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ABSTRACT High-mobility wireless communication systems have attracted growing interests in recent
years. For the deployment of these systems, one fundamental work is to build accurate and efficient
channel models. In high-mobility scenarios, it has been shown that the standardized channel models, e.g.,
IMT-Advanced (IMT-A) multiple-input multiple-output (MIMO) channel model, provide noticeable longer
stationary intervals than measured results and the wide-sense stationary (WSS) assumption may be violated.
Thus, the non-stationarity should be introduced to the IMT-A MIMO channel model to mimic the channel
characteristics more accurately without losing too much efficiency. In this paper, we analyze and compare
the computational complexity of the original WSS and non-stationary IMT-A MIMO channel models. Both
the number of real operations and simulation time are used as complexity metrics. Since introducing the non-
stationarity to the IMT-A MIMO channel model causes extra computational complexity, some computation
reduction methods are proposed to simplify the non-stationary IMT-A MIMO channel model while retaining
an acceptable accuracy. Statistical properties including the temporal autocorrelation function, spatial cross-
correlation function, and stationary interval are chosen as the accuracy metrics for verifications. It is shown
that the tradeoff between the computational complexity and modeling accuracy can be achieved by using
these proposed complexity reduction methods.

INDEX TERMS IMT-A MIMO channel model, non-stationary IMT-A MIMO channel model, model
complexity analysis, statistical properties, complexity reduction methods.

Nomenclature
(·)∗ Complex conjugation operation.
λ Wavelength.
b·c Floor function.
max(·) Maximum.
ρ Polarization.
τn Normalized delay of the n-th (n = 1, · · · , N ) clus-

ter.
E{·} Statistical expectation operator.
a (t) Distance between the last bounce/scatterer and mo-

bile station (MS) at time t.
c (t) Distance between base station (BS) and the first

bounce/scatterer at time t.
L Mean value of the number of newly generated clus-
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ters.
M Number of rays within each cluster.
N Number of clusters.
Pn Power of the n-th cluster.
S Number of transmitter (Tx) antenna elements.
sASA Log-normal distributed random variable (RV) of an-

gle spread of arrival (ASA).
sASD Log-normal distributed RV of angle spread of depar-

ture (ASD).
sDS Log-normal distributed RV of delay spread (DS).
sSF Log-normal distributed RV of shadow fading (SF).
sK Log-normal distributed RV of Rician K-factor.
T The number of time samples.
U Number of receiver (Rx) antenna elements.
v, θv Speed and mobile direction of MS, respectively.
vc, θc Speed and mobile direction of mobile scatterer, re-

spectively.
φn,m Angle of departure (AoD) related to the m-th (m =

1, · · · ,M ) ray within the n-th cluster.
Φm,n Random initial phases related to the m-th ray within

the n-th cluster.
υn,m Doppler frequency component related to the m-th

ray within the n-th cluster.
ϕn,m Angle of arrival (AoA) related to them-th ray within

the n-th cluster.

I. INTRODUCTION

THE deployments of wireless communication systems in
trains or vehicles have become more popular in recent

years. They aim at providing continuous wireless access ser-
vices even in high-mobility scenarios. To design and explore
the wireless communication systems in high-speed trains
(HSTs) or vehicle-to-vehicle (V2V) applications, it is fun-
damental to investigate the underlying propagation channel
characteristics and to develop accurate and efficient models
to mimic the realistic wireless channels.

Most of the existing standardized channel models as-
sume that channels satisfy the wide-sense stationary (WSS)
assumption. However, measurement results [1]–[9] have
proved that the measured stationary intervals, defined as the
maximum time over which the WSS assumption is valid,
for high-mobility scenarios are much shorter than those of
standardized channel models. Therefore, it is crucial to take
non-stationarity into account in developing channel models
for high-mobility scenarios [10]–[17]. As an example, in
[18] we proposed a non-stationary IMT-A multiple-input
multiple-output (MIMO) channel model to investigate the
time evolution of wireless channels in high-mobility sce-
narios by considering small-scale time-variant parameters.
Supported by a comprehensive analysis of the simulation
results, it was demonstrated that the proposed non-stationary
IMT-A MIMO channel model can accurately mimic the
characteristics of high-mobility channels [18].

Realistic channel models should be sufficiently accurate in
modeling the underlying channel characteristics while retain-
ing an acceptable computational complexity of generating

the channel coefficients. Therefore, two criteria including
the modeling accuracy and the efficiency should be both
considered in evaluating the performance of any developed
channel models. In general, introducing the non-stationarity
will increase the complexity of the channel model, which
are crucial for system-level simulation or other applications.
However, the computational complexity brought by the non-
stationarity has not been discussed in existing research work.

In the literature, the complexities of some channel mod-
els have been investigated. In [19], the complexities of
correlation-based and geometric-based stochastic MIMO
channel modeling methods were compared. It was shown
that when the numbers of antenna elements increase to
4×4 MIMO or higher, the geometric method requires less
descriptive parameters than correlation-based method [19].
In [20], the computational complexities of drop-based radio
channel simulation were calculated based on the WINNER
II channel model. However, to the best of our knowledge,
the computational complexities of the standardized IMT-A
MIMO channel model have not been well-quantized and
thoroughly investigated.

To reflect real channels as accurately as possible, channel
models become very complicated, especially with a large
system bandwidth and a large number of antenna elements
[21]. With multiple links and numerous drops, using compli-
cated channel models for the system-level simulations would
require large time consumption and computation resources.
Thus, the accuracy-complexity tradeoff must be considered
in the modeling procedure. Recently, some complexity re-
duction methods were proposed to ensure the implementation
efficiency of channel models. Thus, some complexity reduc-
tion methods were proposed to ensure the implementation
efficiency of the channel models. In [22], an alternative
implementation called non-uniform scattering cross section
was proposed to efficiently implement the GBSM. In [23],
three different levels of modeling complexity were defined
in order to limit the computational effort for the extensive
simulations of a stochastic radio channel model. In [24],
a low-complexity algorithm exploiting the low-dimensional
subspace spanned by multidimensional prolate spheroidal
sequences was presented for the computer simulation of GB-
SMs. A similar approach was also used in [25] to overcome
the complexity constraint in the geometry-based modeling
of diffuse components. In [26], the IMT-A MIMO channel
model was extended to a device-to-device (D2D) channel and
the Doppler response-based fast fading channel generation
was proposed to reduce the simulation time. Several potential
simplifications of the GBSMs to reduce the complexity with
minimal impact on accuracy were investigated in [27]. For
urban micro-cellular scenarios, the authors in [28] proposed
an improved IMT-A GBSM which can reduce the complexity
without losing much accuracy. In [29], a vehicular channel
emulator based on field-programmable gate array (FPGA) is
implemented for real-time performance evaluation of IEEE
802.11p transceivers.

The introduction of the non-stationarity to the channel
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model causes extra complexity due to the periodic update of
time-variant parameters. A cluster-based non-stationary ve-
hicular channel model was developed with low computation-
al complexity in [30]. A complexity reduction method aiming
at determining the minimum number of the relevant clusters
was applied to the real-time emulation of non-stationary
channels in [31]. A compact channel emulation scheme with
low complexity on a FPGA platform was developed and val-
idated in [32]. In [33] and [34], real time channel emulation
methods and signal processing algorithms were introduced
for non-stationary vehicular scenarios based on geometry-
based stochastic channel models. The non-stationary fading
process was partitioned into a sequence of local stationarity
regions and a subspace projection of the propagation path
parameters was adopted to compress the time-variant channel
impulse response.

