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Abstract—This paper proposes an adaptive localized decision 

variable analysis approach under the decomposition-based 

framework to solve the large scale multi-objective and many-

objective optimization problems. Its main idea is to incorporate 

the guidance of reference vectors into the control variable analysis 

and optimize the decision variables using an adaptive strategy. 

Especially, in the control variable analysis, for each search 

direction, the convergence relevance degree of each decision 

variable is measured by a projection-based detection method. In 

the decision variable optimization, the grouped decision variables 

are optimized with an adaptive scalarization strategy, which is 

able to adaptively balance the convergence and diversity of the 

solutions in the objective space. The proposed algorithm is 

evaluated with a suite of test problems with 2-10 objectives and 

200-1000 variables. Experimental results validate the effectiveness 

and efficiency of the proposed algorithm on the large scale multi-

objective and many-objective optimization problems. 

 
Index Terms—Large scale optimization, Decomposition, Multi-

objective optimization, Many-objective optimization. 

I. INTRODUCTION 

N the optimization field, the large scale multi-objective 

optimization problems (LSMOPs), involving multi-objective 

optimization problems (MOPs) with a large number of decision 

variables, has received a surge of attentions [1]. Many real-

world problems [2], e.g., the voltage transformer ratio error 

estimation problem [3], can be modelled as LSMOPs. Usually, 

an MOP refers to one with M (M = 2 or 3) conflicting objective 

functions (f1(x), ..., fM(x)) to be optimized simultaneously [3]. 

Without loss of generality, fi(x) (i=1, …, M) is assumed to be a 

minimization problem, and an MOP can be formulated as 

follows: 
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 =  is the decision space, D is the 

number of decision variables, uj and lj are the upper and lower 

bounds of the j-th decision variable, respectively. When M > 3, 

(1) becomes a many-objective optimization problem (MaOP).  

In the multi-objective optimization, the optimal tradeoffs 

between different objectives are called the Pareto optimal 

solutions, the collection of all the Pareto optimal solutions in 

the decision space is termed as the Pareto optimal set (PS), and 

the image set of all the Pareto optimal solutions in the objective 

space is the Pareto optimal front (PF). The goal in solving 

MOPs and MaOPs is to obtain a set of well-converged and 

WELL-diversified Pareto optimal solutions [4]. Over the past 

decades, many multi-objective evolutionary algorithms 

(MOEAs) have been developed to approximate the PFs, 

including Pareto-dominance-based approaches [5], [6], 

indicator-based approaches [7], [8], decomposition-based 

approaches [9]-[11], and others [12]-[16]. 

However, most existing MOEAs treat all the decision 

variables as a whole, and their performance would deteriorate 

severely as the dimensionality of the decision space increases 

[17]-[19]. In the decision space, as the number of decision 

variables increases, the search space grows exponentially and 

the interaction between these variables becomes more 

complicated [20], [21]. In the objective space, a large number 

of decision variables may impose various impacts on the 

convergence and uniformity of the obtained solutions [20], at 

the same time the search stagnation on one or several objectives 

would slow down the approximation to the PF [21]-[23]. These 

factors increase the difficulty of optimizing LSMOPs and large 

scale MaOPs (LSMaOPs). 

Several scalability improvement strategies have been 

developed to deal with LSMOPs and LSMaOPs [22]-[25]. The 

first strategy uses the decision variable analysis (DVA) to 

discover useful features of decision variables on LSMOPs. 

Such kind of MOEAs is termed as DVA based MOEA 
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(MOEA/DVA) [23], where the decision variables are divided 

into position variables, distance variables and mixed variables 

according to the control properties of convergence and/or 

spread [24], [25]. In MOEA/DVA, an MOP is simplified into 

several sub-MOPs and then the variables in each sub-MOP are 

grouped via the interaction analysis. Similarly, the variables in 

LMEA [26] are clustered into the convergence-related and 

diversity-related groups. Then, different optimization strategies 

are adopted in the two groups to focus on the convergence and 

diversity, respectively. Recently, several parallelization 

techniques have been utilized in the grouping of decision 

variables to speed up the search process [27]-[29]. 

The second strategy is the cooperative coevolution (CC) 

framework, which uses various variable grouping techniques to 

decompose decision variables [30]. These available grouping 

approaches involve fixed grouping [29], random grouping [31], 

[32], Delta method [33], dynamic grouping [34], differential 

grouping [35] and graph-based differential grouping (gDG) 

[36]. Especially, the popular CCGDE3 algorithm [37], which 

optimizes a set of independent subpopulations with the same 

size in a divide-and-conquer manner, has obtained a promising 

performance on LSMOPs. 

The problem transformation is another effective strategy to 

simplify the structure of LSMOPs. It uses the transformation 

function to reduce the problem’s dimensionality. For example, 

the weighted optimization framework (WOF) [38] divides the 

decision variables into a number of subgroups, each of which is 

assigned with a weight variable. In this way, the original 

optimization of decision variables is reformulated as the 

optimization of a number of weight variables for the selected 

fixed solutions. Very recently, another reformulation-based 

algorithm called LSMOF, based on the bi-directional weight 

variable association strategy, has shown a competitive ability of 

tackling LSMOPs [39]. 

The research on large scale multi-objective optimization is 

still in its infancy [26]. It has been shown that the preference 

information (e.g., reference points or vectors [10]) is useful to 

guide the search on the diversity and convergence in the multi-

objective subspaces [17], [40]. It is a potential way to utilize the 

preferences' feature from the objective space to guide the 

optimization of decision variables when solving LSMOPs and 

LSMaOPs. It is an interesting issue to make a correlation 

between the classification of decision variables in the decision 

space and the preference information in the objective space. As 

a sort of preferences, the reference vectors (rigorously defined 

in [11]) are usually used in MOEAs to manage the convergence 

and diversity [17]. This observation motivates us to exploit the 

merits from the reference vectors for the large scale multi-

objective optimization. In this paper, we propose a 

decomposition-based algorithm using a localized control 

variable analysis approach (called LSMOEA/D). Here, a 

number of representative reference vectors are selected1 as the 

guiding reference vectors for the control variable analysis [41]. 

The main contributions of this paper include: 

 
1 The reference vectors are first grouped into a number of clusters and then the 

cluster centers are used as the guiding (or representative) reference vectors. 

1) An adaptive decision variable analysis approach for the 

decomposition-based framework is proposed to deal with 

LSMOPs and LSMaOPs. The proposed approach uses 

reference vectors to guide the decision variables analysis. In 

this way, different search regions may have different grouped 

variable sequences, which enables the variables to be adaptively 

associated with appropriate groups when their sampling 

solutions move from a subregion to another one. 

2) A projection-based detection method is designed to 

quantify the convergence relevance degrees (CRDs) of decision 

variables. The proposed approach has two improvements: First, 

it uses the directions of multiple reference vectors, rather than 

only one direction of the normal line of hyperplane f1+···+fM=1 

used in [25], as the convergence direction of calculating CRD; 

Second, it uses not only the angle information but also the 

projection length (from the fitted sampling solutions to the 

convergence direction) in the CRD measure. 

3) An adaptive scalarization strategy is introduced to control 

the balance between convergence and diversity in optimizing 

decision variables. Especially, the optimization of each variable 

subgroup is associated with an adaptive parameter ( ), which 

regulates the ratio of convergence to diversity in the penalty-

based boundary intersection (PBI) function. Using this strategy, 

different decision variables can be optimized adaptively 

according to their CRD values. 

The rest of this paper is organized as follows. Section II 

presents the background and our motivation. In Section III, the 

details of LSMOEA/D for large-scale multi-objective and 

many-objective optimization are described. Section IV gives 

experimental settings and comparisons of LSMOEA/D with 

several state-of-the-art algorithms on benchmark problems. 

Finally, conclusions are drawn in Section V. 

II.  BACKGROUND AND MOTIVATION 

A. MOEA/D Framework 

MOEA/D [10] uses a scalarizing function to decompose an 

MOP into a number of single objective subproblems2. In fact, a 

variety of scalarizing functions can be used for the 

decomposition [42], such as weighted sum (WS) and 

Tchebycheff (TCH) [43]. In this paper, we use PBI [10] as the 

scalarizing function since it offers a controllable balance 

between the convergence and diversity [44]. An optimization 

problem of PBI can be formulated as follows: 
*
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2 In some MOEA/D variants, subproblems are multi-objective [44]. 
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, {1, ..., }i m , and 0  is a penalty parameter. 

Especially, d1 is to measure the convergence of x toward the PF, 

and d2 is used to estimate the diversity of population. In PBI, 

the balance between convergence (d1) and diversity (d2) is 

controlled by the parameter  . 

B. Decision Variable Analysis (DVA) 

The aim of DVA lies in two aspects. First, for the single-

objective optimization, the separablity of an objective function 

is detected by 

1

1
arg min ( ) (arg min ( , ...), ..., arg min (..., ))

k

k
x x x

f x f x f x= , (5) 

where x = (x1, ..., xD) is a decision vector and x1, ..., xK (2  K 
D) are disjoint sub-vectors of x. When K = D, f(x) is a separable 

function; otherwise, it is a partially separable one [45]. 

Second, for the multi-objective optimization, the variable 

dependency is checked based on (6) by different techniques, 

including perturbation [46], interaction adaption [47], model 

building [48] and randomization [31].  
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Based on DVA, the property of decision variables can be 

identified to be related to the convergence, diversity, or both of 

them. MOEA/DVA [25] and LMEA [26] are the two 

representative DVA-based algorithms. Despite that these 

algorithms have shown good performance on LSMOPs and 

LSMaOPs, they still suffer from two drawbacks: 1) Although 

the variables are simply grouped into convergence-related and 

diversity-related groups, the classification of variables in the 

same group still needs to be enriched; 2) The control variable 

analysis does not consider the effect of the located subregion of 

the sampling solutions and thus cannot guarantee the global 

consistency of the identification results [26]. 

C. Grouping Strategies 

The grouping strategies are able to put those variables that 

interact strongly with each other into the same group. For the 

purpose of dividing D decision variables into k groups, several 

grouping techniques are widely used in the CC-based 

algorithms [38], [39], including: 

1) Random grouping [31]: Each decision variable is 

randomly assigned to each of the k equal-sized groups. 

2) Linear grouping [49]: All D decision variables are 

assigned to k groups in a natural order. In this process, the first 

D/k variables are assigned to the first group, and the rest can be 

deduced by analogy. 

3) Ordered grouping [50]: For a selected solution, the 

decision variables are sorted by their absolute values in 

ascending order. The D/k decision variables with the smallest 

absolute values are assigned to the first group, and the next D/k 

variables to the second group, and so forth. 

 

 
Fig.1. Sampling points generated on the bi-objective WFG problem. 

 

4) Differential grouping [35]: During grouping, the variable 

interaction is detected based on perturbation, and the number of 

groups and their sizes are set adaptively. The interacting 

decision variables need to be assigned to the same group. 

The first three grouping strategies do not use the information 

about the objective functions, thereby seeming relatively 

simpler than differential grouping. However, differential 

grouping has its own drawbacks, such as the high computation 

cost and significant incompatibility to MOPs [25]. 

D. Motivation 

The motivation of this paper is based on the following 

considerations. 

1) In the existing DVA-based algorithms, e.g., MOEA/DVA 

[25] and LMEA [26], the decision variables are divided into the 

convergence-related and diversity-related groups and then 

optimized separately by different techniques. An underlying 

assumption is that the control property of decision variables 

should keep consistent in the global objective space. It could 

hold if the problem only involves some special position and/or 

distance variables, or the exclusive variables [51]. Our 

empirical observation shows that the detection result in terms 

of the decision variable's property may be different in different 

detection regions in the objective space, and the above 

assumption is not likely to be held. 

To illustrate, a bi-objective WFG problem [22] is considered 

(its detailed formulation is provided in the supplementary 

material), where there are 3 decision variables, i.e., 1 [0,2]x  ,

2 [0,4]x   and 3 [0,6]x  . Fig. 1 plots the sampling points 

generated on this WFG problem by perturbing one variable x1 

between [0, 2] while fixing other two variable x2 and x3. As 

shown, these sampling solutions are generated in the subregion 

of V1 when x2=x3=0.4, and then x1 is detected as a convergence-

related variable. In contrast, the sampling solutions are 

generated in the subregion of V2 when x2 = 4 and x3 = 6, and then 

x1 is identified as a diversity-related variable since it contributes 

more to diversity than convergence. Similar observation can be 

obtained on another test problem, which is provided in the 

supplementary material. It can be tentatively concluded that the 

spatial location of the sampling solutions in the objective space 

indeed has an important impact on the control variable analysis. 

Therefore, it is reasonable to incorporate the guidance of 

reference vectors into the control variable analysis. 
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Fig.2. Example to show the effect of the reference vectors on the control 

variable analysis. In this example, the ideal detection result is the case of 

45   (where V1 is used as the convergence direction), which indicates that 

the candidate variable is convergence-related, while the detection result 

obtained by LMEA is the case of 45   , which indicates that the candidate 

variable is diversity-related. 

 

2) Although some advanced decision variable grouping 

techniques, e.g., the angle-based measurement [26], have been 

used to further distinguish the mixed variables. Nevertheless, 

such technique is in some sense coarse-grained: 

First, it only uses the normal line of hyperplane f1+ ··· +fM = 

1 as the convergence direction in the angle-based calculation. It 

cannot accurately distinguish the mixed variables for the 

irregular (e.g., disconnected and degenerate) shapes of PFs. Fig. 

2 shows the ideal detection result for such a PF (see the case of 

45   ) as well as the one obtained by the angle-based 

measure [26] (see the case of 45   ). Here, V1 and V2 are two 

guiding reference vectors as the convergence direction, and 

is the acute angle between the sampling solutions and the 

convergence direction. Then, x1 is identified to be convergence-

related when 45   ; otherwise, diversity-related [26]. From 

the above example, it is observed that the use of reference 

vectors in the control variable analysis is more effective and 

flexible for different shapes of PFs. 

Second, it only utilizes the acute angle   to measure the 

contribution to convergence. In some situations, it cannot 

distinguish the variables with the same angle . Fig.3 shows 

such an example, where L1 and L2 are the sampling solutions 

obtained by perturbing x1 and x2, respectively. Though L1 and 

L2 have the same acute angle to the normal line, x1 and x2 have 

different contributions to convergence. Since perturbing x1 

generates a larger search scope (i.e., d1>d2) towards the ideal 

point, x1 is more convergence-related than x2. Since the decision 

variables, even the position or distance variables in the same 

group, may still have correlations in different degrees with the 

objective functions [26], it is necessary to enrich the variable 

classifications and optimize them in a fine-grained manner. 

3) Many existing state-of-the-art algorithms for LSMOPs 

and LSMaOPs, e.g., MOEA/DVA [25] and WOF [38], are 

based on the dominance relationship. Their performance on 

MaOPs may be degraded when the number of objectives 

increases. In contrast, MOEA/D has exhibited promising  

f2

f1

The normal line

Solution for perturbance

Sampling solutions by perturbing x1 or x2

L2

L1

L1: Sampling solutions by perturbing x1

L2: Sampling solutions by perturbing x2

 
Fig.3. Example to show the effect of the length of sampling solutions on the 

control variable analysis. In this example, although L1 and L2 have the same 
acute angle to the normal line, they show different contributions to 

convergence: x1 is more convergence-related than x2. 

 

performance on both MOPs and MaOPs [17], [41]. It is intuitive 

to apply the MOEA/D framework to solve LSMOPs and 

LSMaOPs. In this framework, for each search direction, some 

good variables can be optimized preferentially with more 

computation resources. 

Therefore, this paper suggests a decomposition-based 

algorithm called LSMOEA/D using the localized decision 

variable analysis approach. The basic idea is simple: Under the 

MOEA/D framework, the decision variables are classified with 

the assistance of the guiding reference vectors, and then 

optimized adaptively according to their CRDs. In this way, the 

issues illustrated in Figs. 1, 2 and 3 can be addressed properly. 

III. PROPOSED ALGORITHM 

This section first presents the main framework of the 

proposed LSMOEA/D, and then elaborates its main operations. 

A. Main Framework 

Algorithm 1 presents the main framework of LSMOEA/D. 

First, in the objective decomposition phase, a set of N weight 

vectors (i.e., W) are initialized to define a set of N subproblems 

and they are divided into a set of K clusters (i.e., B), then the set 

of K guiding reference vectors (i.e., V) is selected from B to 

specify a set of K subregions in the objective space (Line 1). In 

addition, the initial population (i.e., P) and the index (i.e., ID) 

of variable subgroup to be optimized is also provided in this 

phase. Next, in the control variable analysis phase, the localized 

control variable analysis approach (Line 2) is used to estimate 

the contribution of each variable to convergence and offer a 

matrix SC_Matrix that consists of a number of grouped variable 

sequences for all the reference vectors. 

