informative reminders, Offering new banking services at a reasonable fee, Increasing the Return on Equity, Providing financial reports, Launching an Online Inquiry on the Central Bank Portal of the Bank Network for Customers to access Easily and Rapidly to the Status of Return Checks and Customer Facilities, Organizing Festival of sales terminals, Organizing e-service festivals, Creating special payment facility conditions, Case Rewards, 24/7 customer service, Developing Electronic Wallet Services (Using Mobile as a Bank Card), Development of communication services and interactions with foreign banks, Providing attractive services such as insurance, guarantees, and lending facilities to loyal customers, Offering new banking services at a reasonable fee, Marketing for business people through reminders, brochures, and advertisements</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Loyal Customers</td>
<td>Educated people, High creditor turnover, More business interactions with other banks than other clusters</td>
<td>Development of communication services and interactions with foreign banks, Providing attractive services such as insurance, guarantees, and lending facilities to loyal customers, Offering new banking services at a reasonable fee, Marketing for business people through reminders, brochures, and advertisements</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Low- Interacted Potential Customers</td>
<td>People with Moderate education, High debtor turnover</td>
<td>Sending bank brochures and services, Announcing and holding celebrations, lotteries, and advertisements</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Moderate-Interacted Potential Customers</td>
<td>People with Moderate education, High debtor turnover, Low monetary value</td>
<td>Sending bank brochures, services, encouraging and informative ads, Holding ceremonies at festivals, sweepstakes, meetings, and exhibitions, Proposing encouraging and informative television advertising, Accelerating the provision of short-term incentive services to attract customers and hold rallies and raffles, Providing personal information via mobile or other means of communication such as post, Offering attractive profits by introducing bank investment funds in stock exchanges and businesses, Facilitating communication channel processes such as Mobile Banking and Internet Banking</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Missing Customers</td>
<td>People with moderate education, Low monetary average, High debtor turnover, Quite low business interactions</td>
<td>Proposing encouraging and informative television advertising, Accelerating the provision of short-term incentive services to attract customers and hold rallies and raffles, Providing personal information via mobile or other means of communication such as post, Offering attractive profits by introducing bank investment funds in stock exchanges and businesses, Facilitating communication channel processes such as Mobile Banking and Internet Banking</td>
</tr>
</tbody>
</table>