Quantizing the complexity of channel models is useful
for the fast system-level simulations and real-time imple-
mentation of emulators. On basis of this work, the time-
consuming steps can be found and then the computational
complexity can be reduced. In [18], the accuracy of the non-
stationary IMT-A MIMO channel model has been verified but
the complexity has not been assessed. For practical applica-
tions of the non-stationary IMT-A MIMO channel model, the
resulting increase of the computational complexity should be
evaluated and methods to reduce this complexity need to be
provided.

Reflecting on the aforementioned research gaps, in this
paper we analyze the complexity of the original WSS IMT-A
MIMO channel model by using the number of real operations
(ROs) and simulation time as metrics. Based on our previous
work [18], the complexity of the developed non-stationary
IMT-A MIMO channel model is compared with that of the
original WSS IMT-A MIMO channel model. Furthermore,
some complexity reduction methods are proposed to improve
the efficiency of the non-stationary IMT-A MIMO channel
model for system-level simulations.

The novelty and main contributions of this paper are
summarized as follows.

(1) We derive and compare the computational complexi-
ties of the original WSS and non-stationary IMT-A MIMO
channel models. Two metrics, i.e., the number of ROs and
simulation time, are used to quantize the complexity of the
channel models. The impacts of introducing non-stationarity
into the IMT-A MIMO channel model on its computational
complexity are thoroughly evaluated.

(2) To simplify the non-stationary IMT-A MIMO chan-
nel model, two complexity reduction methods are proposed
to offer a better tradeoff between the model accuracy and
complexity. The proposed methods are useful to improve the
efficiency of non-stationary IMT-A MIMO channel models
and can provide guidance for the simplification of other non-
stationary channel models.

(3)We further analyze the tradeoff between the accuracy

parameters.
In this study, the complexity of the original and non-

stationary IMT-A MIMO channel models are qualified. The
impacts of the introduction of non-stationarity on the com-
putational complexity of channel models are evaluated. The
proposed complexity reduction methods can be used to im-
prove the efficiency of the non-stationary IMT-A MIMO
channel model and to provide references to applications of
other non-stationary channel models.

The remainder of this paper is organized as follows. The
computational complexities of the original WSS and non-
stationary IMT-A MIMO channel models are analyzed in
Section II and Section III, respectively. The comparison
results are shown in Section IV. The complexity reduction
methods are proposed in Section V. Finally, the conclusions
are drawn in Section V.

II. COMPUTATIONAL COMPLEXITY ANALYSIS OF THE
ORIGINAL WSS IMT-A MIMO CHANNEL MODEL
In this section, we analyze the complexity of generating time-
variant MIMO channel coefficients in the original WSS IMT-
A MIMO channel model in terms of the required number of
ROs, following the coefficients generation procedure detailed
in [35]. The analysis of computational complexity is in terms
of the number of real operations (ROs) introduced in [19]
and [20]. The number of ROs of any mathematical operations
is calculated based on four basic operations, namely real
addition, real multiplication, real division, and table lookup,
with each operation requiring one RO [19]. Table lookup
is to find values in a precalculated and stored table with a
simple array indexing operation, which can save significant
processing time. Complex number and other mathematical
operations are transformed into or approximated by these
four basic operations. For example, complex multiplication
is corresponding to the multiplication between two complex
numbers, which requires 6 ROs (4 real multiplications and
2 real addition). It should be noted that multiplying a real
number x by the imaginary unit j, i.e., jx, does not need any
RO because no result is calculated. Similarly, the complex
division requires 11 ROs and the complex addition needs
2 ROs. Table 1 illustrates the required number of ROs for
several mathematical operations.

Please note that in the following analysis, only the process-
ing required for generating time-variant samples for a single
link is considered. All the pre-processing like correlation ma-
trix factorization or lookup table generation is excluded from
the examination. If a system-level simulation is considered,
i.e., there are K(K > 1) links in the system, then the total
number of ROs should be obtained by multiplying K by the
reported RO numbers per link. The path loss (PL), which
determines the signal-to-noise ratio (SNR), is described by
different models according to the scenarios and line-of-sight
(LoS) conditions, as summarized in Table A1-2 in [35]. The
number of ROs for calculating the path loss is between 6
and 29, which is the same for both the original and the
non-stationary IMT-A MIMO channel models. Then, it is

and complexity of various simplified non-stationary IMT-A 
MIMO channel models by adjusting different channel model
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TABLE 1. Required number of ROs for typical mathematical operations [19].

Operation Required number of ROs
Exponential (ex) 15

Uniform distributed RV 5
Gaussian distributed RV 72
Complex Multiplication 6

Complex Division 11
Complex Addition 2

Complex Norm 5
Sin(x) 7
Cos(x) 8

Table lookup 8
Log(x) 1

Real square root 1

excluded from the complexity comparison, as in [19] and
[20]. The number of ROs required for single-link channel
coefficient generation in the original WSS IMT-A MIMO
channel model is clarified as follows.

A. GENERATION OF CORRELATED LARGE SCALE
PARAMETERS (LSPS)
In the original WSS IMT-A MIMO channel model, there are
five LSPs, including DS, ASA, ASD, SF, and Rician K-
factor. All these LSPs follow log-normal distributions and
they can be generated following the procedure described in
[36].

First, the cross-correlation between these Z = 5 LSPs is
generated independently to the LSPs by a linear transforma-
tion, i.e.,

s̃Z×1 =
√
CZ×ZξZ×1 (1)

where CZ×Z is the correlation matrix as defined in [35].
Correlation matrix factorization is excluded from the com-
plexity analysis because the matrix will not vary from link
to link and the factorization can be pre-processed. Note
that ξZ×1 is a vector of Z independent zero-mean Gaussian
RVs, while s̃Z×1 = [s̃DS, s̃ASA, s̃ASD, s̃SF, s̃K ]

T . From Table
1, generating a Gaussian RV requires 72 ROs. Therefore,
72 × 5 = 360 ROs are required to generate the vector
ξZ×1. The multiplication of a matrix of the square roots of
the 5×5 correlation matrix by a 5×1 vector requires 5×5
real multiplications and 5×4 real additions. As a result, the
required number of ROs is

CLS_corr = (72 + 5 + 4)×5 = 405. (2)

Then, we need to transform the elements of ξZ×1 into log-
normal distributed RVs. The log-normal distributed RV of the
DS is given by

sDS = 10(σDSs̃DS+µDS) (3)

where µDS is the logarithmic mean of the distribution of
DS and σDS is the logarithmic standard deviation of the
distribution of DS. Similarly, the log-normal distributed RV
of the ASA/ASD is given by

sASA/ASD = 10(σASA/ASDs̃ASA/ASD+µASA/ASD) (4)

where µASA/ASD is the logarithmic mean of the distribution of
ASA/ASD and σASA/ASD is the logarithmic standard deviation
of the distribution of ASA/ASD. The log-normal distributed
RV of the SF is given by

sSF = 10(σSFs̃SF/10) (5)

where σSF is the logarithmic standard deviation of the distri-
bution of SF. Finally, the log-normal distributed RV of K-
factor is given by

sK = 10(σK s̃K+µK/10) (6)

where µK is the logarithmic mean of the distribution of
SF and σK is the logarithmic standard deviation of the
distribution of K-factor.