Within the main while-loop, in case that the termination 

criteria are not met, for each reference vector, the reproduction 

operation (Line 6) generates offspring (i.e., Offs) by using the 

archive OPSet and provides a neighboring solution set (i.e., Ng). 

Then, the solutions (including parents and offspring) are 

evaluated based on an adaptive scalarization strategy and the 

offspring are used to update the parent population (Line 7). 

Finally, the variable archive OPSet is updated (Line 8). 
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Algorithm 1 Main Framework of LSMOEA/D 

Input: N: Population size; D: Number of decision variables; 

nSel: Number of candidate solutions for control variable 

analysis; nPer: Number of perturbations on each  candidate 

solution; T: Size of selection neighbourhood; K: Number of 

vector clusters; 

Output: P: Final population; 

  /* Objective decomposition phase*/ 

1: [P, W, B, V, ID]   Initialization (N, K, D);  

   /* Localized control variable analysis phase*/ 

2: [SC_Matrix]  VariableLocalClassify(P,W 

B,V,nSel,nPer,D); 

3: OPSet  SC_Matrix[:,ID]; 

  /* Optimization phase*/ 

4: While termination criterion is not fulfilled do 

5:     For i  1 to N do 

6:     [Offs, Ng]  Reproduction (P, OPSet); 

7:     [P, ID]  Update_Population (P, Offs, Ng, ID); 

8:    OPSet  SC_Matrix[:,ID]; 

9:     End 

10: End 

Return P; 

 

Algorithm 2 Initialization (N, K, D) 

Input: N: Population size; K: Number of weight clusters; D: 

Number of decision variables; 

Output: P: Population; W: N uniform weight vectors; B: Set of 

K weight vector clusters; V: Set of K cluster centers; ID: Index 

of variable subgroup to be optimized; 

1: Generate an initial population P = {p1, ..., pN} with D decision 

variables randomly; 

2: 
1 2{ }, ,..., NW w w w ;/*N initial weight vectors*/ 

3: Compute the Euclidean distances between any two weight 

vectors and use Kmeans to obtain K clusters B={b1,..., bi,…, 

bK} and K cluster centers V={v1,..., vi,…, vK}; 

4: Initialize z*=(z1
*,..., zi

*,..., zm
*) by setting zi

* =min (fi(p1),..., 

fi(pN)); 

5: ID=1; 

Return P, W, B, V and ID; 

B. Initialization 

Algorithm 2 shows the initialization procedure. First, the 

population P of N individuals is initialized randomly (Line 1), 

and N weight vectors W = {w1, ..., wN} are generated by the 

systematic approach [17] (Line 2). Then, the Euclidean distance 

between any two weight vectors is calculated and the N weight 

vectors are divided into a set of K clusters B=[b1,..., bi,…, bK], 

where bi contains the indices of the neighboring vectors in the 

i-th cluster (Line 3). The set of K cluster center vectors V=[v1,..., 

vi,…, vK] coming from B are used as the guiding reference 

vectors for the localized control variable analysis, where vi is 

the index of the center vector in the i-th cluster (Line 2 in 

Algorithm 1). Then, the ideal objective vector z* is initialized as 

the minimum values of all the solutions in P along each 

objective (Line 4) and the index ID of the current variable 

subgroup to be optimized is preset to 1 (Line 5). 

f2
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vj
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θi,j,

1

Sample solutions 
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Candidate solution 

for perturbanceLNi,j,2

θi,j,

2

crdi,j,1

crdi,j,2L2

L1 CRDmean=(crdi,j,2+crdi,j,1)/2

 
Fig.4. Illustration of projection-based detection method. 

C. Localized Control Variable Analysis 

The localized control variable analysis is a vital component 

of LSMOEA/D (Step 2 in Algorithm 1). It includes the 

following procedures: 

1) Reference vector association. For each reference vector wg, 

its neighboring solutions are determined by Neighborwg(T), 

which denotes the set of the first T closest solutions to wg in P. 

The "closeness" is defined by the acute angle between the 

solution s and the reference vector wg, calculated as follows: 

|| |||| ||

( ( ) *)

( ) *
( , ) arccos( )

T
g

g
g

F s z w

F s z w
angle s w

−

−
= .         (7) 

2) CRD calculation. For each guiding reference vector vj 

which is the cluster center from B, the CRD value of each 

variable is calculated based on the projection-based approach. 

Fig. 4 shows an example of CRD calculation, where a bi-

objective minimization problem with a decision variable xi is 

considered. In this figure, to calculate the CRD value of xi, nSel 

(two in this example) candidate solutions are randomly selected 

from the set of neighboring solutions (i.e., Neighborvi(T)) of vj, 

and then nPer (seven in this example) perturbations are 

performed on xi of the selected candidate solutions to generate 

two sets of sampling solutions (red cycles). Next, each set of 

sampling solutions are normalized and a line L is generated to 

fit each set of normalized sampling solutions. Using (8), two 

CRD values (i.e., cdri,j,1 and cdri,j,2) are obtained and their mean 

value is associated with xi. Note that the number of CRD values 

depends on the number nSel of the selected candidate solutions. 

To measure the contribution of each variable to the 

convergence direction, the CRD incorporates two factors, i.e., 

the acute angle   and the projection length LN, as shown in Fig. 

4, where vj is the j-th guiding reference vector. Specifically, for 

xi, its CRD value is defined as 

,min

max min

,

, (1 ) i jLNi j

i jcrd e
 

 

− −

−

+= ,               (8) 

where ,i j  and LNi,j are the acute angle and the projection 

length from the fitted line Li to the direction of the vector vj, 

respectively, 
min  and 

max  are the smallest and the largest 

acute angles found so far in the current generation, respectively. 

Here, a smaller CRD value indicates a greater contribution to 

convergence or a smaller contribution to diversity. 
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Fig.5. Illustration of the grouped decision variables. The variables in the 

subgroup of smaller index contribute more to convergence. 

 

The design of the CRD measure is based on the following 

empirical observations: First, both the acute angle and the 

projection length can affect the measure accuracy of the 

contribution of a variable to convergence. This is because that 

the acute angle reflects a search bias to the convergence 

direction as shown in Fig. 4, where a smaller angle   indicates 

the associated variable has a greater bias/contribution to the 

convergence direction. The projection length specifies a search 

strength along the convergence direction. As shown in Figs. 3 

and 4, a larger projection length indicates a greater perturbation 

amplitude along the convergence direction. Second, the 

composite design of acute angle and projection length can 

further classify the decision variables, even if they have the 

same acute angle or projection length. 

3) Ordered grouping. After CRD calculation, the decision 

variables are divided into a number of subgroups with the equal 

size for each guiding reference vector. These variables are first 

sorted by their CRD values in ascending order. Then, D/k 

decision variables with the smallest CRD values are assigned to 

the first group, and the next D/k variables to the second group. 

This process is repeated till all the variables are grouped. Fig. 5 

shows a subgroup sequence for a guiding reference vector, 

where the variables in subgroup of smaller index contribute 

more to convergence. 

Algorithm 3 presents the localized control variable analysis 

process. First, each guiding reference vector is associated with 

a set of neighboring solutions (Lines 1-4). Next, for each 

guiding reference vector, the mean CRD value of each variable 

is calculated based on the projection-based method (Lines 5-14). 

Then, D variables are divided into a number of subgroups with 

an equal size using ordered grouping [50] (Lines 15-17). Within 

each cluster in B, the grouped variable sequence assigned with 

each ordinary reference vector is the same as that of its cluster 

center vector (Lines 18-22). Note that, in our approach, the 

individuals in the population are assigned with different 

grouped variable sequences because they are located in 

different local subregions. The structure of evolutionary 

population is demonstrated in Fig. 6, where N is the number of 

reference vectors. 

D. Reproduction 

The offspring solutions are generated by the reproduction 

operation as shown in Algorithm 4. The OPSet archives the 

variables in the subgroup from SC_Matrix, which are to be 

updated for offspring generation. In Algorithm 4, two candidate 

solutions are randomly selected from the neighboring solutions 

using the binary tournament selection (Lines 1 and 2), and 

afterward, an offspring solution is generated by replacing  

Algorithm 3 VariableLocalClassify (P, W, B, V, nSel, nPer, D) 

Input: P: Population; W: Set of weight vectors; B: Set of K 

weight vector clusters; V: Set of K cluster centers; nSel: 

Number of selected solutions for variables classification; 

nPer: Number of perturbations on each solution; D: Number 

of decision variables; 

Output: SC_Matrix: A matrix (N  K) of grouped sequences for 

N reference vector; 

  /* Reference vector association */ 

1: K  |V|, N  |W|, T  10, k  D/20; 

2: For i  1 to K do 

3:   Calculate Neighborvi(T) for each vector vi using (7); 

4: End 

  /* CRD calculation */ 

5: For i  1 to K do 

6:   For j  1 to D do 

7:   S  select nSel solutions closest to vj from Neighborvi; 

8:     For g  1 to nSel do 

9:   Perturb i-th variable of S[g] for nPer times to generate a 

population SP; 

10:    Normalize SP and fit a line L in objective space for SP; 

11:    Calculate the CRD value using (8); 

12:    End 

13:    Calculate the mean CRD value (crdi,j) for the i-th variable; 

14:  End 

  /* Ordered grouping */ 

15:  SC[i]  Indexes of D variables sorted based on CRD in 

ascending order; 

16:  SC_v[i]  Ordered_group (SC[i], k); 

17: End 

18: For i  1 to K do 

19:   For each vector j in cluster B[i] do 

20:    SC_Matrix[j]  SC_v[i]; 

21:   End 

22:  End  
Return SC_Matrix; 
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Fig.6. The structure of the population, where the individuals are assigned with 

different grouped variable sequences. 

 

the values of variables in OPSet with those generated by the 

recombination operator, while leaving the rest variables 

unchanged (Lines 3-6). 
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Algorithm 4 Reproduction (P, OPSet) 

Input: P: Parent population; OPSet: Variable archive to be 

updated 

Output: Offspring: New individuals; Ng: Neighboring solution 

set 

1: Determine the set of neighboring solutions, i.e., Ng, for the 

current reference vector using (7); 

2: Choose two solutions s1 and s2 randomly from Ng; 

3: s'(OPSet)  recombination (s1(OPSet), s2(OPSet));  

   /* s'(OPSet) denotes a vector consisting of values of s' on 

decision variables in OPSet */ 

4: s''  s1; 

5: s''(OPSet)  s'(OPSet); 

6: Offspring  s''(OPSet); 

Return Offspring and Ng; 

 

Algorithm 5 Update_Population (P, Offspring, Ng, ID) 

Input: P: Parent population; Offspring: New individual; Ng: Set 

of neighboring solutions; ID: Index of current variable 

subgroup;  

Output: P: Updated population; ID: Updated index of variable 

subgroup to be optimized; 

  /* Update of parent population */ 

1: Count  0; C_Max  10; 

2: P  P\Ng; 

3: Determine the value of   using (10); 

4: Update the ideal point z*; 

5: For each solution s in Ng do 

6:   Calculate the PBI fitness of solution s using (2), i.e., F(s); 

7:   If F(Offspring) < F(s) 

8:      s  Offspring; 

9:      Count  0; 

10:   Else 

11:     Count  Count+1; 

12:  End 

13: End 

  /* Update of variable archive */ 

14:  If  Count > C_Max  

15:     ID  ID+1; 

16:     If ID = = IDmax 

17:       ID  1; 

18:     End 

19:  End 

20: P  P Ng; 

Return P and ID; 

E. Update Population 

The update procedure is presented in Algorithm 5, which 

contains the update of parent population (Lines 2-8) and the 

update of variable archive (Lines 14-17). In this procedure, the 

variable subgroup that contributes more to the convergence will 

be optimized with a higher priority, and also be assigned to 

more computation resources. 

In the update of parent population (Lines 2-8), the offspring 

solutions are evaluated by a composite measure. If an offspring 

candidate solution has a better measure than its parent, it will 

be selected to the next generation; otherwise, it is discarded and 

the parent candidate solution will survive (Lines 7 and 8). 

To construct such a composite measure, an adaptive 

scalarization strategy is designed to control the balance between 

convergence and diversity. Especially, when PBI defined by (2) 

is used as the basic fitness measure, the parameter   in PBI is 

defined as follows: 

max max max

3 2

3 2

4 6 3
ID

ID ID ID
ID ID ID

  
 − += ,               (9) 

where ID is the index of the current subgroup in SC_Matrix, 

IDmax is the index of the last subgroup in SC_Matrix, and   is 

the upper limit of  . The distribution of all the values of   

obtained by (9) is illustrated in Fig. 7, where the subgroup with 

a smaller ID is more related to the convergence and assigned 

with a smaller  value. Using this adaptive strategy, the PBI 

measure gradually focuses on the convergence/diversity as ID 

decreases/increases. Of course, other complex adaptation 

functions can also be applied here to replace (9). 

 
 

Fig.7. Distribution of the values of .  

 

In the update of variable archive (Lines 14-17), if the 

offspring has not been improved consistently for a certain 

number of generations, the decision variables in OPSet will be 

replaced by the ones in the next subgroup from SC_Matrix 

(Line 15). For example, for reference vector w1, the subgroup 

with ID=1 is being optimized in the archive at first. After some 

generations, the ID=2 will be selected into OPSet, and so forth. 

If the last subgroup IDmax in SC_Matrix is shifted out, the ID=1 

is selected again for next generation (Line 17). 

F. More Discussions 

Different from the existing works [25], [26], the proposed 

decision variable analysis approach identifies the variable 

property via a localized contribution-based mechanism (i.e., the 

CRD measure). In this way, the variables that have different 

(strong or weak) correlations with the objectives can be 

optimized in a fine-grained manner. Especially, the variables 

with better CRD values (also with more convergence-based 

contributions) are optimized with a higher priority, which can 

accelerate the search towards the PF.  

Table I shows the grouping results obtained by the DVA 

methods of MOEA/DVA, LMEA and LSMOEA/D on 6 

representative test problems, respectively, where 12 decision 

variables are considered for each problem. As shown, all the 

variables in LSMOEA/D can be further ranked as a grouped 

sequence, while the variables in LMEA (to an extent similar to 

MOEA/DVA) are only labeled to be convergence-related or 

diversity-related. 



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, MONTH 2020 8 

TABLE I  
DECISION VARIABLE ANALYSIS RESULTS IN MOEA/DAVA, LMEA AND LSMOEA/D ON SELECTED TEST FUNCTIONS WHERE {} REPRESENTS A VARIABLE 

SUBGROUP OBTAINED BY ORDERED GROUPING IN LSMOEA/D. 

Pro. Obj MOEA/DVA LMEA LSMOEA/D 

Diversity Convergence Both Diversity Convergenc

e 

Sorting by CRD for V1 

DTLZ1 3 {x1, x2} {x3, …, x12} ∅ {x1, x2} {x3, …, x12} {x6,x10,x5},{x3,x11,x8},{x7,x9,x4},{x12,x2,x1} 

10 {x1, ..., x9} {x10, x11, x12} ∅ {x1, ..., x9} {x10, x11, 

x12} 

{x12,x11,x10},x6,x4,x2},{x5,x8,x3},{x7,x1,x9} 

DTLZ2 3 {x1, x2} {x3, …, x12} ∅ {x1, x2} {x3, …, x12} {x10,x8,x4},{x6,x9,x3},{x5,x11,x7},{x12,x2,x1} 

10 {x1, ..., x9} {x10, x11, x12} ∅ {x1, ..., x9} {x10, x11, 

x12} 

{x10,x12,x11},{x9,x4,x5},{x8,x3,x6},{x7,x2,x1} 

DTLZ6 3 {x1, ..., x4} {x5, …, x11} {x12} {x1, ... x4, x12} {x5, …, x11} {x5,x7,x8},{x9,x3,x10},{x11,x5,x4},{x12,x2,x1} 

10 {x1, ..., x9} {x12} {x10, x11} {x1, ..., x9 

,x10,x11} 

{x12} {x12,x1,x8},{x4,x7,x10},{x9,x11,x5},{x6,x3,x2} 

DTLZ7 3 ∅ {x3, …, x12} {x1, x2} {x1, x2} {x3, …, x12} {x12,x3,x8},{x4,x5,x10},{x9,x11,x7},{x6,x1,x2} 

10 ∅ {x10, x11, x12} {x1, ..., x9} {x1, ..., x9} {x10, x11, 

x12} 

{x10,x12,x11},{x9,x4,x5},{x8,x3,x6},{x7,x2,x1} 

WFG7 3 {x1, x2} {x3, …, x10} {x11, x12} {x1, x2} {x3, …, x12} {x12,x7,x8},{x4,x5,x10},{x9,x11,x3},{x6,x1,x2} 

10 {x1, ..., x4} {x5, ..., x9} {x10,x11,x12

} 

{x1, ..., x4} {x5, ..., x12} {x10,x12,x11},{x9,x7,x5},{x8,x3,x6},{x4,x2,x1} 

WFG8 3 {x1, x2} ∅ {x3, …,x12} {x1, x2} {x3, …, x12} {x10,x8,x4},{x6,x9,x3},{x5,x11,x7},{x12,x2,x1} 

10 {x1,x2} {x3, x4} {x5, ..., x12} {x1,x2} {x3, ..., x12} {x12,x11,x10},{x9,x4,x6},{x5,x8,x3},{x7,x1,x2} 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

This section presents the experimental study for the 

performance of LSMOEA/D by comparing it with a set of state-

of-the-art MOEAs, including MOEA/D [10], NSGA-III [17], 

MOEA/DVA [25], LMEA [26], WOF [38], and LSMOF [39] 

on 25 benchmark functions from LSMOPs (LSMOP1-

LSMOP9) [1], DTLZs (DTLZ1-DTLZ7) [51] and WFGs 

(WFG1-WFG9) [22]. These compared algorithms can be 

grouped into two classes: 1) two well-developed algorithms for 

solving large scale MOPs, including WOF and LSMOF, and 2) 

four state-of-the-art algorithms for handling large scale MaOPs, 

including LMEA, MOEA/DVA, NSGA-III and MOEA/D. 