Note that calculating 10x = ex ln 10 needs 17 ROs (15
for calculating the exponential, 1 for multiplexing, and 1 for
logarithm). Then, 2 ROs are needed to calculate x for sDS and
sASA/ASD, and 3 ROs for sK . For sSF, calculating x requires
2 ROs (division and multiplication). Thus, transforming ele-
ments of ξZ×1 into 5 log-normal distributed RVs requires

Ctrans = 5× 17 + 3×2 + 2 + 3 = 96. (7)

The total number of the ROs required to generate the
correlated LSPs in the original WSS IMT-A MIMO channel
model is

CLS = CLS_corr + Ctrans = 501. (8)

B. GENERATION OF SMALL SCALE PARAMETERS
(SSPS)
1) Generate Delays
The delay of the n-th cluster follows an exponential distribu-
tion and it can be expressed as

τn
′ = −rτστ ln (Xn) (9)

where rτ is the delay distribution factor, στ is the DS,
and Xn is a uniform distributed RV. Calculations of (9)
require 1 logarithm and 2 real multiplications, in addition
to 5 ROs to generate the uniform distributed RV Xn. The
delays τn′ can be subtracted by the smallest one and then
sorted in a descending order to get normalized delays τn. The
normalization process costs 1 RO for each delay, while the
descending order costs (N − 1)

2 ROs. Thus, the number of
ROs required to generate the delays is

Cτ = (2 + 1 + 5 + 1)N+(N − 1)
2

= N2+7N+1. (10)

2) Generate Cluster Powers
The cluster powers are calculated by

Pn = exp

(
−τn

rτ − 1

rτστ

)
10−

Zn
10 (11)

where Zn is a Gaussian RV representing the per cluster
shadowing term. Calculating the left exponential costs 4
ROs (2 multiplications, 1 division, and 1 subtraction) and 15
ROs for the exponential function. 1 RO (multiplication) is
required to multiply the left term and the right term.

4



Calculating the expression 10−
Zn
10 costs 1 real division, 17

ROs for 10x, and 72 ROs to generate the Gaussian RV Zn.
The power will be normalized so that the sum of all cluster
powers is equal to one. This normalization process costsN−
1 real additions and N real divisions. Therefore, the number
of ROs to generate the cluster powers is

CP = (4 + 15)+(17 + 1 + 72)+1+N+(N − 1) = 2N+109.
(12)

3) Generate AoAs and AoDs
In the original WSS IMT-A MIMO channel model, the pow-
er azimuth spectrum (PASs) are modeled as the following
wrapped Gaussian distributions for all the scenarios except
for the indoor hot spot (InH) one

ϕn
′ =

2σAoA

√
− ln

(
Pn

maxPn

)
C

. (13)

For the InH scenario, the PAS is modeled as the following
Laplacian distribution

ϕn
′ =

2σϕ

√
− ln

(
Pn

maxPn

)
C

(14)

where C is a tabulated scaling factor and σAoA = σϕ/1.4 is
the standard deviation of the AoA. The maximum operation
needs N − 1 ROs, which only needs to be carried out once
for all clusters. In both cases, calculating ϕn′ costs 2 real di-
visions, 1 logarithm, 1 square root, and 2 real multiplications,
totaling 6 ROs per cluster.

To introduce random variation, we have

ϕn = Xnϕn
′ + Yn + ϕLoS (15)

where Xn is a uniform distributed RV within the discrete
set of {1, -1}, Yn is a Gaussian distributed RV, and ϕLoS
is the LoS direction defined in the network layout. From
Table 1, Xn needs 5 ROs and Yn needs 72 ROs. In (15),
1 multiplication and 2 additions are also required. Thus, to
generate ϕn, we need (5 + 72 + 1 + 2) = 80 ROs per cluster.

The AoA of the m-th ray of the n-th cluster is calculated
by using

ϕn,m = ϕn + cAoAαm (16)

where cAoA is the tabulated cluster azimuth spread of arrival
angles and αm is the tabulated offset angle. Only 2 ROs
(1 multiplication and 1 addition) are needed for each ray.
Therefore, the required number of ROs is

Caz = (N − 1)+2 ((6 + 80)N + 2NM) = 173N+4MN−1.
(17)

4) Random Coupling of Rays within Clusters
The random coupling of AoDs φn,m to AoAs ϕn,m can be
realized by assigning a RV with a uniform distribution to the
M rays within a cluster n, or within a sub-cluster in case of
two strongest clusters. Thus, the required number of ROs is

Ccoup = 5MN. (18)

Finally, from (10), (12), (17), and (18), the total number of
ROs to generate SSPs is

CSS = Cτ + CP + Caz + Ccoup (19)

= N2 + 182N + 9MN + 109.

C. GENERATION OF INITIAL CHANNEL COEFFICIENTS
The required number of ROs for generating the initial (first)
channel coefficients in the original WSS IMT-A MIMO
channel model can be calculated as

Ccc = CΦ + CFP + CH (20)

where CΦ, CFP, and CH represent the required numbers of
ROs for random initial phases Φm,n, field pattern (FP), and
channel coefficient matrix H, respectively.

1) Draw Random Initial Phases and Field Patterns
For each ray m of each cluster n and for four d-
ifferent polarization combinations, random initial phases{

ΦVV
n,m,Φ

VH
n,m,Φ

HV
n,m,Φ

HH
n,m

}
need to be drawn. The initial

phases have a uniform distribution within [−π, π). According
to Table 1, the generation of uniform distributed RVs costs 5
ROs. Thus, we can get

CΦ = 5ρ2MN. (21)

Here, ρ is related to polarization, i.e., ρ = 2 in case of dual
polarization and ρ = 1 in case of single polarization.

The measured FPs could have different representations
and therefore interpolation complexities as well. Usually, we
can use linear interpolation of complex samples taken with
pre-defined resolution (typically 1◦) [20]. Its computational
complexity, per polarization, will be determined with two
real subtractions, one real division, two complex additions,
and one multiplication between a real number and a complex
number, totaling 2 + 1 + 2× 2 + 2× 1 = 9 ROs. Then, the
complexity of generating the field pattern can be written as

CFP = 9 (U + S) ρMN. (22)

2) Generate Channel Coefficients for Each Cluster n and
Each Rx and Tx Element Pair u, s
For the N − 2 weakest clusters and uniform linear arrays
(ULAs), the channel coefficients are given by [35]

hu,s,n (t) =
√
Pn×

M∑
m=1


[
FRx,u,V (ϕn,m)
FRxu,H (ϕn,m)

]T
An,m

[
FTx,s,V (φn,m)
FTx,s,H (φn,m)

]
exp

[
j2πλ−1 (dssin (φn,m) + dusin (ϕn,m))

]
exp [j2πυn,mt]

.
(23)

Here, An,m is used to represent the polarization matrix. In
case of dual polarization,

An,m =

[
exp

(
jΦVV

n,m

) √
κ−1 exp

(
jΦVH

n,m

)
√
κ−1 exp

(
jΦHV

n,m

)
exp

(
jΦHH

n,m

) ]
(24)
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which requires 4 exponentials, 1 square root, 1 real division,
and 2 real multiplications. It should be noted that κ is the
cross polarization ratio (XPR) which is determined by the
scenario [35]. Thus, the required number of ROs to calculate
An,m is 4×15+1+1+2×2 = 66 ROs. Then, calculating the
first row (multiplication between the three matrices) in (23)
needs 6 complex multiplications and 3 complex additions,
which requires 6× 6 + 3× 2 = 42 ROs.

If ρ = 1, the polarization matrix An,m is reduced to
exp (jΦn,m), which requires 15 ROs to obtain the ex-
ponential. Then, the first row in (23) will be reduced
to [FRx,u (ϕn,m)]

T
[exp (jΦn,m)] [FTx,s (φn,m)], which re-

quires 2 complex multiplications, i.e., 2× 6 = 12 ROs.
The second row in the curly brackets of (23) requires 2

sines, 4 real multiplications, 1 real division, 1 real addition,
and 1 exponential, i.e., 2× 7 + 4 + 1 + 1 + 15 = 35 ROs.

The third row in the curly brackets of (23) is
exp [j2πυn,mt] where υn,m is the Doppler frequency com-
ponent of ray n,m and given by

υn,m = λ−1v cos (ϕn,m − θv) . (25)

Thus, it requires 1 real subtraction, 1 cosine, 3 real multipli-
cations, 1 real division, and 1 exponential, i.e., 1 + 8 + 3 +
1 + 15 = 28 ROs per ray per cluster.

To multiply the first, second, and third rows together in
(23), we need two complex multiplications need 6 × 2 = 12
ROs per ray per cluster. To sum up the channel coefficients of
M rays, M − 1 complex additions are required, correspond-
ing to 2(M − 1) ROs per cluster.

Thus, for the N − 2 weakest clusters, the number of ROs
to produce their channel coefficients is

CH_weak =(N−2)US

× ((66+42+35+28+12)M+2 (M−1)) , if ρ=2;
(26a)

CH_weak =(N−2)US

× ((15+12+35+28+12)M+2 (M−1)) , if ρ=1.
(26b)

For the two strongest clusters, there are three sub-clusters
with fixed delay offsets {0, 5, 10 ns} in each cluster. Twenty
rays of a cluster are mapped to these sub-clusters. Rays with
different delay offsets are not added together. So, 2 real
additions are reduced. Thus, when computing the sum of
rays, the number of ROs to generate the channel coefficients
of the two strongest clusters is

CH_strong =2US

× ((66+42+35+28+12)M + 2 (M−3)) , if ρ=2;
(27a)

CH_strong =2US

× ((15+12+35+28+12)M + 2 (M−3)) , if ρ=1.
(27b)

The total number of ROs required for generating the chan-
nel coefficient matrix is

CH = CH_weak + CH_strong

= (185M − 2)USN − 8US, if ρ = 2; (28a)
CH = CH_weak + CH_strong

= (104M − 2)USN − 8US, if ρ = 1. (28b)

Then, (20) can be calculated as

Ccc = (185M−2)USN−8US

+18 (U+S)MN+20MN, if ρ = 2;
(29a)

Ccc = (104M−2)USN−8US

+9 (U+S)MN+5MN, if ρ = 1.
(29b)

Therefore, the computational complexity to generate the ini-
tial (first) channel response in terms of the number of ROs
is

Cinitial = CLS + CSS + Ccc. (30)

In case of dual polarization or single polarization,

Cinitial =501+N2+182N+29MN+109+(185M−2)USN

−8US+18(U+S)MN, if ρ = 2; (31a)

Cinitial =501+N2+182N+14MN+109+(104M−2)USN

−8US+9(U+S)MN, if ρ = 1. (31b)

D. GENERATION OF WSS CHANNEL COEFFICIENTS
FOR MULTIPLE TIME SAMPLES
The operations for generating the initial channel coefficients
are only implemented once, and the channel parameters
including the cluster number, the powers, delays, AoAs and
AoDs of clusters will not change with time in the original
WSS IMT-A MIMO channel model. With time evolution,
only the third row of (23) needs to be updated, which cor-
responds to 26 ROs per time sample. Besides, one complex
multiplication with 6 ROs is needed to multiply the third
row to the other parts. To sum up the channel coefficients of
different rays in (23), 2(N −2)(M −1)US ROs are required
for the N − 2 weakest clusters, while 4(M − 3)US ROs are
needed for the two strongest clusters. Thus, the additional
number of ROs required for each time sample updating is

CWSS_t = USNM (28 + 6) + 2 (N − 2) (M − 1)US

+ 4 (M − 3)US

= 36USNM − 2USN − 8US. (32)

If we need to generate channel responses for T different
time samples, the total complexity of the original WSS IMT-
A MIMO channel model is

CWSS = Cinitial + (T − 1)CWSS_t. (33)
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III. COMPUTATIONAL COMPLEXITY ANALYSIS OF THE
NON-STATIONARY IMT-A MIMO CHANNEL MODEL
Generating the channel response for the first time instance
also needs Cinitial ROs for the non-stationary IMT-A MIMO
channel model. In the original WSS IMT-A MIMO channel
model, only the third row in (23), exp [j2πvn,mt] needs to
be updated for each time sample. The non-stationary IMT-
MIMO channel model [18] was proposed to investigate the
time variation of wireless channels in high mobility scenar-
ios. We considered small scale time-varying parameters such
as the number of clusters, delays and the powers of clusters,
AoDs, and AoAs. The number of clusters was described by a
Markov birth-death (B-D) process. Delays, AoDs, and AoAs
of clusters changed according to the geometric relationship
between BS, MS, and clusters. The cluster powers were
calculated assuming a single slope exponential power delay
profile. Therefore, cluster number, powers, delays, and angles
of clusters are all time-variant and need to be regenerated. In
this section, we will analyze the computational complexity of
the non-stationary IMT-A MIMO channel model.

A. UPDATE THE TIME-VARIANT CLUSTER NUMBER
In the non-stationary channels, because of the movement
of the MS and/or the surrounding scatterers, the number of
clusters is time-variant. The instantaneous number of clusters
can be calculated based on the B-D process [37]. Here,
we classify the clusters into two kinds: newly generated
clusters and survived (remained) clusters. The complexity of
computing the cluster number is analyzed as follows.

1) Survived Clusters at Time Instance t

Observing a time series of channel impulse responses (CIRs),
each cluster remains at time instance t = tk+1 with the
probability

Pr (δP,k (t)) = e−λRδP,k(t). (34)

where λR is the recombination rate [37]. The channel fluc-
tuation δP,k (t) is a means of measuring the changes taking
place in the scattering environments and it can be defined as

δP,k (t) = δMC,k (t) + δMS,k (t) (35)

where δMC,k (t) and δMS,k (t) denote the fluctuations caused
by the scatterer and MS movement, respectively.

δMC,k (t) = Pcvc (tk+1 − tk) (36)

and
δMS,k (t) = v (tk+1 − tk) (37)

Thus, the total complexity to get the number of the survived
clusters is

CSurNum (t) = (5 + 1)Ntotal (tk) . (38)

In [18], the expectation of the total cluster number, also
defined as the initial number, is given by

E{Ntotal (tk)} = N (t0) =
λG
λR

= N. (39)

Here, λG is the generation rate [37]. Thus, the mean number
of ROs to compute the survived cluster number is

CSurNum = 6N. (40)

2) Calculate the Number of the Newly Generated Clusters
NNewNum (t)

According to the non-stationary channel modeling procedure
in [18], NNewNum (t) follows the Poisson distribution whose
mean value and variance are both equal to

L = E {NNewNum (t)} =
λG
λR

(1− Pr (t)) . (41)

To generate a Poisson RV, we use the method of Ahrens and
Dieter as described in [38], and derive the mean number of
ROs for generating a Poisson RV is

CNewNum = 7 (L+ 1) (42)

which is also the mean complexity to calculate the number of
the newly generated clusters.

B. GENERATION OF NON-STATIONARY SSPS
1) Update Time-Variant Cluster Delays
For the newly generated clusters, the delays are calculated
by using the same method as that in the initial channel
response generation. Thus, similar to (10), the mean number
of required ROs for generating delays for newly generated
clusters is

CNewDel = L2 + 7L+ 1. (43)

According to (39) and (41), the mean number of the survived
clusters is

E{NSurNum (t)} = E{Ntotal (t)}−E{NNewNum (t)} = N −L.
(44)

For each survived cluster, the time-varying delay τn (tk)
can be expressed as

τn (t) =
(c (t)− c (t0)) + (a (t)− a (t0))

c0
+ τ̃n (tk) . (45)

Here, the distance between BS and the first bounce/scatterer,
c (t)=

√
c2 (t0)+(vct)

2−2c (t0) vct cos (π+φn,m (t0)−θc)
and the distance between the last bounce/scatterer and MS,
a (t) =

√
a2 (t0) + (vt)

2−2a (t0) vt cos (ϕn,m (t0)−θv)
need to be calculated. Computation of each distance needs
2 real square operations, 5 real multiplications, 2 real sub-
tractions, 1 real addition, and 1 cosine, totaling 18 ROs.

where Pc is the percentage of moving scatterers and tk is the 
time of the k-th time sample (instance).