Here, WOF is used to enhance SMPSO (WOF-SMPSO), 

NSGA-II (WOF-NSGA-II) and GDE3 (WOF-GDE3) [38], 

respectively, and the LSMOF is embedded into SMS-EMOA 

(LS-SMS-EMOA), NSGA-II (LS-NSGA-II), and MOEA/D-

DE (LS-MOEA/D-DE) [39], respectively. NSGA-III is a well-

known MOEA for solving MaOPs, MOEA/DVA is the first 

DVA-based MOEA [24] for large-scale MOPs, and LMEA is a 

recent algorithm designed specifically for large scale MaOPs. 

Each test problem is invoked in 2- 3-, 5-, 8-, and 10-objective 

instances. Regarding the number of decision variables, 200, 500, 

and 1000 decision variables are considered for each test 

problem, respectively. Furthermore, the proposed LSMOEA/D 

is tested on the large scale test instances with up to 5000 and 

10000 decision variables. 

A. Experimental Configuration 

The recommended parameter settings for the involved 

algorithms that have obtained the best performance in the 

literature are adopted as below, unless otherwise mentioned. 

1) Population size: for MOEA/D and NSGA-III, the 

population size is set empirically according to the simplex-

lattice design factor H together with the objective number M. 

As recommended in [10] and [17], for problems with M ≥ 8, a 

two-layer reference generation approach is employed to 

produce uniformly distributed reference vectors. Table S-I in 

the supplementary material presents the settings of the 

population size for MOEA/D and NSGA-III. Here h1 and h2 are 

to control the numbers of reference points along the boundary 

of the PF and inside it, respectively. For the other algorithms, 

LSMOEA/D, MOEA/DVA, LMEA, WOFs (WOF-SMPSO, 

WOF-NSGA-II and WOF-GDE3), and LSMOFs (LS-SMS-

EMOA, LS-NSGA-II, and LS-MOEA/D-DE), the population 

size was set to the same as that of NSGA-III and MOEA/D, with 

respect to different objective numbers M. 

2) Crossover and mutation: SBX and polynomial mutation 

are adopted to create offspring. The distribution indexes of 

crossover and mutation are set to nc = 20 and nm = 20, 

respectively. The crossover probability pc = 1.0 and the 

mutation probability pm = 1/D are used, where D is the number 

of decision variables [52] [53]. In LS-MOEA/D-DE and 

MOEA/DVA, the DE and PM operators are used for offspring 

generation, where the control parameters are set to CR = 1, F = 

0.5, pm = 1/D, and  = 20 as suggested in [54]. 

3) Number of runs and termination condition: Each algorithm 

was performed for 20 independent runs on each test instance 

and the termination criterion for each algorithm is the maximal 

number of generations. For each test instance with 200, 500, 

1000, 5000 and 10000 decision variables, the maximum 

number of evaluations is set to 40 0000, 60 0000, 100 0000, 500 

0000 and 1000 0000, respectively. 

4) Other parameters: For MOEA/D, the neighborhood range, 

the maximal number of solutions replaced by each offspring 

solution and the probability that parent solutions are selected 

from the neighborhood are set to T = 0.1*N, nr = 0.01*N, and 

  = 0.9 for all test problems, respectively, where N is the 

population size. The Tchebycheff approach is used for 

MOEA/D [31]. For MOEA/DVA, the number of interaction 

analysis and the number of control property analysis are set to 

the recommended values, namely, NIA = 6 and NCA = 50. For 

LSMOFs, the threshold tr is set to 0.5 [40]. For LMEA, the 

number of selected solutions and the number of perturbations 

for each selected solution in the decision variable clustering are 

set to nSel = 2 and nPer = 4, respectively, and the number of 

selected solutions in the decision variable interaction analysis 

is set as nCor = 6. For LSMOEA/D, the neighbor range is set to 

be the same as that in MOEA/D, i.e., T = 0.1*N, the number of 

subgroups in ordered grouping is set to D/20, and the detailed 

sensitivity analysis for other parameters nSel, nPer and K (the 

number of weight clusters) is provided in the supplementary 

material (Table S-IV in Section S-II-A). 
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5) Performance metrics: Two common performance 

indicators, i.e., inverted generational distance (IGD) [55] and 

hypervolume (HV) [56], are employed to evaluate the 

performance of algorithms. Since calculating IGD requires 

some reference Pareto-optimal solutions, a reference set of 

uniform Pareto-optimal points needs to be generated using the 

approach in [10], where a set of uniform weight vectors are first 

generated by the Das and Dennis’s systematic approach [41] if 

M  5 or the Deb and Jain's two-layer method [47] if M>5, and 

then the intersecting points of the weight vectors and the Pareto-

optimal surface of the benchmarks are used as the reference 

points. As recommended in [56], the number of reference points 

for DTLZs and LSMOPs is given in Table S-II in the 

supplementary material. For WFG1 and WFG2, whose PFs are 

irregular, their reference points are generated by sampling some 

non-dominated solutions in the underlying space [0, 1]M−1. For 

WFG4-WFG9, the number of their reference points is set to the 

same as DTLZs. For WFG3 with a degenerate PF, as 

recommended in [57], the final non-dominated solutions 

obtained by each algorithm are used as the reference points. 

Their details are shown in Table S-III in the supplementary 

material. For test problems with more than 5 objectives, the 

Monte Carlo estimation method is adopted to estimate HV. 

B. Test1: Comparison Results on LSMaOPs 

The experimental results in terms of the IGD values obtained 

by MOEA/D, NSGA-III, MOEA/DVA, LMEA and 

LSMOEA/D on DTLZs and WFGs with 200, 500 and 1000 

decision variables are reported in Tables S-V and S-VI in the 

supplementary material due to page limit. In these tables, the 

best result on each test instance is displayed in gray and the 

difference significance between LSMOEA/D and its compared 

algorithms is evaluated by Wilcoxon’s rank sum test with a 

level of significance 0.05, where the signs “+”, “-”, and “≈” 

indicate the significance extent. 

From Tables S-V and S-VI in the supplementary material, we 

can obtain the following observations. 

1) LSMOEA/D shows an obvious advantage over MOEA/D 

and NSGA-III in terms of mean and standard deviation values 

on most of the 72 DTLZ instances (more obvious when D 

increases to 1000). For low-dimensional (200-D and 500-D) 

test instances, LSMOEA/D does better or at least comparably 

on most test problems, but does not show a significant 

superiority on two test instances, i.e., 200-D 5-objective 

DTLZ2 and 200-D 5-objective DTLZ5. For high-dimensional 

(1000-D) instances, LSMOEA/D is the most efficient optimizer, 

significantly better than MOEA/D and NSGA-III. Especially on 

5-objective DTLZ3 and 10-objective DTLZ7, LSMOEA/D 

outperforms its compared algorithms with almost two orders of 

magnitude. This observation indicates that the proposed 

localized variable analysis method indeed has a positive effect 

on the performance in optimizing large scale problems. 

The results in Table S-V reveal that the performance outcome 

of LMEA and LSMOEA/D on each test problem consistently 

maintains a promising level when the number of decision 

variables increases from 200 to 1000, which shows the 

promising scalability of LMEA and LSMOEA/D. Nevertheless, 

LSMOEA/D still attains the superiority to its competitors on a 

set of DTLZ instances with 2, 5, 8 and 10 objectives. On 

DTLZ1 and DTLZ4 with convergence-related and diversity-

related variables, MOEA/DVA, LMEA and LSMOEA/D 

perform nearly equivalently in terms of mean and standard 

deviation on 200-D 5-objective DTLZ3 and DTLZ4. On 

DTLZ5 and DTLZ6. LSMOEA/D always obtains better results 

than MOEA/DVA and LMEA, especially better at least an 

order of magnitude on 5-objective DTLZ5. Similar 

observations are obtained on DTLZ3 and DTLZ7. For 500-D 

DTLZ3, whose PF is composed of a set of discontinuous 

segments, LSMOEA/D is better than LMEA on 8 out of the 12 

test instances. For 1000-D DTLZ7, which has a 

degenerate/disconnected PF, LSMOEA/D is better than 

MOEA/DVA with one order of magnitude. The performance 

improvement of LSMOEA/D is attributed to the fact that the 

use of uniform reference vectors as the convergence direction 

is more accurate to distinguish mixed variables for irregular PFs 

while there are more classifications for mixed variables to be 

optimized in a fine-grained manner. This is consistent with the 

observation in Fig. 2. 

2) On the set of WFG problems, which have composable 

complexities in the decision space (e.g., non-separability, 

multimodality or biased parameters) and in the objective space 

(e.g., concave, disconnected or mixed PFs), LSMOEA/D does 

rather competitively, especially on WFG3, WFG6 and WFG7, 

as shown in Table S-VI. On WFG3, whose PF is linear and 

degenerates simultaneously with sparsely-interacted decision 

variables, LSMOEA/D obtains the best results on all the 

instances except the 1000-D 5-objective one, on which 

MOEA/DVA is ranked the first. On WFG6, whose decision 

variables are highly dependent, LSMOEA/D is the best 

performer on all the instances while MOEA/DVA and LMEA 

also achieve the similar results, only slightly worse than 

LSMOEA/D. On WFG7 with a set of highly-dependent mixed 

variables, LSMOEA/D wins 6 out of the 12 instances and 

LMEA performs the best on 3 test instances. This is 

encouraging because the proposed adaptive scalarization 

strategy seems very suitable to deal with highly-dependent 

variables. Only on WFG2 with non-separable variables and 

disconnected convex PF, LMEA and MOEA/DVA perform 

better than LSMOEA/D. The slight performance improvement 

of MOEA/DVA and LMEA on WFG2 occurs because the effect 

of spatial location of candidate solutions may be not very 

obvious on this problem, and the uniform weight vectors in 

LSMOEA/D cannot guarantee a well-distributed solutions for 

discontinued PFs. 

The reasons for the performance improvement of 

LSMOEA/D on WFGs (except WFG2) are as follows: 1) as 

shown in Table I, while the variables in LMEA are only labeled 

to be convergence-related or diversity-related, all the variables 

in LSMOEA/D are further identified as a grouped sequence 

according to the CRD, thereby resulting in significantly better 

results; 2) the decomposition approach of LSMOEA/D, which 

does not need independence variable analysis, optimizes the set 

of more convergence-related variables with a higher priority, 

and assigns them with more computation resources. This is 
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helpful to accelerate the search towards the PF. 

Fig. S2 in the supplementary material explicitly plots the 

distribution of final solutions obtained by each algorithm on 10-

objective WFG2 with 1000 decision variables by parallel 

coordinates. From the figure, we can see that the tradeoff 

surfaces obtained by LSMOEA/D and LMEA are better than 

those of MOEA/D and NSGA-III in terms of convergence and 

distribution, while MOEA/DVA also obtains a comparable 

performance, but still slightly converges into a small parts of 

several objectives. As shown in Fig. S3 in the supplementary 

material, we can see that all the algorithms show difficulties in 

converging to the PF on WFG1. Some parts of the solution set 

obtained by LSMOEA/D and LMEA look a little noisy, which 

verifies the analysis for the above IGD results.  

C. Test2: Computation Efficiency on LSMaOPs 

To assess the computation efficiency of LSMOEA/D, the 

evolutionary process of the five algorithms in terms of IGD 

versus the number of generations on a set of 10-objective test 

instances with 1000 decision variables are plotted and 

compared in Fig. S4 and Fig. S5 in the supplementary material.  

From the figures, we observe that LSMOEA/D is able to obtain 

a faster convergence speed than the compared algorithms as 

well as find the best IGD values on the majority of selected test 

instances. In detail, LSMOEA/D obtains an improvement over 

its competitors MOEA/D and NSGA-III on DTLZ2, DTLZ3 

and WFG4, and performs slightly worse than LMEA on WFG 

6. LSMOEA/D and LMEA perform better than other algorithms 

on WFG5. Similar observation is obtained on WFG9. 

For further investigation, we directly record and compare its 

actual running time (in seconds: s) with that of compared 

algorithms on each test instance. The hardware environment is 

configured as: Intel Dual Core I7-6500U CPU 2 GHz, 16.00GB 

RAM. It is shown from the comparative results in Fig. S6 in the 

supplementary material that LSMOA/D is nearly equivalent to 

NSGA-III, and faster than LMEA and MOEA/D, while it is 

slightly slower than MOEA/DVA. For the pairwise comparison 

between LSMOEA/D and MOEA/DVA, LSMOEA/D 

essentially consumes more computation cost because it needs 

to make control decision variable analysis for each guiding 

reference vector. In fact, we can regulate the number of the 

guiding reference vectors to save the computation cost of 

LSMOEA/D. In addition, compared to LMEA, LSMOEA/D 

does not need to conduct variable interaction analysis, which 

cuts down the computation cost to an extent. 

D. Test3: Results on LSMaOPs with 5000 and 10000 Variables 

Since one motivation of this work is to solve large scale 

optimization, this experiment tests the scalability of 

LSMOEA/D by further increasing the number of decision 

variables. In principle, as the number of decision variables 

increases, the optimization complexity of a problem grows 

exponentially. Table S-VII in the supplementary material 

presents the HV metric values obtained by the proposed 

LSMOEA/D and the compared algorithms on a set of 5- and 10-

objective test instances with 1000, 5000 and 10000 decision 

variables over 20 runs. The results from the table exhibit that 

the proposed LSMOEA/D performs more powerfully than its 

counterparts on majority of the large scale test instances. For 

example, on DTLZ6 and DTLZ7, LSMOEA/D does best on all 

the instances from D=1000 to D=10000, while other compared 

algorithms cannot even obtain find optimal solutions for 

D=10000. Upon closer examination at Table S-VII, it is shown 

that LSMOEA/D does not show obvious deterioration on 

DTLZ5, DTLZ6, WFG2, WFG6 and WFG7 when the number 

of decision variables increases from 1000 to 10000. These 

encouraging results validate the promising scalability of the 

proposed algorithm. 

E. Test4: Comparison Results on LSMOPs 

This experiment further assesses the scalability of 

LMOEA/D on the test suite for LSMOPs [1]. Two state-of-the-

art large scale MOEAs, i.e., LSMOF and WOF, are employed 

for performance comparison. Here the LSMOF refers to three 

LSMOF versions LS-SMS-EMOA, LS-NSGA-II and LS-

MOEA/D-DE, and WOF involves WOF-SMPSO, WOF-

NSGA-II and WOF-GDE3, respectively. 

The statistics of IGD results achieved by LSMOEA/D, 

WOFs, and LSMOFs on 3-objective LSMOPs with 1000 

variables are displayed in Table II (complete results for 2- and 

3-objective LSMOPs with 200, 500 and 1000 variables are 

provided in Table S-VIII in the supplementary material). 

As can be seen, LMOEA/D is ranked first on 5 out of 10 test 

problems, WOF-GDE3 obtains the first rank on 2 test problems, 

WOF-SMPSO and LS-SMS-MOEA achieve 1 best result. 

Similar observations can be obtained in Table S-VII. The box 

plots of Fig.8 show the distributions of the results obtained by 

the algorithms on several 3-objective test instances with 1000 

variables. From these statistical results, we can observe that 

LSMOEA/D outperforms its compared algorithms on LSMOP1, 

LSMOP4, LSMOP5 and LSMOP7. These observations verify 

the competitive performance of the proposed algorithm on in 

comparison with the state-of-the-arts. 

In addition, we further investigate the computation efficiency 

and accuracy of LSMOEA/D, which are provided in the 

supplementary material (please see details in Section S-II-D). 

V. CONCLUSION 

This paper proposes a new algorithm LSMOEA/D to solve 

LSMOPs and LSMaOPs. In LSMOEA/D, the guidance of 

reference vectors is incorporated into the control decision 

variable analysis. Then, these grouped variables are optimized 

by an adaptive scalarization strategy. Especially, in the 

localized control variable analysis, the contribution of each 

decision variable to the convergence is measured by the 

projection-based detection method, where the CRD is 

quantified based on both acute angle and projection length from 

the sampling solutions to the direction of the guiding reference 

vector. LSMOEA/D has been experimentally compared with a 

set of mainstream algorithms on a set of test problems with 2-

10 objectives and 200-1000 variables. Experimental results 

show that LSMOEA/D is effective and efficient to deal with 

LSMOPs and LSMaOPs. 
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TABLE II 
IGD VALUES OBTAINED BY LSMOEA/D, WOFS AND LSMOFS ON 3-OBJECTIVE LSMOPS 1-9 WITH 1000 DECISION VARIABLES. 

Problem LS-SMS-MOEA LS-NSGAII LS-MOEA/D WOF-SMPSO WOF-NSGAII WOF-GDE3 LSMOEA/D 

LSMOP1

1 
8.267e-1(3.540e-3)- 8.314e-1(1.068e-2)- 9.548e-1(1.565e-1)- 5.197e+0(1.088e-1)- 4.770e-1(1.902e-1)- 4.918e-1(6.536e-2)- 1.925e-1(1.651e-2) 

LSMOP2 7.286e-2(7.921e-3)- 6.789e-2(1.145e-3)≈ 6.997e-2(3.331e-3)≈ 5.217e-2(3.242e-5)≈ 6.714e-2(1.344e-3)≈ 6.885e-2(2.071e-3)≈ 6.032e-2(1.965e-4) 

LSMOP3 8.607e-1(0.000e+0) 3.066e+0(3.119e+0)

- 
8.607e-1(0.000e+0) 1.236e+1(4.502e+0)- 8.607e-1(0.000e+0) 8.597e-1(1.441e-3)≈ 8.607e-1(0.000e+0) 

LSMOP4 1.434e-1(2.334e-3)- 1.429e-1(3.621e-3)- 1.449e-1(3.956e-3)- 1.090e-1(8.888e-4)- 1.306e-1(4.477e-4)- 1.330e-1(2.129e-3)- 9.060e-2(1.377e-3) 

LSMOP5 5.410e-1(2.348e-5)- 5.410e-1(3.253e-6)- 5.450e-1(5.737e-3)- 6.831e+0(1.295e+0)- 6.521e-1(2.966e-1)- 5.061e-1(1.929e-2)- 4.920e-1(3.600e-2) 

LSMOP6 7.569e-1(7.777e-2)+ 7.796e-1(5.270e-2)+ 7.654e-1(3.108e-2)+ 1.878e+2(1.101e+2)- 1.479e+0(1.946e-1)- 1.175e+0(1.939e-1)- 1.014e+0(5.693e-1) 

LSMOP7 8.949e-1(3.550e-2)- 8.921e-1(3.215e-2)- 8.668e-1(2.434e-3)- 9.853e-1(3.266e-2)- 8.164e-1(7.463e-2)- 7.919e-1(3.766e-2)- 6.868e-1(1.786e-1) 

LSMOP8 3.729e-1(1.430e-2)- 3.578e-1(9.189e-4)- 4.085e-1(7.061e-2)- 7.064e-1(1.943e-3)- 3.324e-1(3.307e-4)- 2.789e-1(3.853e-2)- 1.855e-1(1.281e-1) 

LSMOP9 1.538e+0(0.000e+0)
+ 

7.416e+1(1.027e+2)
- 

9.885e+0(1.180e+1)
+ 

1.930e+1(1.509e+0)
+ 

1.145e+0(1.749e-
4)+ 

1.145e+0(5.909e-

4)+ 

2.083e+1(9.379e+0
)  

 
(a) LSMOP1 

 
(b) LSMOP4 

 
(c) LSMOP5 

 
(d) LSMOP7 

 
(e) LSMOP8 

 
Fig.8. Box plots of IGD results on 10-objective LSMOP test problems with 1000 decision variables. 

 

Despite the promising results, there are still some issues to 

be studied in the future: 1) The computation efficiency of the 

localized decision variable analysis needs to be further 

improved because it heavily relies on the number of the guiding 

reference vectors; 2) More efficient adaptive strategies for r 

balancing diversity and convergence are desirable. 
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S-I. EXAMPLE ILLUSTRATION OF MOTIVATION 

In this section, an example derived from WFG2 is considered 

to illustrate the phenomenon that the detection result in terms 

of decision variables' control property may be different in 

different detection regions in the objective space. As defined in 

[1], a bi-objective WFG2 problem is formulated as 
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Another example is considered as follows: 
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Fig. S1 plots the sampling points generated on the problem of 
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(S2) by perturbing a variable x1 between [0, 1] while fixing 

another variable x2 to 0.4 and 0.9, respectively. Each reference 

vector (e.g., V1 or V2) used here specifies a unique subregion in 

the bi-objective space. When the sampling solutions are located 

in the subregion of V1, i.e., x2 = 0.4, x1 is identified as a 

diversity-related variable according to the variable analysis 

strategy [2]. In contrast, when the sampling solutions are 

located in the subregion of V2, i.e., x2 = 0.9, since x1 contributes 

more to convergence than diversity, x1 is identified as a 

convergence-related variable. The above observation 

demonstrates that the detection location indeed has an 

important impact on the detection results in terms of the control 

property of decision variables. 

 
Fig.S1. Plot of sampling points generated on the problem (S2). 

 

S-II. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Configuration 

In this section, the parameter settings for involved algorithms, 

which are not provided in the paper due to page limit, are given 

as follows: 
 

TABLE S-I 

 POPULATION SIZE FOR DIFFERENT NUMBER OF OBJECTIVES. 

M H NSGA-III MOEA/D LSMOEA/D 

3 91 92 91 91 

5 210 212 210 210 

8 156(h1=3,h2=2) 156 156 156 

10 135(h1=3,h2=2) 276 275 275 
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TABLE S-II 

 NUMBER OF REFERENCE POINTS FOR DTLZS AND LSMOPS. 

M h1 h2 Number of reference points 

3 25 - 351 

5 13 - 2380 

8 7 6 5148 

10 6 5 7007 

 

TABLE S-III  

NUMBER OF REFERENCE POINTS FOR WFGS. 

M WFG1 WFG2 WFG3 WFG4-9 

3 421 148 5000 351 

5 2801 1601 17000 2380 

8 5464 4690 15000 5148 

10 20705 13634 26000 7007 

B. Parameter Sensitivity Analysis 

In this section, the detailed sensitivity analysis to several 

specific parameters of LSMOEA/D is conducted. LSMOEA/D 

has three parameters to be tuned, including nSel (the number of 

solutions to be selected to conduct variable permutations), nPer 

(the number of permutations to be applied on each decision 

variable for generating new solutions for variable classification), 

and K (the number of reference vector clusters). As presented 

in Section III-C, the functionalities of nSel and nPer in the 

control variable analysis in LSMOEA/D are the same as that in 

LMEA and MOEA/DVA. Following the analysis approach in 

LMEA, we put nSel and nPer together to construct different 

combinations and then test their influences on the performance 

of LSMOEA/D on a set of test problems. Note that, 

LSMOEA/D has a specific parameter K, which is to affect the 

clustering of the reference vectors and the region of the sample 

solutions generated in the localized decision variable analysis 

process. Apparently, all the three parameters, i.e., nSel, nPer 

and K have potential effect on the performance of the localized 

decision variable analysis in LSMOEA/D. Thus, we put them 

together to investigate their sensitivity on a set of test functions. 

In detail, nSel is set to be 2, 4, 6 and 8, nPer  is empirically 

varied from 4, 8, 12 and 16, K is adjusted from 5, 10, 15 to 20.  

Table S-IV shows the statistic results in terms of HV metric 

with 20 independent runs obtained by LSMOEA/D on 3- and 

10-objective LSMOP1-LSMOP9 with 1000 decision variables. 

From the figure, it can be observed that the performance of the 

localized decision variable analysis approach suggested in 

LSMOEA/D is quite robust to different combinations of 

parameters nSel, nPer and K on the test functions, while, nSel 

= 2, nPer = 4 and K=5 obtain the best results, including seven 

first ranks and two second ranks on the eighteen test instances. 

Therefore, nSel = 2, nPer = 4 and K=5 is suggested as the best 

choice for the proposed LSMOEA/D. Accordingly, these 

parameter settings are used in the following experiments. 

C. Experimental Results 

The experimental results regarding the mean and standard 

deviation results of IGD obtained by the involved algorithms on 

DTLZs and WFGs are shown in Table S-V and Table S-VI 

respectively.  Figs. S2 and S3 show the final solution set of 

involved algorithms on the 10-objective WFG1 and WFG2 with 1000 

decision variables by parallel coordinates respectively. Figs. S4 and S5 

show the evolutionary trajectories of IGD on the 10-objective DTLZ 

and WFG test problems with 1000 variables respectively. Table S-VII 

shows the mean and standard deviation results in terms of HV metric 

obtained by the involved algorithms on DTLZ and WFG test problems. 

Table S-VIII shows the mean and standard deviation results in terms 

of IGD values obtained by LS-SMS-MOEA, LS-NSGAII, LS-

MOEA/D, WOF-SMPSO, WOF-NSGAII, WOF-GDE3 and 

LSMOEA/D on LSMOPs.

 

 
TABLE S-IV 

MEAN AND STANDARD DEVIATION HV VALUES OBTAINED BY LSMOEA/D WITH DIFFERENT PARAMETERS ON 3- AND 10- OBJECTIVE LSMOPS WITH 1000 

DECISION VARIABLES. 

Proble

m 
M 

nSel=2,nPer=4,

K=10 

nSel=4,nPer=8,

K=10 

nSel=6,nPer=12,

K=10 

nSel=8,nPer=16,

K=10 

nSel=2,nPer=4,

K=5 

nSel=2,nPer=4,

K=15 

nSel=2,nPer=4,

K=20 

LSMO

P1 

3 7.255e-1(2.421e-
2) 

7.260e-1(2.648e-
2) 

7.342e-1(1.907e-
2) 

7.353e-1(2.182e-
2) 

7.239e-1(4.009e-
2) 

7.277e-1(3.360e-
2) 

7.154e-1(2.793e-
2) 10 8.782e-1(1.208e-

1) 

8.697e-1(1.300e-

1) 

8.714e-1(1.452e-

1) 

8.543e-1(1.618e-

1) 

9.040e-1(3.730e-

2) 

9.085e-1(3.178e-

2) 

9.042e-1(3.748e-

2) 
LSMO

P2 

3 8.527e-1(6.738e-
3) 

8.524e-1(7.332e-
3) 

8.516e-1(7.922e-
3) 

8.497e-1(7.681e-
3) 

8.556e-1(1.025e-
3) 

8.538e-1(3.704e-
3) 

8.530e-1(4.102e-
3) 10 9.242e-1(8.250e-

2) 

9.218e-1(9.010e-

2) 

9.147e-1(9.882e-

2) 

9.054e-1(1.116e-

1) 

9.559e-1(1.654e-

2) 

9.629e-1(1.938e-

2) 

9.600e-1(2.263e-

2) 
LSMO

P3 

3 2.069e-1(1.136e-

1) 

1.919e-1(1.166e-

1) 

1.809e-1(1.268e-

1) 

1.375e-1(9.443e-

2) 

2.487e-1(4.733e-

2) 

2.356e-1(4.667e-

2) 

2.468e-1(5.022e-

2) 10 6.961e-1(2.341e-
1) 

6.732e-1(2.478e-
1) 

6.370e-1(2.586e-
1) 

7.383e-1(1.440e-
1) 

8.280e-1(2.944e-
2) 

8.150e-1(3.555e-
2) 

8.211e-1(4.083e-
2) 

LSMO

P4 

3 6.795e-1(4.072e-

2) 

6.805e-1(4.452e-

2) 

6.744e-1(4.687e-

2) 

6.681e-1(5.166e-

2) 

6.900e-1(1.907e-

2) 

6.930e-1(1.665e-

2) 

6.955e-1(1.938e-

2) 10 8.039e-1(1.124e-
1) 

8.320e-1(9.241e-
2) 

8.094e-1(8.283e-
2) 

7.739e-1(2.684e-
2) 

7.957e-1(1.550e-
1) 

7.917e-1(1.268e-
1) 

7.866e-1(1.548e-
1) 

LSMO

P5 

3 2.692e-1(9.157e-

2) 

2.665e-1(9.999e-

2) 

2.584e-1(1.096e-

1) 

2.488e-1(1.241e-

1) 

2.909e-1(1.411e-

2) 

3.089e-1(3.777e-

2) 

3.185e-1(3.986e-

2) 10 2.737e-1(3.081e-

2) 

2.772e-1(3.218e-

2) 

2.658e-1(1.819e-

2) 

2.688e-1(1.959e-

2) 

2.907e-1(4.084e-

2) 

2.814e-1(3.820e-

2) 

2.800e-1(4.665e-

2) 
LSMO

P6 

3 2.902e-2(5.999e-

2) 

3.290e-2(6.475e-

2) 

3.948e-2(7.011e-

2) 

8.886e-3(1.777e-

2) 

1.918e-3(3.322e-

3) 

1.032e-2(1.703e-

2) 

1.377e-2(1.908e-

2) 10 2.424e-1(1.069e-

1) 

2.354e-1(1.154e-

1) 

2.255e-1(1.261e-

1) 

2.108e-1(1.406e-

1) 

2.843e-1(4.811e-

4) 

2.842e-1(4.527e-

4) 

2.844e-1(4.495e-

4) 
LSMO

P7 

3 2.967e-2(4.387e-
2) 

1.841e-2(3.529e-
2) 

4.475e-3(1.001e-
2) 

5.594e-3(1.119e-
2) 

6.923e-2(4.083e-
2) 

5.192e-2(4.806e-
2) 

6.177e-2(5.369e-
2) 10 1.278e-1(1.002e-

1) 

9.590e-2(5.918e-

2) 

9.279e-2(6.562e-

2) 

8.105e-2(6.944e-

2) 

1.874e-1(1.146e-

1) 

1.522e-1(1.170e-

1) 

1.592e-1(1.422e-

1) 
LSMO

P8 

3 2.259e-1(1.838e-
2) 

2.236e-1(1.898e-
2) 

2.249e-1(2.088e-
2) 

2.170e-1(1.276e-
2) 

2.256e-1(1.244e-
2) 

2.189e-1(1.676e-
2) 

2.184e-1(2.050e-
2) 10 3.336e-1(8.548e-

2) 

3.143e-1(7.529e-

2) 

3.262e-1(7.765e-

2) 

3.171e-1(8.649e-

2) 

3.821e-1(1.101e-

1) 

3.534e-1(1.068e-

1) 

3.236e-1(1.086e-

1) 
LSMO

P9 

3 1.442e-1(5.194e-

2) 

1.396e-1(5.532e-

2) 

1.372e-1(6.147e-

2) 

1.267e-1(6.560e-

2) 

1.556e-1(1.473e-

2) 

1.662e-1(2.442e-

2) 

1.740e-1(2.314e-

2) 10 2.528e-3(2.587e-
3) 

2.739e-3(2.767e-
3) 

3.226e-3(2.790e-
3) 

3.617e-3(3.060e-
3) 

2.919e-3(3.734e-
3) 

3.361e-3(3.174e-
3) 

2.083e-3(2.306e-
3)  
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TABLE S-V  
MEAN AND STANDARD DEVIATION RESULTS OF IGD OBTAINED BY THE INVOLVED ALGORITHMS ON DTLZS. 