To judge which cluster can survive at the next time instance 
t = tk+1, we need to generate Ntotal (tk) uniform distributed 
RVs within [0, 1], requiring 5 ROs per cluster. Ntotal (tk) is the 
total cluster number at t = tk+1. After comparing Pr (t) with 
these RVs, we can decide whether a cluster remains or not.
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As shown in [18], the delay of the virtual link τ̃n can be
calculated using a first-order filtering algorithm as

τ̃n (tk) = e(tk−1−tk)/ετ̃n (tk−1) +
(

1− e(tk−1−tk)/ε
)
X

(46)
where X ∼ U

(
DLoS
c0

, τmax

)
. c0 is the speed of light, DLoS

is the distance of the LoS path, τmax is the maximum delay,
and ε is a parameter that depends on the coherence of a
virtual link and scenario. 5 ROs are required to generate the
uniform RV X , while 16 ROs are needed for the exponential
part e(tk−1−tk)/ε. Computing the right part of (46) requires 2
real multiplications, 1 real addition, and 1 subtraction. Thus,
5 + 16 + 4 = 25 ROs are needed for generating τ̃n (tk).

Computing the delay of each survived cluster τn (t) needs
4 extra real additions and 1 real division in (45). Thus, the
total number of ROs required is 18× 2 + 25 + 5 = 65. As a
result, updating the delays of all the survived clusters needs
CSurDel = 65(N − L) ROs in average.

2) Update Time-Variant Cluster Powers

Generating the powers of all the clusters follows the proce-
dure of the original WSS IMT-A MIMO channel model and
can be finished by replacing τn by τn (t) in (11). The mean
number of clusters is still equal to N , so the mean number of
ROs required is the same as that in (12).

3) Update Time-Variant Angular Parameters

The time-variant angular parameters of the newly generated
clusters need to be generated by the same procedure in
Section II. According to (17), the required number of ROs
is

CNewAngGen = 173L+ 4ML− 1. (47)

After the angular parameter generation for the newly gen-
erated clusters, the random coupling from AoDs to AoAs can
be realized with CNewCoup = 5ML ROs. Thus, the number of
ROs required for generating and coupling angular parameters
for all newly generated clusters is

CNewAng = CNewAngGen + CNewCoup

= 173L+ 9ML− 1. (48)

The AoDs and the AoAs of each survived cluster need
to be regenerated according to the equations (26) and (33)
in [18]. The arc-cosine operation can be finished by using
a lookup table with the same number of ROs as the cosine
function. Then, 39 ROs are needed for computing the AoD
or AoA of one ray. The total number of ROs to generate the
angular parameters for survived clusters is

CSurAng = 2×39M (N − L) = 78M (N − L) . (49)

For the survived clusters, the coupling between AoDs and
AoAs would not be updated.

C. GENERATION OF NON-STATIONARY CHANNEL
COEFFICIENTS FOR MULTIPLE TIME SAMPLES
The time-variant channel coefficients of the non-stationary
IMT-A MIMO channel model can be generated by sub-
stituting the time-varying channel parameters in (23). The
random initial phases Φn,m (t) and FPs are still fixed, so CΦ

and CFP can be ignored in the complexity analysis. For the
non-stationary IMT-A MIMO channel model, in (23), only
An,m is time-invariant while all other parameters need to
be updated, i.e., 65 ROs can be ignored when ρ = 2 and
15 ROs can be reduced when ρ = 1 per ray per antenna
pair. According to (29), the total complexity to regenerate the
instantaneous channel coefficient is

Ccc_t = 119USNM − 2USN − 8US, if ρ = 2; (50a)

Ccc_t = 89USNM − 2USN − 8US, if ρ = 1. (50b)

Then, the total complexity per time sample to update all
the time-variant parameters and to generate the channel coef-
ficients of the non-stationary channel model can be expressed
as

CNonSta_t = (CNewNum + CSurNum) + (CNewDel + CSurDel)

+ CP + (CNewAng + CSurAng) + Ccc_t. (51)

If T samples at temporal domain are generated and all
parameters are updated for each sample, the total complexity
of the non-stationary IMT-A MIMO channel model is

CNonSta = Cinitial + (T − 1)CNonSta_t. (52)

The computational complexities of different steps for the
original WSS and non-stationary IMT-A MIMO channel
models are summarized in Table 2.

IV. COMPLEXITY COMPARISON OF ORIGINAL WSS
AND NON-STATIONARY IMT-A MIMO CHANNEL MODELS
Based on the analysis in Sections II and III, the complexities
of the original WSS IMT-A MIMO channel model and the
non-stationary IMT-A MIMO channel model will be com-
pared. A rural macro (RMa) scenario is considered with the
same parameter set as in [18], which is listed in Table 3.
The speeds of the MS and mobile scatterer are 90 m/s and
30 m/s, respectively. The sampling interval was chosen as
1 transmission time interval (TTI), i.e., tsample = 1 ms. For
the convenience of comparing with measured data in [1], the
central frequency was selected as 930 MHz.

The first two columns of Table 4 give the complexity
comparison of these two models in the considered scenario.
Numerical results of the ROs for different stages are listed. It
can be observed that the processing related to channel coeffi-
cient matrix generation dominates the global complexity.

Fig. 1 shows the complexity comparison of the original
WSS and non-stationary IMT-A MIMO channel models with
different antenna pair numbers (U × S). In total, 100 time
samples are generated. The complexity increases linearly
with the antenna pair number for both models. In Fig. 2, the
complexity results are illustrated as a function of the time
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TABLE 2. Computational complexities of the original WSS and non-stationary IMT-A MIMO channel models.

Stage Step The number of ROs Values

Initial processing stage

LSP generation CLS 501
Initial delay generation Cτ N2 + 7N + 1

Initial power generation CP 2N + 109

Initial generations of AoAs and AoDs Caz 173N + 4MN − 1

Random coupling of rays within clusters Ccoup 5MN

SSP generation CSS = Cτ + CP +
Caz + Ccoup

N2 + 182N + 9MN + 109

Random initial phases generation CΦ 5ρ2MN

Field pattern generation CFP 9 (U + S) ρMN

Initial channel matrix generation CH (185M − 2)USN − 8US, if ρ = 2
(104M − 2)USN − 8US, if ρ = 1

Initial channel coefficients generation Ccc CΦ + CFP + CH

Total generation for the initial sample Cinitial CLS + CSS + Ccc

Generation of WSS
IMT-A channel
coefficients for multiple
time samples

Channel coefficients matrix generation
per sample for the WSS IMT-A MIMO
model

CWSS_t 36USNM − 2USN − 8US

Total complexity for the WSS IMT-A
MIMO model

CWSS Cinitial + (T − 1)CWSS_t

Generation of
non-stationary IMT-A
channel coefficients for
multiple time samples

Survived cluster number calculation CSurNum 6N

Newly generated cluster number calcula-
tion

CNewNum 7(L+ 1)

Delay generation for survived clusters CSurDel 65(N − L)

Delay generation for newly generated
clusters

CNewDel L2 + 7L+ 1

Power generation CP 2N + 109

Angle generation for survived clusters CSurAng 78M (N − L)

Angle generation for newly generated
clusters

CNewAng 173L+ 9ML− 1

Channel coefficients generation for the
non-stationary IMT-A MIMO model

Ccc_t 119USNM − 2USN − 8US, if ρ = 2
89USNM − 2USN − 8US, if ρ = 1

Parameter update and channel coeffi-
cients matrix generation for the non-
stationary IMT-A MIMO model

CNonSta_t (CNewNum +CSurNum)+(CNewDel + CSurDel)+CP +
(CNewAng + CSurAng) + Ccc_t

Total complexity of the non-stationary
IMT-A MIMO model

CNonSta Cinitial + (T − 1)CNonSta_t

TABLE 3. Parameter setting for complexity analysis.