Problem M D MOEA/D NSGAIII MOEA/DVA LMEA LSMOEA/D 

DTLZ1 

2 

200 1.191e-1(3.292e-2)- 7.215e+0(5.664e+0)

- 
1.836e+0(1.597e+0)- 7.515e-2(3.542e-2)- 5.488e-2(3.114e-4) 

500 1.301e+0(1.795e-1)- 5.097e+1(6.931e+0)

- 
1.081e+1(1.082e-1)- 2.257e-2(9.495e-4)+ 5.527e-2(2.855e-5) 

1000 2.964e+0(2.667e-1)- 2.932e+0(3.981e+0)

- 
1.295e+1(3.128e+0)- 8.562e-2(1.297e-4)- 1.448e-2(1.242e-4) 

5 

200 3.489e+1(5.189e+0)+ 5.607e+1(4.155e+0)

+ 
2.060e-1(3.721e-3)+ 6.973e-2(1.150e-3)≈ 7.156e-2(2.915e-3) 

500 2.846e+0(3.006e+0)+ 1.123e+1(2.571e+0)

+ 
2.345e-1(6.319e-2)+ 6.834e-2(8.526e-5)≈ 6.749e-2(1.015e-3) 

1000 1.212e+1(1.909e+0)+ 1.894e+1(1.491e+0)

+ 
1.509e-1(8.369e-2)+ 8.285e-2(3.295e-4)- 2.493e-2(3.501e-2) 

8 

200 6.382e+1(1.169e+0)+ 3.584e+2(3.636e+1)

+ 
2.750e-1(2.426e-3)- 8.637e-1(8.758e-2)+ 4.143e-1(1.675e-3) 

500 2.487e+2(5.586e+1)+ 8.600e+2(6.879e+2)

+ 
3.247e-1(2.972e-2)+ 1.154e-1(4.987e-2)+ 1.001e-1(3.433e-3) 

1000 1.025e+2(1.682e+2)+ 1.851e+2(1.392e+2)

+ 
7.281e-1(1.446e-2)+ 2.354e-1(1.331e-3)- 4.341e-1(5.626e-3) 

10 

200 1.675e+1(3.141e+0)+ 6.488e+1(1.004e+1)

+ 
4.354e-1(1.908e-2)+ 2.780e-1(1.728e-1)+ 1.329e-1(2.726e-3) 

500 3.229e+1(1.691e-1)+ 1.742e+1(2.383e-

1)+ 
1.463e-1(1.107e-2)+ 3.483e-1(3.693e-3)+ 1.325e-1(4.381e-5) 

1000 2.215e+2(3.611e+1)+ 5.594e+2(3.222e-

2)+ 
8.411e+1(7.239e-1)+ 2.989e+0(1.071e-2)- 1.129e-1(3.846e-3) 

DTLZ2 

2 

200 8.058e-1(4.762e-4)+ 7.371e-1(2.114e-3)+ 5.238e-1(1.024e-2)+ 2.403e-1(5.582e-2)- 2.654e-1(4.614e-3) 

500 9.060e-1(7.860e-3)+ 1.573e+0(1.131e-

2)+ 
2.010e+0(1.467e-2)+ 5.740e-1(2.124e-1)+ 3.233e-1(2.295e-2) 

1000 5.149e+0(7.254e+0)+ 3.003e+1(1.824e+0)

+ 
9.311e+0(1.053e-1)+ 1.618e-1(4.868e-1)- 1.838e-1(8.930e-2) 

5 

200 5.897e-1(1.951e-3)+ 5.037e+0(2.723e-

1)+ 
2.122e-1(2.170e-5)- 2.142e-1(7.581e-3)- 3.569e-1(4.974e-3) 

500 5.048e+0(7.840e-2)+ 2.161e+1(3.211e+0)

+ 
8.231e+0(5.064e-1)+ 3.784e-1(4.038e-2)+ 2.466e-1(1.600e-4) 

1000 2.688e+1(8.839e+0)+ 5.344e+1(2.758e+0)

+ 
3.756e+1(1.016e-1)+ 7.801e-1(8.063e-3)+ 5.781e-1(1.411e-3) 

8 

200 1.023e+0(4.207e-2)+ 9.373e-1(5.762e-2)+ 6.363e-1(1.217e-2)+ 4.091e-1(3.201e-2)+ 3.869e-1(1.711e-5) 

500 1.027e+0(8.892e-1)+ 4.952e+1(6.165e+0)

+ 
6.936e+0(3.478e-1)+ 3.787e-1(7.247e-3)+ 4.019e-1(3.638e-3) 

1000 3.831e+1(2.231e+0)+ 9.752e+1(9.087e+0)

+ 
3.343e+1(7.464e-1)+ 7.797e-1(5.011e-2)+ 5.364e-1(1.081e-3) 

10 

200 6.771e-1(4.029e-2)+ 2.678e-1(2.017e-2)+ 8.053e-1(3.286e-2)+ 4.735e-1(9.365e-3)- 5.003e-1(1.165e-5) 

500 6.856e+0(1.226e+0)+ 5.588e+1(4.814e+0)

+ 
6.470e+0(3.083e-1)+ 3.746e-1(4.428e-3)+ 5.195e-1(2.200e-3) 

1000 3.824e+0(7.347e-1)+ 2.048e+0(1.513e-

2)+ 
9.085e-1(3.708e-3)+ 7.838e-1(3.919e-3)+ 7.692e-1(1.791e-2) 

DTLZ3 

2 

200 5.183e-1(1.161e-2)+ 1.940e+1(1.037e-

1)+ 
6.077e-1(2.005e-1)+ 1.016e-1(1.433e-2)- 2.133e-1(2.875e-2) 

500 9.388e-1(8.409e-2)+ 3.770e+2(1.950e-

2)+ 
5.762e-1(8.673e-2)+ 1.753e-1(1.620e-2)+ 1.162e-1(6.764e-2) 

1000 8.135e-1(1.147e-3)+ 1.050e+2(1.401e-

2)+ 
2.188e-1(3.023e-1)+ 1.743e-1(7.657e-2)+ 1.493e-1(5.334e-2) 

5 

200 1.942e+2(4.211e+0)+ 2.463e+2(4.371e+1)

+ 
7.384e-1(4.989e-2)+ 2.150e-1(5.015e-4)≈ 2.225e-1(2.954e-3) 

500 2.933e+1(4.845e-1)+ 9.957e+1(5.163e+0)

+ 
9.035e-1(1.958e-3)+ 2.130e-1(2.601e-4)≈ 2.084e-1(1.188e-4) 

1000 2.922e+2(1.548e+1)+ 8.451e+2(3.101e+0)

+ 
5.792e-1(4.776e-4)- 2.489e-1(1.517e-3)- 1.026e+0(2.523e-3) 

8 

200 2.069e+1(8.142e+0)+ 2.372e+2(9.291e+1)

+ 
9.752e-1(1.675e-2)+ 4.088e-1(1.284e-2)+ 3.289e-1(1.479e-2) 

500 1.141e+2(7.484e+0)+ 5.593e+3(9.302e+2)

+ 
1.395e-1(3.967e-2)- 4.939e-1(1.740e-2)+ 3.994e-1(1.177e-2) 

1000 1.267e+2(1.768e+1)+ 1.084e+3(2.379e+2)

+ 
5.429e-1(1.463e-2)+ 1.016e-1(1.460e-2)- 4.367e-1(1.984e-2) 

10 

200 8.053e+1(1.566e+0)+ 3.748e+2(2.360e+1)

+ 
5.830e-1(2.356e-3)+ 5.042e-1(1.097e-3)≈ 4.971e-1(6.959e-3) 

500 3.423e+2(1.708e-1)+ 2.159e+2(4.407e+1)

+ 
6.929e-1(1.330e-2)+ 9.422e-1(3.623e-2)+ 4.808e-1(5.159e-4) 

1000 3.792e+3(9.616e+0)+ 8.125e+3(2.097e+1)

+ 
5.056e+2(5.207e-1)+ 7.477e-1(6.321e-2)- 3.011e-1(1.304e-3) 

DTLZ4 

2 

200 6.847e-1(5.782e-4)+ 5.207e-1(9.534e-3)+ 2.395e-1(2.632e-2)+ 2.049e-1(4.046e-2)+ 1.138e-1(3.527e-3) 

500 1.339e+0(1.880e-1)+ 9.185e-1(4.365e-2)+ 1.090e+0(1.517e-1)+ 7.903e-1(1.211e-3)+ 5.348e-1(9.881e-2) 

1000 5.043e+0(6.684e-1)+ 6.324e+0(2.041e-

3)+ 
6.862e+0(9.625e-1)+ 1.180e-1(3.562e-2)- 2.954e-1(1.012e-2) 

5 

200 4.270e-1(5.389e-5)+ 2.123e-1(4.615e-5)- 1.145e+0(2.485e-3)+ 2.122e-1(1.213e-6)- 3.403e-1(1.860e-1) 

500 5.364e-1(1.552e-1)+ 3.304e-1(1.671e-1)+ 1.133e+0(1.778e-3)+ 2.122e-1(1.354e-6)≈ 2.070e-1(4.354e-4) 

1000 1.367e-1(1.439e-3)- 5.615e-1(7.040e-2)- 3.565e+0(5.976e-1)+ 7.156e-1(4.398e-3)- 7.680e-1(1.416e-3) 

8 

200 1.003e+0(2.988e-1)- 2.007e-1(1.063e-2)- 7.260e-1(1.147e-2)- 4.601e-1(4.009e-2)- 2.001e-1(2.824e-2) 

500 1.062e+0(2.252e-1)+ 4.534e-1(7.340e-2)+ 7.365e+0(3.536e-1)+ 3.723e-1(7.586e-2)- 4.002e-1(1.977e-3) 

1000 1.107e+0(1.191e-1)+ 8.986e+0(1.656e-

1)+ 
3.361e+1(3.797e-1)+ 7.915e-1(4.629e-3)+ 4.235e-1(2.964e-2) 

10 

200 6.920e-1(4.535e-4)+ 5.014e-1(9.814e-4)+ 1.270e+0(1.577e-3)+ 5.227e-1(2.684e-2)+ 4.776e-1(2.238e-3) 

500 9.996e-1(3.424e-1)+ 5.004e-1(1.511e-4)- 1.258e+0(2.628e-4)+ 8.454e+0(1.854e-

1)+ 
5.499e-1(1.005e-1) 

1000 8.330e-1(9.970e-2)+ 2.020e+0(3.186e-

2)+ 
1.033e+0(2.297e-3)+ 6.820e-1(1.133e-3)+ 5.833e-1(2.598e-2) 

DTLZ5 

2 

200 4.265e-2(1.888e-2)+ 4.011e-2(3.547e-5)+ 1.002e-1(6.987e-3)+ 2.105e-2(2.791e-3)- 2.940e-2(1.822e-3) 

500 5.767e-2(7.912e-1)+ 2.046e-1(2.107e-2)+ 5.984e-1(9.110e-4)+ 1.156e-2(2.278e-4)- 4.168e-2(6.388e-4) 

1000 8.430e-1(4.260e-3)+ 1.534e-1(2.098e-1)+ 4.961e-1(1.557e-4)+ 3.722e-2(6.123e-3)+ 2.010e-2(3.151e-3) 

5 

200 3.066e-2(1.313e-5)+ 9.812e-1(2.280e-1)+ 3.213e-1(1.129e-3)+ 5.068e-2(7.520e-5)+ 5.618e-3(2.436e-4) 

500 3.068e-2(1.401e-6)+ 9.751e-1(4.579e-2)+ 1.693e-1(6.001e-2)+ 5.178e-2(8.511e-6)+ 5.666e-3(6.554e-4) 

1000 4.759e-2(1.271e-4)- 7.112e+0(6.295e-

2)+ 
3.694e-1(1.020e-2)+ 1.199e-2(6.083e-4)- 7.590e-2(9.109e-3) 

8 

200 5.428e-1(2.213e-1)+ 1.400e+0(1.681e-

1)+ 
6.587e-3(1.360e-3)- 8.225e-2(6.769e-3)+ 1.373e-2(7.220e-3) 

500 1.300e+1(7.376e-1)+ 3.908e+0(3.367e-

1)+ 
7.594e+0(7.828e-2)+ 3.698e-2(2.253e-4)+ 1.170e-2(2.527e-3) 

1000 3.685e+1(1.536e+0)+ 8.023e+0(3.297e-

2)+ 
3.348e+1(7.236e-1)+ 7.709e-2(1.598e-3)+ 6.078e-2(8.114e-4) 

10 

200 7.996e-2(1.094e-2)+ 1.549e+0(2.709e-

1)+ 
2.788e-1(7.271e-2)+ 5.376e-2(1.299e-2)+ 7.866e-3(3.857e-4) 

500 7.616e+0(2.199e+0)+ 3.796e+0(8.380e-

1)+ 
6.888e+0(4.940e-1)+ 3.751e-1(3.942e-2)- 5.134e-1(1.018e-1) 

1000 3.282e-1(1.846e-2)+ 1.808e+0(4.563e-

1)+ 
1.134e+0(2.653e-1)+ 7.769e-2(9.549e-3)+ 3.765e-2(2.265e-3) 

DTLZ6 

2 

200 6.098e-1(5.512e-2)+ 5.704e-1(1.273e-2)+ 5.852e-1(4.054e-2)+ 5.165e-3(7.449e-5)- 5.779e-3(1.904e-4) 

500 5.754e+0(7.757e-1)+ 6.051e-1(4.155e-4)+ 5.965e-1(2.091e-2)+ 5.020e-3(2.297e-4)+ 3.928e-3(1.332e-4) 

1000 5.974e+0(9.196e-1)+ 5.719e+0(4.189e-

2)+ 

5.602e-1(3.861e-2)+ 5.190e-3(3.737e-4)+ 4.605e-3(7.989e-5) 

5 
200 6.986e-1(7.045e-2)+ 2.001e+1(2.599e+0)

+ 
1.279e-1(4.075e-2)+ 5.075e-2(1.601e-4)+ 6.411e-3(4.407e-5) 

500 3.128e+0(1.303e-1)+ 3.379e+1(1.337e+1)

+ 
2.996e-1(1.023e-2)+ 5.498e-2(4.450e-3)+ 5.267e-3(4.841e-4) 



 4 
1000 7.870e+2(8.504e-1)+ 8.821e+2(5.874e-

1)+ 
8.429e-1(1.468e-2)+ 4.472e-3(6.314e-4)- 8.977e-2(1.308e-3) 

8 

200 1.319e+0(1.263e+0)- 1.028e+0(1.267e-3)- 7.351e-1(1.384e-2)- 5.089e-2(1.968e-4)- 1.695e-2(9.897e-4) 

500 3.769e+2(5.062e-2)+ 4.363e+2(1.174e+0)
+ 

3.884e-1(1.995e-2)+ 4.436e-2(4.898e-3)+ 1.788e-2(1.805e-3) 

1000 8.192e+2(1.354e+1)+ 8.811e+2(3.316e-

1)+ 
8.335e-1(1.593e-2)+ 4.954e-2(2.295e-3)+ 5.706e-2(1.969e-4) 

10 

200 3.600e-1(5.392e-2)+ 9.535e+1(8.346e+0)
+ 

1.222e+0(3.856e-1)+ 6.936e-2(2.425e-3)+ 9.328e-3(9.276e-4) 

500 1.007e+0(4.840e-2)+ 2.054e+2(2.582e+0)
+ 

2.904e+0(7.745e-1)+ 8.381e-3(7.313e-4)- 8.947e-3(3.807e-4) 

1000 8.075e+0(1.677e-1)+ 8.779e+2(6.689e+0)
+ 

8.299e+0(2.019e-1)+ 8.660e-2(8.163e-3)- 8.953e-3(9.508e-4) 

DTLZ7 

2 

200 6.029e-1(4.170e-2)+ 
 

5.799e-1(4.833e-2)+ 6.189e-1(3.634e-2)+ 4.430e-1(7.592e-3)- 5.494e-1(1.915e-3) 

500 6.159e-1(1.984e-3)+ 5.789e+0(1.579e-
2)+ 

4.429e-1(6.693e-2)+ 5.429e-1(2.567e-2)+ 4.428e-1(1.281e-3) 

1000 5.919e-1(2.642e-2)+ 5.959e+0(1.844e-
1)+ 

6.440e-1(1.237e-2)+ 4.431e-1(2.369e-2)+ 3.529e-1(6.032e-3) 

5 

200 1.100e+0(4.639e-2)+ 4.098e-1(1.507e-2)+ 4.116e+0(1.520e-2)+ 8.416e-1(2.900e-2)+ 3.574e-1(6.900e-3) 

500 1.069e+0(2.427e-4)+ 3.800e-1(2.473e-2)+ 3.541e+0(7.091e-3)+ 7.392e-1(4.357e-3)+ 3.628e-1(7.957e-3) 

1000 1.071e+1(1.310e-1)+ 9.595e+0(6.271e-
1)+ 

1.087e+1(8.586e-2)+ 1.708e+0(1.254e-1)- 1.982e+0(3.691e-1) 

8 

200 1.654e+0(1.837e-2)- 7.598e-1(3.799e-2)- 1.375e+0(1.091e-1)- 1.830e+0(3.281e-
3)+ 

1.788e+0(1.981e+0) 

500 1.051e+1(1.139e+0)+ 2.270e+1(2.149e-
1)+ 

9.688e+0(9.339e-1)+ 3.198e+0(4.945e-
1)+ 

1.177e+0(2.313e-2) 

1000 1.955e+1(1.455e+0)+ 2.526e+1(1.336e-
1)+ 

1.719e+1(4.124e-2)+ 3.277e+0(5.666e-
1)+ 

1.084e+0(2.188e-2) 

10 

200 2.630e+0(3.389e-3)+ 1.570e+0(1.950e-
1)+ 

8.326e+0(1.227e-1)+ 2.429e+0(4.957e-
2)+ 

1.039e+0(3.602e-3) 

500 2.285e+0(4.764e-1)+ 1.677e+0(3.801e-
2)+ 

7.380e+0(1.670e-2)+ 4.450e+0(3.393e-
1)+ 

1.141e+0(1.556e-2) 

1000 2.580e+0 (5.141e-1)+ 2.488e+0 (1.657e-
3)+ 

1.004e+0 (4.320e-3)+ 1.306e+0 (1.025e-
1)+ 

9.040e-1 (1.399e-2) 

"+", "-", and "≈" indicate the result obtained by LSMOEA/D is significantly better, significantly worse and statistically similarto that obtained 

by the compared algorithm, respectively. 