Parameters Values
Mean cluster number (N ) 10

Antenna configuration (U × S) 2×2
Polarization (ρ) 1

Carrier frequency (fc) 930 MHz
Generation rate of clusters (λG) 0.8/m

Recombination rate of new clusters (λR) 0.04/m
Percentage of moving clusters (Pc) 0.3

Speed of MS (v) 90 m/s
Speed of mobile scatterer (vc) 30 m/s

Sampling interval (tsample) 1 ms
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FIGURE 1. Complexity comparison of the original WSS and non-stationary
IMT-A MIMO channel models with different antenna pair numbers in the
considered HST scenario.

needs more ROs to generate channel coefficients. When
T → ∞, the result tends to be the asymptotic value, i.e.,
CNonSta_t/CWSS_t = 3.05 in this case.

In the meanwhile, we record the MATLAB channel coeffi-
cient computing time for generating channel coefficients with
10000 sets of 4×4 channel matrices. The parameter setting

sample number T for the original WSS and non-stationary 
IMT-A MIMO channel models. With the increase of time 
samples, the required ROs increase linearly for both models. 
The intercepts of two curves (Cinitial) are the same, while 
the slopes, corresponding to the ROs for generating channel 
coefficients per time sample, are different.

Fig. 3 shows the complexity comparison result of these two 
models, i.e., the ratio of the RO number of the non-stationary 
IMT-A MIMO channel model (CNonSta) to that of the original 
WSS IMT-A MIMO channel model (CWSS). When T = 1, 
the same RO number is required to generate the initial sample 
in both models. With increasing T , the ratio becomes larger 
because the non-stationary IMT-A MIMO channel model
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TABLE 4. Example complexity comparison of the original WSS IMT-A MIMO channel model, the non-stationary IMT-A MIMO channel model, and the simplified
non-stationary IMT-A MIMO channel models in the considered HST scenario.

Initial processing stage Original
WSS IMT-A
MIMO model

Non-
Stationary
IMT-A
MIMO model

Non-
stationary
model without
B-D process

Non-
stationary
model with
fixed delays
and powers

Non-
stationary
model with
fixed AoDs

Non-
stationary
model with
fixed AoDs
and AoAs

LSP generation (CLS) 501 501 501 501 501 501
SSP generation (CSS) 3829 3829 3829 3829 3829 3829
Random initial phases generation (CΦ) 1000 1000 1000 1000 1000 1000
Field pattern generation (CFP) 7200 7200 7200 7200 7200 7200
Initial channel coefficient matrix generation (CH) 91288 91288 91288 91288 91288 91288
Total generation for the initial sample (Cinitial) 95618 95618 95618 95618 95618 95618
Survived cluster number calculation (CSurNum) 0 60 0 0 0 0
Newly generated cluster number calculation (CNewNum) 0 7.2 0 0 0 0
Delay generation for survived clusters (CSurDel) 0 648.1 650 0 650 650
Delay generation for newly generated clusters (CSurDel) 0 1.2 0 0 0 0
Power generation (CP) 0 129 129 0 129 129
Angle generation for survived clusters (CSurAng) 0 15555 15600 15600 7800 0
Angle generation for newly generated clusters (CNewAng) 0 9.2 0 0 0 0
Channel coefficient matrix generation (CWSS_t; Ccc_t ) 28688 71088 71088 71088 67488 28688
RO per time sample 28688 87498 87467 86688 76067 29467
Complexity increase per time sample 0% 205% 204.89% 202.18% 165.15% 2.72%
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FIGURE 2. Complexity comparison of the original WSS and non-stationary
IMT-A MIMO channel models with different time samples in the considered
HST scenario.

is the same as that in Table 3. The PC we used to run the
simulations has Intel Core i7, 4x2.93 GHz CPU, and 16 GB
RAM. The computing times for the original WSS IMT-A
MIMO channel model and the non-stationary IMT-A MIMO
channel model are 0.3810 s and 1.1519 s, respectively. Cor-
respondingly, the simulation time of the non-stationary IMT-
A MIMO channel model is about 3.38 times of that of the
original WSS IMT-A MIMO channel model.

According to the complexity analysis in terms of the
required number of ROs and simulation time, it is shown that
the computational complexity of the non-stationary IMT-A
MIMO channel model is several times of that of the original
WSS IMT-A MIMO channel. Even with the original IMT-A
channel model, vast time consumption is needed for imple-
menting the system-level simulations because multiple BSs
and MSs and numerous drops are required. The introduction
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FIGURE 3. Complexity comparison between the original WSS and
non-stationary IMT-A MIMO channel models with different time samples in the
considered HST scenario.

of non-stationarity will aggravate this problem. Thus, it is
necessary to reduce the complexity of the proposed non-
stationary IMT-A MIMO channel model without losing much
accuracy for practical applications.

V. COMPLEXITY REDUCTION METHODS
In this section, two complexity reduction methods for the
non-stationary IMT-A MIMO channel model are presented.
The first method is to fix some channel parameters in the
non-stationary channel models and the second one is to
reduce the updated rate of all these time-variant parameters
in the simulation. The purpose of these methods is to reduce
the complexity while keeping the statistical properties as
accurate as possible. The number of ROs is still used to
analyze the computational complexity. For accuracy metrics,
we consider several statistical properties including the spatial

10



CCF, temporal ACF, and stationary interval. The spatial CCF
and temporal ACF are two important one-dimensional (1D)
correlation functions, which are widely used in the evaluation
and optimization of communication systems [32]. Stationary
interval is used to measure the time interval in which the
statistics of the channel do not change significantly.

A. FIXING SOME TIME-VARIANT CHANNEL
PARAMETERS

In [27] and [28], parameters such as cluster number and delay
spread in different drops were fixed for different drops to
improve the computational efficiency of the GBSMs. In the
non-stationary IMT-A MIMO channel model, all the time-
variant parameters including the cluster number, powers,
delays, AoDs, and AoAs need to be updated for each time
sample t (t = 0, · · · , T − 1). In order to reduce the model
complexity, some channel parameters can be viewed as static
during the generation process of the non-stationary channel
coefficients. We firstly analyze the impacts of these time-
variant parameters on different statistic properties and then
evaluate the complexity reduction and accuracy degradation
resulted by fixing different channel parameters.

1) Statistical Properties

The spatial CCF can reflect the correlation property in the
space domain. For WSS channels, CCF is only determined
by the relative BS and MS antenna element spacings, i.e.,
∆ds = |ds1 − ds2 | and ∆du = |du1 − du2 |. However, in
the non-stationary IMT-A MIMO channel model, it depends
on not only the relative antenna spacings, but also time t. The
local spatial CCF of the n-th cluster can be expressed as [39],
[40]

ρs1u1
s2u2,n (t,∆ds,∆du)

= E
{
hu1,s1,n (t)h∗u2,s2,n (t)

}
=

1

M

M∑
m=1

E
{
Pn (t) ejk∆ds sin(φn,m(t))ejk∆du sin(ϕn,m(t))

}
.

(53)

According to equation (53), the local spatial CCF at time
sample t is affected by the AoDs φn,m(t) and AoAs ϕn,m(t).

The local temporal ACF of the n-th cluster can be ex-
pressed as [39], [40]

rn (t,∆t) = E
{
hu,s,n (t)h∗u,s,n (t−∆t)

}
= e−λR(v∆t+Pcvc∆t)

× 1

M

M∑
m=1

E
{
Pn(t)Aϕn,m(t,∆t)Bφn,m(t,∆t)Cϕn,m(t,∆t)

}
(54)

where

Aϕn,m (t,∆t)=ej2πλ
−1du[sin(ϕn,m(t))−sin(ϕn,m(t+∆t))],

(55a)

Bφn,m (t,∆t)=ej2πλ
−1ds[sin(φn,m(t))−sin(φn,m(t+∆t))],

(55b)

Cϕn,m (t,∆t)=e−j2πλ
−1vcos(ϕn,m(t)−θv)(t)

×ej2πλ
−1vcos(ϕn,m(t+∆t)−θv)(t+∆t).