 
TABLE S-VI  

MEAN AND STANDARD DEVIATION RESULTS OF IGD OBTAINED BY THE INVOLVED ALGORITHMS ON WFGS. 

Problem M D MOEA/D NSGAIII MOEA/DVA LMEA LSMOEA/D 

WFG1 

5 

200 1.930e+0(2.379e-2)+ 1.942e+0(8.657e-2)+ 2.794e+0(1.459e-1)+ 2.463e+0(4.360e-2)+ 9.060e-1(4.707e-3) 

500 2.054e+0(6.561e-3)+ 2.034e+0(3.537e-2)+ 2.923e+0(1.271e-1)+ 2.851e+0(4.297e-2)+ 1.403e+0(4.052e-2) 

1000 2.067e+0(4.073e-2)+ 2.081e+0(2.773e-3)+ 2.931e+0(4.554e-3)+ 2.809e+0(1.175e-1)+ 1.828e+0(5.614e-2) 

8 

200 2.679e+0(4.127e-2)+ 2.815e+0(7.006e-2)+ 3.456e+0(7.403e-2)+ 3.039e+0(1.863e-1)+ 1.967e+0(7.277e-3) 

500 2.828e+0(1.840e-2)+ 2.801e+0(1.155e-1)+ 3.554e+0(4.040e-3)+ 3.262e+0(4.335e-2)+ 2.247e+0(2.549e-2) 

1000 2.927e+0(2.492e-3)+ 2.823e+0(9.513e-2)+ 3.508e+0(1.096e-1)+ 3.574e+0(3.474e-2)+ 2.708e+0(2.613e-2) 

10 

200 3.108e+0(1.335e-1)+ 3.088e+0(1.866e-1)+ 3.918e+0(1.510e-2)+ 3.158e+0(8.473e-2)+ 2.222e+0(1.053e-2) 

500 3.300e+0(1.447e-1)+ 3.178e+0(1.353e-1)+ 3.725e+0(2.683e-1)+ 3.658e+0(6.733e-2)+ 2.502e+0(2.114e-3) 

1000 3.352e+0(3.980e-2)+ 3.753e+0(4.293e-2)+ 3.325e+0(4.778e-2)+ 3.307e+0(6.116e-2)+ 3.112e+0(4.331e-2) 

WFG2 

5 

201 5.177e+0(1.089e-1)+ 1.075e+0(9.745e-2)- 9.084e-1(1.637e-5)- 6.938e-1(1.507e-1)- 4.735e+0(7.962e-2) 

501 5.084e+0(2.077e-1)+ 1.116e+0(7.516e-2)+ 1.035e+0(1.575e-3)+ 1.375e+0(2.680e-2)+ 1.021e+0(2.536e-2) 

1001 4.662e+0(5.829e-1)+ 1.152e+0(9.201e-2)- 1.043e+0(1.426e-2)- 1.442e+0(2.323e-2)- 3.767e+0(1.340e-1) 

8 

201 8.676e+0(9.032e-2)- 1.490e+0(2.109e-1)- 2.273e+0(3.009e-1)- 1.702e+0(3.842e-1)- 8.710e+0(4.827e-1) 

501 8.732e+0(3.553e-2)+ 5.532e+0(1.773e-1)- 2.370e+0(3.431e-1)- 2.664e+0(1.348e-1)- 6.265e+0(1.136e+0) 

1001 8.111e+0(7.078e-1)+ 1.688e+0(1.240e-1)+ 2.515e+0(1.850e-1)+ 2.473e+0(8.516e-2)+ 1.607e+0(1.103e-1) 

10 

201 4.644e+0(3.745e-2)+ 2.079e+0(3.209e-1)- 2.005e+0(3.019e-1)- 2.558e+0(2.080e-1)- 2.640e+0(6.406e-1) 

501 7.697e+0(3.808e-2)+ 2.415e+0(6.164e-2)- 3.597e+0(2.875e-1)- 4.066e+0(2.379e-2)- 6.704e+0(3.122e+0) 

1001 3.591e+0(1.481e+0)+ 5.579e+0(7.934e-1)+ 5.033e+0(2.789e-3)+ 2.628e+0(4.655e-1)+ 2.458e+0(4.047e-1) 

WFG3 

5 

201 1.660e+0(4.334e-1)+ 1.110e+0(2.723e-2)+ 1.040e+0(4.582e-1)+ 1.107e+0(7.795e-2)+ 9.441e-2(3.064e-3) 

501 1.957e+0(1.063e-1)+ 1.290e+0(9.295e-2)+ 7.867e-1(1.183e-2)+ 1.203e+0(2.526e-3)+ 5.045e-1(1.589e-2) 

1001 1.656e+0(8.525e-2)+ 1.272e+0(4.349e-2)+ 8.677e-1(1.107e-2)- 1.244e+0(6.769e-3)+ 1.255e+0(1.194e-1) 

8 

201 4.238e+0(6.113e-2)+ 2.217e+0(2.441e-1)+ 2.520e+0(1.722e-2)+ 4.271e+0(2.695e-2)+ 1.992e-1(3.960e-2) 

501 4.302e+0(6.551e-3)+ 2.191e+0(1.875e-2)+ 1.327e+0(1.921e-2)+ 1.245e+0(5.846e-1)+ 1.044e+0(1.907e-1) 

1001 4.188e+0(2.298e-2)+ 2.139e+0(4.473e-2)+ 1.469e+0(1.604e-1)+ 8.520e+0(2.936e-3)+ 8.463e-1(3.432e-2) 

10 

201 6.096e+0(9.099e-2)+ 2.773e+0(7.696e-2)+ 1.602e+0(1.566e-1)+ 5.826e+0(1.047e-1)+ 2.878e-1(4.400e-3) 

501 6.266e+0(6.530e-2)+ 2.800e+0(5.053e-3)+ 1.801e+0(1.145e-1)+ 5.814e+0(6.976e+0)+ 1.026e+0(1.523e-1) 

1001 5.753e+0(1.709e-2)+ 2.874e+0(2.899e-1)+ 1.724e+0(4.956e-2)+ 3.337e+0(6.203e+0)+ 1.201e+0(2.617e-1) 

WFG4 

5 

200 2.251e+0(1.969e-1)+ 1.596e+0(1.145e-2)+ 2.137e+0(2.044e-4)+ 1.471e+0(3.217e-1)+ 1.440e+0(4.774e-3) 

500 1.821e+0(6.536e-2)+ 1.315e+0(7.757e-4)+ 2.163e+0(1.799e-3)+ 2.568e+0(7.427e-2)+ 1.276e+0(4.566e-3) 

1000 1.847e+0(2.790e-1)+ 1.353e+0(2.805e-2)+ 2.175e+0(4.504e-4)+ 2.637e+0(2.807e-1)+ 1.265e+0(1.380e-2) 

8 

200 7.923e+0(1.291e-1)+ 3.446e+0(1.116e-2)- 6.891e+0(2.731e-1)+ 4.485e+0(8.988e-2)+ 4.954e+0(3.956e-1) 

500 6.048e+0(8.410e-1)+ 3.432e+0(1.899e-2)+ 7.437e+0(6.469e-1)+ 7.161e+0(4.603e-1)+ 3.382e+0(5.735e-2) 

1000 4.611e+0(1.155e+0)+ 3.489e+0(2.458e-3)+ 7.311e+0(3.736e-1)+ 7.427e+0(2.290e-1)+ 3.229e+0(2.050e-2) 

10 

200 8.907e+0(2.772e-2)+ 6.124e+0(2.498e-2)+ 9.703e+0(1.180e+0)+ 6.024e+0(8.588e-2)- 8.447e+0(1.143e-1) 

500 8.147e+0(3.927e-1)+ 6.896e+0(1.395e-2)+ 9.075e+0(1.182e+0)+ 7.075e+0(4.903e-1)+ 6.099e+0(6.568e-2) 

1000 9.891e+0(2.246e+0+ 6.947e+0(8.318e-2)- 7.124e+0(2.583e-2)+ 5.026e+0(2.141e-1)+ 3.482e+0(3.022e-1) 

WFG5 
5 

200 1.972e+0(1.439e-1)+ 1.308e+0(1.579e-2)- 1.598e+0(6.347e-4)- 1.245e+0(4.121e-2)- 1.620e+0(9.329e-2) 

500 1.951e+0(3.208e-1)+ 1.396e+0(3.962e-2)+ 1.689e+0(3.761e-4)+ 2.031e+0(4.207e-2)+ 1.259e+0(4.247e-2) 

1000 1.801e+0(1.641e-1)+ 1.457e+0(1.617e-2)+ 1.723e+0(2.379e-4)+ 2.093e+0(8.988e-2)+ 1.371e+0(1.625e-3) 

8 200 6.939e+0(7.105e-1)+ 6.489e+0(9.272e-2)+ 3.941e+0(4.438e-1)- 3.540e+0(1.784e-1)- 4.248e+0(2.715e-1) 



 5 

500 7.885e+0(1.021e-2)+ 3.499e+0(4.482e-2)+ 5.687e+0(3.549e-1)+ 5.186e+0(6.251e-2)+ 3.386e+0(4.072e-2) 

1000 6.860e+0(1.969e-2)+ 3.588e+0(4.336e-2)- 5.598e+0(1.960e-1)+ 4.462e+0(2.188e-1)- 4.637e+0(4.671e-1) 

10 

200 1.004e+1(3.688e-2)+ 4.970e+0(5.493e-2)- 7.989e+0(4.125e-1)- 4.270e+0(1.306e-1)- 9.686e+0(9.576e-2) 

500 1.050e+1(1.783e-1)+ 5.038e+0(5.541e-2)- 8.087e+0(4.931e-1)+ 5.063e+0(8.449e-1)- 6.534e+0(2.553e-1) 

1000 1.055e+1(1.409e-1)+ 7.025e+0(1.474e-2)+ 8.246e+0(7.768e-1)+ 8.400e+0(4.617e-1)+ 6.232e+0(1.551e-1) 

WFG6 

5 

200 2.442e+0(1.716e-1)+ 1.392e+0(3.243e-2)+ 1.578e+0(5.020e-4)+ 1.676e+0(5.122e-2)+ 1.153e+0(1.016e-2) 

500 2.058e+0(2.486e-2)+ 1.482e+0(1.280e-3)+ 1.673e+0(3.990e-3)+ 2.328e+0(3.899e-2)+ 1.246e+0(3.066e-2) 

1000 1.986e+0(3.393e-1)+ 1.554e+0(1.479e-2)+ 1.929e+0(2.340e-3)+ 2.367e+0(1.791e-1)+ 1.407e+0(2.121e-3) 

8 

200 7.974e+0(1.125e+0)+ 3.610e+0(4.188e-2)+ 4.890e+0(5.961e-1)+ 4.621e+0(2.019e-1)+ 3.302e+0(2.259e-2) 

500 7.520e+0(2.686e-1)+ 4.928e+0(2.298e-2)+ 4.606e+0(2.664e-1)- 6.143e+0(1.957e-1)+ 4.651e+0(3.831e-2) 

1000 4.966e+0(1.846e-1)+ 4.668e+0(3.415e-2)+ 5.872e+0(6.709e-1)+ 4.258e+0(1.263e-1)- 4.370e+0(2.765e-2) 

10 

200 1.115e+1(8.921e-2)+ 5.015e+0(7.978e-2)+ 8.241e+0(8.015e-1)+ 9.482e+0(3.657e-1)+ 4.801e+0(8.445e-2) 

500 1.147e+1(9.087e-2)+ 5.059e+0(7.774e-2)+ 8.224e+0(6.963e-1)+ 8.672e+0(5.729e-1)+ 4.878e+0(3.374e-3) 

1000 1.069e+1(1.076e+0)+ 7.101e+0(7.325e-2)+ 6.658e+0(1.196e-1)+ 6.275e+0(1.748e-1)- 6.502e+0(4.465e-1) 

WFG7 

5 

200 2.184e+0(2.199e-1)+ 1.502e+0(1.197e-2)+ 2.221e+0(9.096e-2)+ 1.206e+0(4.639e-2)- 1.622e+0(6.917e-2) 

500 2.138e+0(1.755e-1)+ 1.552e+0(4.448e-2)+ 2.396e+0(3.272e-1)+ 1.423e+0(7.285e-3)+ 1.228e+0(4.400e-2) 

1000 1.715e+0(4.314e-2)+ 1.494e+0(6.985e-2)+ 2.110e+0(4.863e-2)+ 1.478e+0(1.296e-1)+ 1.390e+0(2.545e-2) 

8 

200 7.843e+0(4.061e-1)+ 3.712e+0(1.051e-2)- 4.142e+0(1.619e-1)- 3.444e+0(1.281e-1)- 4.755e+0(7.327e-1) 

500 5.955e+0(1.790e+0)+ 3.690e+0(4.326e-2)+ 6.194e+0(1.864e-1)+ 3.852e+0(1.164e-1)+ 3.406e+0(1.312e-2) 

1000 4.644e+0(7.636e-1)+ 3.699e+0(2.003e-3)+ 5.919e+0(6.085e-1)+ 4.045e+0(6.558e-2)+ 3.521e+0(4.542e-2) 

10 

200 1.108e+1(9.701e-2)- 8.015e+0(2.902e-2)- 9.050e+0(2.233e-1)- 5.215e+0(3.194e-1)- 1.016e+1(2.044e-1) 

500 1.104e+1(2.186e-2)+ 5.078e+0(7.940e-2)+ 9.550e+0(1.385e+0)+ 6.572e+0(3.089e-1)+ 4.934e+0(5.998e-2) 

1000 1.138e+1(1.000e-1)+ 5.078e+0(4.055e-2)+ 8.306e+0(2.182e-1)+ 5.737e+0(4.365e-1)+ 3.338e+0(2.446e+0) 

WFG8 

5 

200 2.154e+0(1.074e-1)+ 1.319e+0(7.817e-3)+ 1.604e+0(8.687e-4)+ 1.673e+0(7.423e-2)+ 1.171e+0(1.594e-2) 

500 2.276e+0(1.894e-1)+ 1.366e+0(1.422e-3)+ 1.647e+0(8.565e-4)+ 1.318e+0(2.223e-2)- 1.392e+0(3.943e-3) 

1000 2.317e+0(4.587e-2)+ 1.433e+0(2.981e-2)+ 1.899e+0(1.342e-1)+ 2.144e+0(1.620e-1)+ 1.399e+0(9.735e-3) 

8 

200 8.016e+0(6.760e-1)+ 3.627e+0(7.337e-2)+ 4.436e+0(1.339e-1)+ 6.057e+0(2.793e-1)+ 3.295e+0(3.449e-2) 

500 6.022e+0(1.588e+0)+ 3.683e+0(1.137e-1)- 5.736e+0(6.338e-2)- 3.572e+0(8.211e-2)- 4.376e+0(1.163e-1) 

1000 7.783e+0(5.015e-1)+ 3.603e+0(5.614e-3)+ 5.918e+0(6.775e-1)+ 5.654e+0(6.834e-2)+ 3.397e+0(2.228e-2) 

10 

200 1.057e+1(1.398e-1)+ 5.068e+0(9.032e-3)+ 8.018e+0(1.326e-1)+ 5.021e+0(1.632e-1)+ 4.859e+0(9.012e-2) 

500 1.069e+1(1.196e-1)+ 9.036e+0(7.333e-2)+ 8.593e+0(4.276e-1)+ 5.326e+0(4.191e-3)- 6.534e+0(5.085e-1) 

1000 1.109e+1(5.108e-2)+ 7.113e+0(1.654e-2)+ 8.758e+0(6.517e-2)+ 6.329e+0(3.919e-1)+ 4.956e+0(4.741e-2) 

WFG9 

5 

200 2.257e+0(1.315e-1)+ 1.836e+0(7.092e-2)+ 2.136e+0(9.631e-2)+ 1.282e+0(5.030e-3)- 1.593e+0(1.119e-1) 

500 1.980e+0(3.250e-2)+ 1.942e+0(5.478e-2)+ 2.517e+0(9.259e-2)+ 1.652e+0(4.327e-2)+ 1.397e+0(6.493e-2) 

1000 1.946e+0(3.369e-1)+ 1.942e+0(6.902e-2)+ 2.615e+0(5.950e-2)+ 1.647e+0(1.375e-1)+ 1.553e+0(2.743e-3) 

8 

200 7.960e+0(5.338e-1)+ 4.093e+0(1.661e-2)+ 4.415e+0(1.773e-1)+ 4.966e+0(8.460e-1)+ 3.432e+0(3.124e-2) 

500 7.570e+0(2.510e-1)+ 4.172e+0(9.555e-5)+ 5.856e+0(3.173e-1)+ 3.706e+0(1.702e-1)- 3.913e+0(1.727e-3) 

1000 7.809e+0(2.763e-1)+ 4.229e+0(1.012e-1)+ 6.818e+0(1.231e-1)+ 4.265e+0(5.568e-1)+ 3.911e+0(6.744e-2) 

10 

200 1.033e+1(7.322e-1)+ 5.798e+0(1.367e-2)+ 8.194e+0(1.044e-1)+ 9.994e+0(1.242e-1)+ 4.946e+0(1.284e-1) 

500 1.051e+1(8.399e-1)+ 5.525e+0(1.010e-2)- 9.835e+0(4.584e-1)+ 5.239e+0(1.173e-1)- 6.190e+0(2.897e-1) 

1000 8.209e+0(2.298e+0)+ 6.447e+0(9.451e-2)+ 9.109e+0(1.005e+0)+ 4.468e+0(1.804e+0)+ 4.204e+0(3.391e-2) 

"+", "-", and "≈" indicate the result obtained by LSMOEA/D is significantly better, significantly worse and statistically similarto that obtained by the compared 
algorithm, respectively. 
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(a) LSMOEA/D 

 
(b) MOEA/D 

 
(c) NSGA-III 

 
(d) MOEA/DVA 

 
(e) LMEA 

Fig.S2. Final solution set of involved algorithms on the 10-objective WFG2 with 1000 decision variables, shown by parallel coordinates. 

 

 
(a) LSMOEA/D 

 
(b) MOEA/D 

 
(c) NSGA-III 

 
(d) MOEA/DVA 

 
(e) LMEA 

Fig.S3. Final solution set of involved algorithms on the 10-objective WFG1 with 1000 decision variables, shown by parallel coordinates. 
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(a) DTLZ1 

 

(b) DTLZ2 

 

(c) DTLZ3 

 

(d) DTLZ4 

 

(e) DTLZ5 

 

(f) DTLZ6 

 

(g) DTLZ7 

Fig. S4. Evolutionary trajectories of IGD on the 10-objective DTLZ test problems with 1000 variables. The abscissa is the percentage of consumed FEs. 
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(a) WFG1 

 

(b) WFG2 

 

(c) WFG3 

 

(d) WFG4 

 

(e) WFG5 

 

(f) WFG6 

 

(g) WFG7 

 

(h) WFG8 

 

(i) WFG9 

Fig. S5. Evolutionary trajectories of IGD on the 10-objective WFG test problems with 1000 variables. The abscissa is the percentage of consumed FEs. 
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TABLE S-VII  

MEAN AND STANDARD DEVIATION RESULTS IN TERMS OF HV METRIC OBTAINED BY THE INVOLVED ALGORITHMS ON DTLZS AND WFGS. 

Problem M D MOEA/D NSGAIII MOEA/DVA LMEA LSMOEA/D 

DTLZ1 

5 

1000 3.7739e-1(2.84e-3)+ 4.9654e-1(1.42e-2)+ 4.9175e-1(2.14e-2)+ 9.3969e-1(5.12e-3)- 9.0299e-1(1.76e-3) 

5000 2.7714e-1(8.27e-3)+ 5.0493e-1(8.96e-3)+ 3.8736e-1(1.64e-2)+ 9.2402e-1(1.59e-3)≈ 9.2774e-1(6.59e-3) 

10000 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 

10 

1000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 9.0750e-1(1.25e-2)+ 9.1852e-1(3.75e-2) 

5000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 8.7012e-1(1.59e-2)+ 8.9012e-1(3.19e-2) 

10000 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 

DTLZ3 

5 

1000 1.0488e-1(2.62e-2)+ 5.9878e-2(5.86e-3)+ 5.0732e-2(4.43e-3)+ 7.9642e-1(4.07e-3)- 5.0642e-1(2.87e-3) 

5000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 6.1221e-1(4.45-3) 6.5231e-1(3.15-3) 

10000 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 

10 

1000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 9.0196e-1(1.33e-2)≈ 9.0748e-1(3.64e-2) 

5000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 1.5006e-1(1.41-2)+ 1.8017e-1(3.21-2) 

10000 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 

DTLZ4 

5 

1000 8.1172e-1(4.02e-2)- 7.1829e-1(1.11e-3)+ 5.1763e-1(4.63e-3)+ 7.1741e-1(8.61e-3)+ 8.0401e-1(1.13e-2) 

5000 6.1172e-1(1.23e-2)+ 6.0974e-1(7.01e-3)+ 4.0568e-1(1.54e-3)+ 5.7770e-1(1.14e-2)+ 7.2931e-1(1.86e-2) 

10000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 7.7491e-3(4.94e-4) 

10 

1000 6.8831e-1(1.26e-2)+ 7.1462e-1(6.51e-3)+ 4.1321e-1(4.06e-3)+ 7.3975e-1(2.56e-3)+ 8.4429e-1(2.43e-2) 

5000 5.4200e-1(3.42e-2)+ 5.6783e-1(2.33e-2)+ 2.1532e-1(1.65e-2)- 6.6703e-1(1.38e-2)- 7.3796e-1(5.96e-2) 

10000 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 0.0000e+0(0.00e+0) 

DTLZ5 

5 

1000 2.2710e-1(1.14e-3)+ 1.7201e-1(1.60e-3)+ 1.6434e-1(5.11e-2)+ 4.1566e-1(3.27e-2)- 2.8205e-1(4.09e-3) 

5000 1.2761e-1(5.73e-3)+ 1.3504e-1(6.20e-3)+ 3.5606e-1(4.14e-2)+ 3.7499e-2(3.39e-3)+ 5.0025e-1(1.14e-2) 

10000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 4.7617e-5(3.01e-5) 

10 

1000 6.8793e-2(3.01e-4)+ 2.0435e-2(7.84e-5)+ 2.1222e-2(3.07e-8)+ 8.0102e-2(7.82e-3)+ 9.5373e-2(4.73e-4) 

5000 5.9001e-2(2.08e-3)- 8.1221e-3(8.62e-9)+ 2.1222e-3(4.83e-7)+ 7.8030e-3(1.24e-4)- 2.6826e-2(9.08e-4) 

10000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 9.6745e-6(1.24e-8) 

DTLZ6 

5 

1000 1.6661e-1(1.02e-2)- 8.5228e-2(2.52e-2)+ 5.1691e-2(5.69e-3)+ 1.3410e-1(1.22e-2) 2.0400e-1(4.62e-2) 

5000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 3.4350e-2(1.10e-4) 4.1123e-2(4.52e-3) 

10000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 1.2761e-9(1.70e-9) 

10 

1000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 1.0028e-1(2.02e-2)+ 1.2004e-1(1.12e-2) 

5000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 6.2831e-3(1.15e-3) 7.0301e-3(2.05e-3) 

10000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 7.4620e-9(5.30e-9) 

DTLZ7 

5 

1000 1.2710e-1(1.14e-3)+ 1.7201e-1(1.60e-3)+ 1.6434e-1(5.11e-2)+ 1.7566e-1(3.27e-2)+ 1.8205e-1(4.09e-3) 

5000 1.4432e-1(5.44e-2)+ 1.3848e-1(3.61e-3)+ 1.4057e-3(8.73e-2)+ 1.9718e-1(3.01e-2)+ 2.1313e-1(4.47e-2) 

10000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 1.9968e-4(4.04e-5) 

10 

1000 3.3012e-6(4.47e-7)+ 9.6131e-2(4.09e-3)+ 2.3748e-2(4.04e-3)+ 1.4678e-1(1.74e-2)+ 1.6509e-1(1.43e-2) 

5000 6.6929e-6(4.09e-8)+ 1.0225e-2(9.52e-4)+ 7.1722e-3(4.73e-4)+ 5.7065e-2(7.94e-3) 6.4624e-2(3.16e-3) 

10000 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 0.0000e+0(0.00e+0)+ 1.9718e-6(3.01e-7) 

WFG2 

5 

1000 6.1308e-1(2.27e-3)+ 7.1629e-1(1.53e-4)+ 8.4096e-1(6.63e-2)+ 9.1376e-1(6.19e-5)- 9.0911e-1(2.43e-2) 

5000 5.1307e-1(6.30e-3)+ 5.9477e-1(7.36e-2)+ 5.5548e-1(2.16e-2)+ 6.1513e-1(8.18e-4)+ 7.5811e-1(1.15e-2) 

10000 3.0958e-1(4.34e-2)+ 3.8790e-1(2.42e-2)+ 4.2393e-1(4.27e-2)+ 4.7065e-1(3.08e-2)+ 5.4901e-1(1.78e-2) 

10 

1000 6.7708e-1(6.00e-2)+ 7.8978e-1(3.50e-2)+ 8.5669e-1(5.59e-2)+ 9.1974e-1(2.91e-2)+ 9.3447e-1(1.10e-2) 

5000 4.6030e-1(9.14e-3)+ 5.7409e-1(3.53e-3)+ 5.9035e-1(7.67e-3)+ 6.3004e-1(6.37e-2)- 6.1571e-1(4.71e-2) 

10000 3.6581e-1(3.44e-2)+ 4.4058e-1(2.42e-2)+ 4.9619e-1(5.10e-3)+ 4.9950e-1(3.53e-2)+ 5.2664e-1(3.54e-2) 

WFG6 

5 

1000 3.2710e-1(1.14e-3)+ 4.7201e-1(1.60e-3)+ 4.6434e-1(5.11e-2)+ 5.7566e-1(3.27e-2)+ 6.0095e-1(3.29e-3) 

5000 4.2112e-1(3.07e-2)+ 2.9330e-1(2.83e-3)+ 2.3527e-1(6.87e-3)+ 5.8605e-1(5.04e-3)+ 6.1203e-1(8.16e-4) 

10000 1.0708e-1(1.51e-1)+ 3.5627e-1(1.26e-2)+ 2.8704e-1(6.21e-4)+ 4.3576e-1(6.23e-2)+ 5.8793e-1(9.37e-2) 

10 

1000 4.8148e-1(4.57e-3)+ 3.7306e-1(1.60e-3)+ 4.2674e-1(9.02e-3)+ 6.6319e-1(5.32e-3)- 6.0714e-1(3.76e-2) 

5000 9.4537e-2(7.71e-2)+ 3.4033e-1(1.08e-3)+ 3.7667e-1(3.66e-3)+ 5.1561e-1(2.47e-2)+ 6.1739e-1(2.38e-2) 

10000 5.1082e-2(1.70e-2)+ 1.8181e-1(2.14e-2)+ 2.7774e-1(5.77e-3)+ 5.3011e-1(1.85e-2)+ 6.0512e-1(2.27e-2) 

WFG7 

5 

1000 4.2710e-1(1.14e-3)+ 4.7201e-1(1.60e-3)+ 4.6434e-1(5.11e-2)+ 5.7566e-1(3.27e-2)+ 5.9993e-1(3.26e-3) 

5000 3.0380e-1(3.74e-2)+ 4.0178e-1(1.06e-3)+ 3.0827e-1(5.91e-3)+ 3.9659e-1(3.75e-3)+ 5.7900e-1(9.48e-3) 

10000 1.8237e-1(2.11e-1)+ 3.6076e-1(3.49e-3)+ 3.0207e-1(7.61e-3)+ 3.7061e-1(9.17e-2)+ 5.8511e-1(2.88e-2) 

10 

1000 1.8424e-1(5.49e-2)+ 3.5631e-1(2.54e-3)- 2.9883e-1(1.64e-2)+ 3.6683e-1(6.70e-3)- 3.5337e-1(4.99e-2) 

5000 3.0080e-1(3.79e-2)+ 4.4359e-1(4.41e-3)- 3.4906e-1(4.61e-3)+ 3.6071e-1(1.91e-2)- 3.4004e-1(2.83e-3) 

10000 6.4636e-2(1.59e-3)+ 2.5913e-1(1.40e-2)+ 3.0189e-1(5.12e-3)+ 3.1236e-1(2.80e-2)+ 3.3322e-1(8.08e-2) 

"+", "-", and "≈" indicate the result obtained by LSMOEA/D is significantly better, significantly worse and statistically similar to that obtained by the compared 

algorithm, respectively. 
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TABLE S-VIII  

MEAN AND STANDARD DEVIATION RESULTS IN TERMS OF IGD METRIC OBTAINED BY LS-SMS-MOEA, LS-NSGAII, LS-MOEA/D, WOF-SMPSO, WOF-

NSGAII, WOF-GDE3 AND LSMOEA/D ON LSMOPS.  

Problem M D LS-SMS-MOEA LS-NSGAII LS-MOEA/D WOF-SMPSO WOF-NSGAII WOF-GDE3 LSMOEA/D 

LSMOP

1 

2 

200 6.845e-1(1.502e-3)+ 6.957e-1(5.053e-3)+ 6.925e-1(7.011e-4)+ 2.756e-1(4.464e-3)+ 1.827e-1(5.390e-2)+ 2.109e-1(1.227e-1)+ 7.129e-2(3.379e-3) 

500 6.914e-1(3.759e-4)+ 6.783e-1(1.012e-2)+ 6.819e-1(1.053e-2)+ 1.761e+0(1.081e-1)+ 1.544e-1(4.408e-3)+ 1.917e-1(4.613e-2)+ 7.345e-2(1.135e-3) 

1000 6.898e-1(9.621e-3)+ 6.912e-1(8.777e-3)+ 6.887e-1(2.850e-3)+ 3.308e+0(1.431e-1)+ 1.499e-1(4.818e-3)+ 1.480e-1(4.739e-3)+ 8.484e-2(4.417e-3) 

3 

200 5.521e-1(4.889e-2)+ 6.449e-1(8.198e-2)+ 5.762e-1(3.043e-2)+ 6.974e-1(2.863e-1)+ 3.107e-1(7.767e-2)+ 3.802e-1(5.298e-2)+ 2.047e-1(4.737e-2) 

500 7.166e-1(2.700e-2)+ 7.353e-1(1.747e-2)+ 7.954e-1(3.291e-2)+ 3.246e+0(1.056e-1)+ 3.087e-1(4.392e-2)+ 4.471e-1(3.476e-3)+ 2.773e-1(4.325e-3) 

1000

0 
8.267e-1(3.540e-3)+ 8.314e-1(1.068e-2)+ 9.548e-1(1.565e-1)+ 5.197e+0(1.088e-1)+ 4.770e-1(1.902e-1)+ 4.918e-1(6.536e-2)+ 1.925e-1(1.651e-2) 

LSMOP

2 

2 

200 3.777e-2(9.441e-4)+ 3.807e-2(7.739e-4)+ 3.883e-2(2.204e-3)+ 1.303e-1(2.302e-3)+ 3.061e-2(4.478e-3)+ 2.856e-2(1.619e-3)+ 1.470e-2(7.801e-4) 

500 2.425e-2(3.255e-4)+ 2.393e-2(1.050e-3)+ 2.505e-2(1.826e-3)+ 6.730e-2(1.448e-3)+ 2.049e-2(1.068e-4)+ 1.949e-2(9.585e-4)+ 9.446e-3(3.002e-4) 

1000 1.857e-2(4.317e-4)+ 1.829e-2(5.430e-4)+ 1.821e-2(1.907e-4)+ 3.708e-2(8.709e-4)+ 1.640e-2(6.839e-4)≈ 1.692e-2(1.576e-4)≈ 7.287e-3(5.845e-4) 

3 

200 1.454e-1(1.775e-3)+ 1.428e-1(1.101e-2)+ 1.386e-1(1.458e-3)+ 1.110e-1(4.183e-4)+ 1.297e-1(6.733e-3)+ 1.305e-1(1.454e-4)+ 8.857e-2(1.077e-2) 