(55c)

The local temporal ACF is affected by the AoDs φn,m(t),
AoAs ϕn,m(t), and two parameters related with the B-D
process, Pc and λR.

The stationary interval can be calculated using averaged
power delay profiles (APDPs) which is expressed as [1]

Ph (tk, τ) =
1

NPDP

k+NPDP−1∑
k

|hu,s (tk, τ) |2 (56)

where hu,s (tk, τ) =
∑N
n=1 hu,s,n (tk) δ(τ − τn) and NPDP

is the number of power delay profiles to be averaged. The
correlation coefficient between two APDPs can be calculated
as

c (tk,∆t) =

∫
Ph (tk, τ)Ph (tk + ∆t, τ) dτ

max{
∫
Ph (tk, τ)

2 dτ,
∫
Ph (tk + ∆t, τ)

2 dτ}
.

(57)

Then, the stationary interval can be given by

Ts(tk) = max{∆t|c(tk,∆t)≥cthresh} (58)

where cthresh is a given threshold of the correlation coefficient.
From (56), (57), and (58), the stationary interval is related to
the powers, delays, AoAs, and AoDs of the clusters.

2) Complexity Reduction Analysis
In the non-stationary IMT-A MIMO channel model, the B-
D process is used to calculate the instantaneous number of
clusters. With the parameters in Table 3, each cluster remains
from a time sample to the following one with the probability
Premain = 0.9986, which can be calculated by (34). Then,
according to (41), the mean number of newly generated
clusters L = 0.029 in the selected scenario. It means the
cluster number would change slowly even with high mobile
speed, e.g., 90 m/s. Thus, we can neglect the B-D process and
fix the number of clusters in the following analysis.

If the B-D process is not considered, the ROs for gener-
ating the cluster number can be neglected, and the number
of ROs needed for generating channel coefficients per time
sample is shown in Table 4. Neglecting the B-D process can
reduce about 0.04% of the ROs per time sample compared
with the non-stationary IMT-A MIMO channel model with
all time-variant parameters.

In the original WSS IMT-A MIMO channel model, the
powers of the clusters are determined by the delay values.
Therefore, the powers will be time-invariant when the delays
of the clusters are fixed. Table 4 also lists the number of ROs
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for the non-stationary IMT-A MIMO channel model with
fixed delays and powers of clusters. Only the generation of
the time-variant angular parameters is preserved. It can be
seen that fixing the delays and powers of the clusters can
reduce 0.95% of the ROs per time sample for this example.

If there are no moving scatterers near the BS, the AoDs can
be viewed as time-invariant. Then the ROs for regenerating
time-variant angular parameters can be reduced by half. At
the same time, the field pattern at the Tx side is fixed, and
9SρMN ROs can be removed from the channel coefficient
generation. As a result, 13.56% of ROs can be reduced as
illustrated in Table 4. The same complexity reduction can be
obtained when the AoAs are time-invariant.

If AoDs and AoAs are both fixed, the ROs for generating
time-variant angular parameters are no longer necessary. At
the same time, the first row and second row of (23) are fixed,
and the number of ROs for generating the non-stationary
channel coefficients is the same as that of the original WSS
IMT-A MIMO channel model. As illustrated in Table 4, 67%
of the ROs can be reduced.

3) Accuracy Degradation Analysis
To judge the accuracy degradation brought by complexity
reduction methods, the errors between the statistic properties
of the non-stationary IMT-A MIMO channel model and that
of the simplified non-stationary model are evaluated. Simula-
tions are carried out with the parameter set of Table 3. Carrier
frequency, speed of MS, and threshold of the correlation
coefficient are selected according to the measurement setup
in [1] and are listed as follows: fc = 930 MHz, v = 90 m/s,
and cthresh = 0.8.

The measure of the errors between the spatial CCF of the
non-stationary IMT-A MIMO channel model and that of the
simplified model is the mean-square error (MSE) defined by
[41], which can be express as (59)

ECCF,n (t)=
1

du,max

1

ds,max

∫ du,max

0

∫ ds,max

0

[ρs1,u1
s2,u2,n (t, du, ds)−ρ̃s1,u1

s2,u2,n (t, du, ds)]
2
d (du) d (ds).

(59)

Here, du,max and ds,max denote the appropriate distances
over which the CCF is of interest at the receiver and trans-
mitter side, respectively. Here, ρs1,u1

s2,u2 (t, du, ds) is the spatial
CCF of the n-th cluster in the non-stationary IMT-A MIMO
channel model, and ρ̃s1,u1

s2,u2 (t, du, ds) is the approximate CCF
of the n-th cluster in the simplified model. du and ds are the
antenna element spacings at the BS and MS, respectively.

If only the spatial CCF at the MS side is taken into account,
the MSE can be rewritten as

ECCF,n (t)

=
1

du,max

∫ du,max

0

[ρu1
u2,n (t, du)− ρ̃u1

u2,n (t, du)]
2
d (du).

(60)

In our following analysis, du,max = 10λ.

TABLE 5. Accuracy degradation and complexity reduction of the proposed
non-stationary IMT-A MIMO channel model by fixing different channel
parameters.

Fixed
parameters

Complexity
reduction

MSE
for CCF
(t=1s)

MSE
for ACF
(t=1s)

MSE for
CCDF of
stationary
interval

Cluster number 0.04% None 6e-07 None
Delay and powers 0.95% None None 0.0003
AoDs and AoAs 67% 0.0002 0.0735 0.0124

Similarly, the measure of the error between the exact ACF
and the ACF of the simplified non-stationary IMT-A MIMO
channel model is the MSE defined by

EACF,n (t) =
1

∆tmax

∫ ∆tmax

0

[rn (t,∆t)− r̃n (t,∆t)]
2
d (∆t)

(61)
where ∆tmax denotes an appropriate time interval [0,∆tmax]
over which the ACF is of interest. In our following analysis,
the value ∆tmax = 0.1 s turns out to be suitable. In (61),
rn(t,∆t) is the ACF of the n-th cluster in the non-stationary
IMT-A MIMO channel model, while r̃n (t,∆t) is the ACF in
the simplified non-stationary model.

Table 5 lists the MSEs of ACF and CCF (n = 1) with
different fixed channel parameters. With regard to the speed
of MS and mobile scatterers, the appearance and disappear-
ance of the clusters do not happen very frequently in the
environments. Generally, the survival time of the cluster is
longer than the stationary interval, so neglecting the B-D pro-
cess will only introduce very small errors to the considered
statistical properties. Although fixing the angular parameters
can reduce about 2/3 of the complexity, it will also bring large
errors to the statistical properties.

Fig. 4 illustrates the empirical complementary cumulative
distribution functions (CCDFs) of stationary intervals for the
measured HST channel data and the original WSS IMT-A
MIMO channel model. The measurement data reported in [1]
are used for comparison. The results of the non-stationary
IMT-A MIMO channel model with all time-variant param-
eters, only time-variant delays and powers, and only time-
variant angular parameters are also shown. It can be observed
that our non-stationary IMT-A MIMO channel model can
provide better agreement with the measured data than the o-
riginal WSS IMT-A MIMO channel model. Fig. 4 shows that
the time-variant angular parameters have a greater impact
on the stationary intervals compared with the time-variant
delays and powers. It means that fixing angular parameters
would result in larger stationary intervals than fixing delays
and powers. The MSEs between different CCDF curves are
also listed in Table 5.