500 9.023e-2(8.930e-4)+ 8.511e-2(1.231e-3)+ 9.053e-2(7.376e-4)+ 6.699e-2(3.906e-6)≈ 8.361e-2(9.327e-4)+ 8.477e-2(1.232e-3)+ 6.840e-2(1.739e-4) 

1000 7.286e-2(7.921e-3)+ 6.789e-2(1.145e-3)≈ 6.997e-2(3.331e-3)≈ 5.217e-2(3.242e-5)- 6.714e-2(1.344e-3)≈ 6.885e-2(2.071e-3)≈ 6.032e-2(1.965e-4) 

LSMOP

3 

2 

200 1.546e+0(4.084e-4)+ 1.544e+0(1.279e-2)+ 1.540e+0(2.36e-3)+ 7.815e-1(7.828e-3)- 1.262e+0(2.510e-1)- 1.272e+0(5.697e-2)- 1.527e+0(1.776e-2) 

500 1.571e+0(8.581e-3)+ 1.564e+0(9.668e-4)+ 1.577e+0(1.40e-5)+ 1.766e+1(1.412e-1)+ 8.562e-1(3.012e-3)- 1.019e+0(2.355e-1)- 1.057e+0(2.816e-1) 

1000 1.577e+0(4.778e-3)+ 1.585e+0(7.269e-5)+ 1.585e+0(6.17e-4)+ 2.218e+1(2.290e+0)

+ 

1.053e+0(1.204e-

1)+ 
8.951e-1(2.002e-2)- 1.008e+0(2.136e-1) 

3 

200 8.547e-1(1.295e-3)- 1.361e+0(7.214e-1)+ 1.109e+0(3.51e-1)+ 1.946e+0(2.196e-1)+ 8.607e-1(1.847e-5)≈ 8.546e-1(8.628e-3)- 8.607e-1(0.000e+0) 

500 1.756e+0(1.266e+0)

+ 
8.607e-1(0.000e+0) 8.607e-1(0.00e+0) 6.290e+0(4.356e-1)+ 8.607e-1(0.000e+0) 8.604e-1(4.930e-4)- 8.607e-1(0.000e+0) 

1000 8.607e-1(0.000e+0)≈ 3.066e+0(3.119e+0)
+ 

8.607e-1(0.00e+0)≈ 1.236e+1(4.502e+0)
+ 

8.60e-1(0.00e+0)≈ 8.597e-1(1.441e-3)- 8.607e-1(0.000e+0) 

LSMOP

4 

2 

200 9.807e-2(1.807e-3)+ 9.799e-2(3.019e-3)+ 9.880e-2(9.171e-4)+ 1.813e-1(5.562e-4)+ 8.753e-2(3.907e-3)+ 8.523e-2(3.025e-3)+ 6.626e-2(3.730e-3) 

500 5.179e-2(9.985e-4)+ 5.145e-2(7.243e-5)+ 5.174e-2(3.284e-3)+ 1.119e-1(7.655e-4)+ 4.695e-2(1.977e-3)+ 4.623e-2(1.739e-4)+ 3.594e-2(4.627e-4) 

1000 3.339e-2(8.356e-4)+ 3.323e-2(2.443e-3)+ 3.258e-2(1.493e-3)+ 6.801e-2(5.102e-4)+ 3.053e-2(6.138e-4)+ 3.000e-2(2.180e-3)+ 2.071e-2(1.232e-4) 

3 

200 2.913e-1(7.058e-3)+ 2.892e-1(4.248e-4)+ 2.849e-1(5.801e-3)+ 3.097e-1(7.815e-3)+ 2.857e-1(4.048e-3)+ 3.031e-1(2.068e-3)+ 2.364e-1(1.527e-2) 

500 2.157e-1(1.505e-3)+ 2.218e-1(6.533e-3)+ 2.149e-1(1.486e-3)+ 1.758e-1(1.975e-3)+ 1.946e-1(1.202e-2)+ 1.990e-1(7.569e-3)+ 1.332e-1(7.775e-3) 

1000 1.434e-1(2.334e-3)+ 1.429e-1(3.621e-3)+ 1.449e-1(3.956e-3)+ 1.090e-1(8.888e-4)+ 1.306e-1(4.477e-4)+ 1.330e-1(2.129e-3)+ 9.060e-2(1.377e-3) 

LSMOP

5 

2 

200 7.42e-1(0.000e+0)+ 7.42e-1(0.00e+0)+ 7.42e-1(0.00e+0)+ 4.633e-1(3.059e-2)+ 4.180e-1(4.077e-2)+ 4.346e-1(2.803e-2)+ 1.697e-1(2.005e-2) 

500 7.42e-1(0.000e+0)+ 7.42e-1(0.00e+0)+ 7.42e-1(0.000e+0)+ 3.540e+0(9.573e-1)+ 5.217e-1(1.069e-1)+ 5.355e-1(1.465e-1)+ 2.027e-1(3.110e-3) 

1000 7.42e-1(0.000e+0)+ 7.42e-1(0.00e+0)+ 7.42e-1(0.000e+0)+ 7.960e+0(3.655e-1)+ 7.104e-1(4.122e-3)+ 5.713e-1(1.473e-1)+ 1.890e-1(6.224e-4) 

3 

200 5.410e-1(6.044e-5)+ 5.408e-1(1.76e-4)+ 5.410e-1(4.152e-5)+ 1.016e+0(4.010e-1)- 4.301e-1(1.617e-2)- 4.215e-1(1.221e-2)- 4.382e-1(2.333e-2) 

500 5.410e-1(2.366e-6)+ 5.661e-1(3.55e-2)+ 6.174e-1(4.775e-2)+ 4.072e+0(8.527e-1)+ 5.646e-1(7.420e-2)+ 5.639e-1(1.262e-1)+ 4.194e-1(4.816e-2) 

1000 5.410e-1(2.348e-5)+ 5.410e-1(3.25e-6)+ 5.450e-1(5.737e-3)+ 6.831e+0(1.295e+0)
+ 

6.521e-1(2.966e-1)+ 5.061e-1(1.929e-2)+ 4.920e-1(3.600e-2) 

LSMOP

6 

2 

200 4.038e-1(2.927e-2)+ 3.600e-1(4.47e-4)+ 3.605e-1(3.688e-3)+ 8.202e-1(4.678e-2)+ 4.918e-1(2.382e-1)+ 6.574e-1(6.144e-3)+ 1.767e-1(8.335e-3) 

500 3.386e-1(2.318e-2)+ 3.310e-1(1.08e-2)+ 3.235e-1(3.724e-3)+ 8.002e-1(9.957e-3)+ 6.696e-1(2.789e-4)+ 4.882e-1(2.558e-1)+ 1.373e-1(8.355e-3) 

1000 3.138e-1(3.914e-4)+ 3.146e-1(2.78e-3)+ 3.137e-1(3.746e-4)+ 7.703e-1(4.273e-4)+ 5.005e-1(2.403e-1)+ 6.694e-1(3.206e-4)+ 1.637e-1(1.200e-2) 

3 

200 6.776e-1(9.940e-3)+ 6.816e-1(3.90e-2)- 7.603e-1(8.868e-2)+ 2.983e+0(1.973e-1)+ 6.593e-1(7.259e-3)+ 7.001e-1(4.117e-2)- 1.031e+0(2.958e-1) 

500 7.517e-1(9.645e-2)- 7.111e-1(2.61e-2)- 8.222e-1(4.784e-2)- 4.704e+0(2.312e-1)+ 1.246e+0(6.086e-2)- 1.291e+0(2.467e-
3)+ 

1.274e+0(2.664e-2) 

1000 7.569e-1(7.777e-2)- 7.796e-1(5.27e-2)- 7.654e-1(3.108e-2)- 1.878e+2(1.101e+2)

+ 

1.479e+0(1.946e-

1)+ 

1.175e+0(1.939e-

1)+ 
1.014e+0(5.693e-1) 

LSMOP

7 

2 

200 1.481e+0(5.857e-3)- 1.485e+0(1.66e-3) ≈ 1.483e+0(5.419e-3)- 7.922e+0(4.368e+0)

+ 
1.476e+0(1.308e-3)- 1.477e+0(1.20e-3)- 1.485e+0(1.369e-3) 

500 1.512e+0(8.930e-4)+ 1.508e+0(4.78e-3)+ 1.503e+0(2.484e-

6)+ 

9.787e+2(9.864e+2)

+ 
1.142e+0(3.768e-2)- 1.122e+0(1.80e-2)- 1.201e+0(1.143e-1) 

1000 1.518e+0(3.988e-4)+ 1.510e+0(3.50e-4)+ 1.515e+0(4.752e-

3)+ 

9.128e+3(6.913e+3)

+ 
1.036e+0(2.209e-3)- 1.182e+0(1.67e-1)- 1.372e+0(1.476e-2) 

3 

200 9.841e-1(5.811e-3)+ 9.786e-1(2.01e-2)+ 9.777e-1(2.536e-2)+ 1.186e+0(3.384e-1)+ 9.050e-1(1.640e-2)- 9.116e-1(1.62e-2)- 9.236e-1(3.985e-4) 

500 9.064e-1(3.104e-3)+ 9.064e-1(1.14e-2)+ 9.392e-1(5.444e-2)+ 1.053e+0(1.788e-3)+ 8.651e-1(4.205e-4)+ 8.655e-1(1.82e-2)+ 7.618e-1(1.508e-1) 

1000 8.949e-1(3.550e-2)+ 8.921e-1(3.21e-2)+ 8.668e-1(2.434e-3)+ 9.853e-1(3.266e-2)+ 8.164e-1(7.463e-2)+ 7.919e-1(3.76e-2)+ 6.868e-1(1.786e-1) 

LSMOP

8 

2 

200 7.42e-1(0.00e+0)+ 7.42e-1(0.00e+0)+ 7.42e-1(0.00e+0)+ 4.896e-1(6.077e-2)+ 2.895e-1(8.248e-2)+ 2.933e-1(1.46e-1)+ 1.457e-1(2.686e-3) 

500 7.42e-1(0.00e+0)+ 7.42e-1(0.00e+0)+ 7.42e-1(0.00e+0)+ 2.463e+0(6.973e-2)+ 2.762e-1(1.193e-1)+ 4.569e-1(3.42e-1)+ 1.582e-1(1.656e-2) 

1000 7.42e-1(0.00e+0)+ 7.42e-1(0.00e+0)+ 7.42e-1(0.00e+0)+ 4.960e+0(3.012e-1)+ 3.243e-1(1.949e-1)+ 3.242e-1(2.00e-1)+ 1.586e-1(1.232e-2) 

3 

200 3.63e-1(6.31e-4)+ 3.64e-1(1.84e-4)+ 3.630e-1(4.48e-5)+ 7.037e-1(7.288e-5)+ 3.215e-1(1.254e-2)+ 3.025e-1(1.10e-2)+ 1.501e-1(1.805e-2) 

500 3.59e-1(4.77e-5)+ 3.50e-1(1.37e-2)+ 3.597e-1(1.42e-4)+ 7.517e-1(1.080e-1)+ 3.188e-1(5.709e-2)+ 3.224e-1(1.05e-2)+ 1.313e-1(1.086e-3) 

1000 3.72e-1(1.43e-2)+ 3.57e-1(9.18e-4)+ 4.085e-1(7.06e-2)+ 7.064e-1(1.943e-3)+ 3.324e-1(3.307e-4)+ 2.789e-1(3.85e-2)+ 1.855e-1(1.281e-1) 

LSMOP

9 

2 

200 8.10e-1(0.00e+0)≈ 8.10e-1(0.00e+0)≈ 8.10e-1(0.00e+0)≈ 5.476e-1(2.510-2)- 8.10e-1(0.00e+0)≈ 8.10e-1(0.00e+0)≈ 8.10e-1(0.00e+0) 

500 8.10e-1(0.00e+0)- 8.10e-1(0.00e+0)- 8.10e-1(0.00e+0)- 2.286e+0(1.056-1)+ 1.19e+1(1.57e+1)+ 8.099e-1(1.92e-4)- 2.186e+1(2.977e+1

) 1000 8.10e-1(0.00e+0)- 8.099e-1(5.48e-5)- 8.098e-1(3.26e-4)- 1.426e+1(1.918+0)- 8.08e-1(4.21e-4)- 8.076e-1(1.22e-3)- 3.054e+1(5.601e+0

) 

3 

200 1.538e+0(0.00e+0)≈ 1.538e+0(0.00e+0)≈ 1.538e+0(0.00e+0)≈ 6.817e-1(4.289-3)- 1.53e+0(0.00e+0)≈ 1.538e+0(0.00e+0)≈ 1.538e+0(9.493e-9) 

500 5.866e+1(8.07e+1) 5.206e+1(2.90e+1)+ 1.306e+0(3.27e-1)+ 1.072e+0(3.60e-3)- 2.18e+1(2.92e+1)+ 1.110e+0(4.96e-2)- 1.866e+1(8.078e+1

) 1000 1.538e+0(0.00e+0)- 7.416e+1(1.02e+2)+ 9.885e+0(1.18e+1)- 1.930e+1(1.509e+0)

+ 
1.14e+0(1.74e-4)+ 1.145e+0(5.90e-4)- 1.083e+1(9.379e+0

) "+", "-", and "≈" indicate the result obtained by LSMOEA/D is significantly better, significantly worse and statistically similarto that obtained by the compared 
algorithm, respectively. 
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Fig. S6. Running time of involved algorithms on 10-objective test instances with 1000 decision variables (Fig. 12 in the paper). 

 

 
TABLE S-IX  

DECISION VARIABLE ANALYSIS RESULTS IN MOEA/DAVA, LMEA AND LSMOEA/D ON WFG2-M3-D10 (THE RESULTS OF LSMOEA/D ARE SORTED  IN 

ASCENDING ORDER OF CRD FOR V1,V2 AND V3) 

Problem M Variable 
MOEA/DVA LMEA LSMOEA/D (Sorting by CRD) 

Diversity Convergence Both Diversity Convergence Rank for V1 Rank for V2 Rank for V3 

WFG2 3 

x1   

∅ 

   5-th 5-th 5-th 

x2      5-th 5-th 5-th 

x3      4-th 4-th 4-th 

x4      3-th 1-th 3-th 

x5      2-th 3-th 4-th 

x6      1-th 2-th 1-th 

x7      1-th 1-th 1-th 

x8      3-th 2-th 2-th 

x9      2-th 3-th 2-th 

x10      4-th 5-th 5-th 

 

 

TABLE S-X  
COMPUTATION COST OF EVALUATION RESOURCES CONSUMED BY THE DVA IN EACH INVOLVED ALGORITHM (UNIT: FES). 

Problem M D MOEA/DVA LMEA LSMOEA/D 

DTLZ1 

5 

200 4000 1700 3300 

500 10000 4100 8100 

1000 20000 8100 16100 

10 

200 4000 1700 3300 

500 10000 4100 8100 

1000 20000 8100 16100 

WFG1 

5 

200 4000 1700 3300 

500 10000 4100 8100 

1000 20000 8100 16100 

10 

200 4000 1700 3300 

500 10000 4100 8100 

1000 20000 8100 16100 

 
 

D. Investigation of Efficiency and Accuracy 

In order to validate the detection accuracy of the proposed 

localized decision variable analysis method, Table S-IX gives 

the variable detection results by the DVA in the involved 

algorithms (LSMOEA/D, MOEA/DVA and LMEA) on 2-

objective WFG2 problem where x1-x9 are the decision variables, 

"Diversity", "Convergence" and "Both" represent the 

convergence-related type, diversity-related type and mixture-

related type, respectively, "rank for V1", "rank for V2" and "rank 

for V3" represent the index of subgroup in the subgroup 

sequence for reference vector V1, V2 and V3, respectively. From 

this table, it is observed that the variables of subgroups ranked 

in front in LSMOEA/D are usually the convergence-related 

variables in LMEA and MOEA/DVA, at the same time, the 

variables of subgroups ranked behind in LSMOEA/D are the 
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diversity-related variables in LMEA and MOEA/DVA.  

In order to reduce the computation cost, the proposed method 

uses the guiding reference vectors instead of all the reference 

vectors to guide the guide the control variable analysis. The 

initial reference vectors are first clustered into a number of 

clusters and the cluster centers are used as the guiding (or 

representative) reference vectors. In the control variable 

analysis process, all reference vector within the cluster follow 

the detection results of the guiding reference vector in the 

cluster, which largely improves the detection efficiency. Table 

S-X reports the computation cost (i.e., the number of function 

evaluations (FEs)) consumed by the DVA in each involved 

algorithm on DTLZ1 and WFG2. From this table, it is observed 

that LSMOEA/D does not consume unbearable computation 

resources and its computation cost is nearly close to that of 

MEOA/DVA. 
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