Based on the numerical results, fixing the number, delays,
and powers of the clusters can only reduce less than 1% of the
ROs while bringing small errors to the statistical properties.
At the same time, fixing angular parameters will severely
degrade the accuracy of the non-stationary IMT-A channel
model while reducing 67% of the complexity. Thus, one
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FIGURE 5. Complexity increase of the non-stationary IMT-A MIMO channel
model with different update intervals compared with the original WSS IMT-A
MIMO channel model.

nel model. In general, the sampling interval is determined
by the wavelength, the mobile speed, and the oversampling
factor (number of time samples per half wavelength). As
mentioned in Section IV, the sampling interval tsample = 1 ms.

The update interval tupdate is defined as the time interval for
updating the time-variant parameters:

tupdate = Qtsample (62)

which means that the time-variant channel parameters are
updated every Q time samples. The channel parameters keep
time-invariant within the update interval, and only the third
row of (23) needs to be regenerated. Thus, the complexity for
generating non-stationary channel coefficients are reduced to

CNonSta (Q) = Cinitial +

⌊
T − 1

Q

⌋
CNonSta_t

+

(
T − 1−

⌊
T − 1

Q

⌋)
CWSS_t. (63)

Through increasing the update intervals, the complexity
of the non-stationary IMT-A MIMO channel model can be
effectively reduced. Fig. 5 compares the complexities of the
non-stationary IMT-A MIMO channel models with different
tupdate values with that of the original WSS IMT-A MIMO
channel model. The computational complexity increase is
defined as

CompInc(tupdate) =
CNonSta (tupdate)− CWSS

CWSS
× 100%. (64)

For comparison, channel coefficients with 10000 sets of
2×2 channel matrices are generated, i.e., T = 10000. It is
shown that if all the parameters are updated for each time
sample, then the RO number of the non-stationary IMT-A
MIMO channel model increases 211.16% compared with
that of the original WSS IMT-A MIMO channel model as
shown in Table 4. In Fig. 5, the complexity of the non-
stationary IMT-A MIMO channel model increases 21.1%
when tupdate = 10tsample. When tupdate → ∞, the non-
stationary IMT-A MIMO channel model will degrade to the

FIGURE 4. The empirical CCDFs of stationary intervals for the original WSS 
IMT-A MIMO channel model and the proposed non-stationary IMT-A MIMO 
channel model with all time-variant parameters, only time-variant delays and 
powers, and only time-variant angular parameters.

should be very cautious to set the angular parameters time-
invariant in the non-stationary IMT-A MIMO channel model. 
It is recommended that the selection of fixing parameters 
should be determined by the considered environment. For ex-
ample, if the scatterers near the BS are static, then the AoDs 
of the clusters can be viewed as time-invariant. Moreover, 
the B-D process can be neglected if the environment changes 
slowly.

For comparison, the scheme proposed in [28] was also an-
alyzed. In [28], the large-scale fading parameters are uncorre-
lated and fixed, which can reduce 501 ROs for generating the 
initial sample in comparison to our scheme. Besides, in [28], 
the cluster number and the delays are fixed which can reduce 
846 ROs in comparison to our scheme that needs to generate 
time-variant parameters for each sample. As illustrated in 
Table 4, in total, 87498 ROs are required to update time-
variant parameters and generate channel coefficients matrix 
per time sample for the non-stationary IMT-A MIMO model. 
Thus, only about 0.96% (846/87498) of ROs for each sample 
can be reduced with the scheme proposed in [28].

B. REDUCING THE UPDATE RATES OF TIME-VARIANT 
PARAMETERS
The previous analyses assume that the channel parameter-
s need to be updated for every time sample in the non-
stationary IMT-A MIMO channel model. However, as men-
tioned above, in realistic propagation environments the chan-
nel parameters satisfy the WSS condition over the stationary 
interval, which means that it is not necessary to update those 
parameters for each time sample. From Fig. 4, the measured 
stationary intervals are longer than 10 ms for 80% cases [1]. 
The update rate of channel parameters can be reduced in 
order to lower the computational complexity.

1) Complexity Reduction Analysis
Assume tsample is the sampling interval between two consecu-
tive time samples in the non-stationary IMT-A MIMO chan-
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TABLE 6. MSEs of statistic properties for the non-stationary IMT-A MIMO
channel model with different update intervals.

Update interval (ms) MSEs of CCFs (×10−6) MSEs of ACFs (×10−6)
1 0 0

10 0.21 3.89
20 0.82 10.38
50 4.89 12.74
100 18.50 15.48

original WSS IMT-A MIMO channel model, i.e., all the
channel parameters are time-invariant.

2) Accuracy degradation analysis
Reducing the update rate of time-variant parameters may
affect the accuracy of the non-stationary IMT-A MIMO
channel model. In Table 6, the MSEs of the spatial CCFs
and temporal ACFs with different update intervals are listed.
With increasing update intervals, it can be observed that the
MSEs of channel statistical properties will also increase. If
the update interval is chosen as 10 ms, the MSEs of the
statistical properties are quite small. In this case, the com-
putational complexity of the non-stationary IMT-A MIMO
channel model only increases 21.1% compared with that of
the original WSS IMT-A MIMO channel model. If we choose
50 ms as the update interval, the MSEs of spatial CCFs
and temporal ACFs are larger but the RO number of the
non-stationary IMT-A MIMO channel model only increases
4.2% compared with that of the original WSS IMT-A MIMO
channel model.

Compared to the way of fixing the channel parameters,
this method, i.e., reducing the update rates of time-variant
parameters can efficiently reduce the complexity without
losing much model accuracy. It should be noted that, when
the update interval is too large, the MSEs of CCFs and ACFs
will increase quickly. Thus, the update interval should be
decided according to the stationary interval, and the tradeoff
between the modeling complexity and accuracy requirements
should be taken into account.

C. SIMPLIFICATION PROCEDURE FOR THE
NON-STATIONARY IMT-A MIMO CHANNEL MODEL
The simplification procedure for the non-stationary IMT-A
MIMO channel model can be carried out as follows.

(1) Choose the time-variant channel parameter set accord-
ing to the simulation requirements.

(2) Extract the stationary interval values in a specified
scenario from simulated or measured results.

(3) Determine the update interval of the time-variant chan-
nel parameters according to the stationary interval values.

(4) Compute the complexity of the simplified non-
stationary IMT-A MIMO channel model and check if it
satisfies the complexity requirement.

(5) Compute the channel statistical properties and check
the accuracy requirement.

(6) Update the time-variant parameters according to the

update interval and generate non-stationary channel coeffi-
cients for different time instances.

VI. CONCLUSIONS
In this paper, we have analyzed the complexities of the
original WSS and the non-stationary IMT-A MIMO channel
models in terms of the RO number and simulation time. The
non-stationary IMT-A MIMO channel model can mimic the
channel characteristics better in high-mobility scenarios, but
at the cost of an extra computational complexity. Simulation
results have demonstrated that the complexity of the non-
stationary IMT-A MIMO channel model increases linearly
with the increase of the numbers of generated time samples
and antenna pairs, and is several times of that of the original
WSS IMT-A MIMO channel model. To further improve
the efficiency of the non-stationary IMT-A MIMO channel
model, two complexity reduction methods have been pro-
posed. The first method is to keep some channel parameters
time-invariant when generating non-stationary channel coef-
ficients. The accuracy degradation and complexity reduction
of fixing different time-variant channel parameters have been
compared. The second method is to increase the update inter-
val of time-variant parameters. The update interval should be
carefully chosen according to the stationary interval to ensure
small errors of the produced channel statistical properties.
Finally, the simplification procedure for the non-stationary
IMT-A MIMO channel model has been provided.
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