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Abstract— The global population is aging; projections show that 
by 2050, over 20% of the population will be aged over 64. This will 
lead to an increase in aging related illness, a decrease in informal 
support, and ultimately issues with providing care for these 
individuals. Assistive Smart Homes provide a promising solution 
to some of these issues. Nevertheless, they currently have issues 
hindering their adoption. To help address some of these issues, this 
study introduces a novel approach to implementing assistive 
Smart Homes. The devised approach is based upon an Intention 
Recognition mechanism incorporated into an intelligent agent 
architecture. This approach is detailed and evaluated. Evaluation 
was performed across three scenarios. Scenario 1 involved a web 
interface, focusing on testing the Intention Recognition 
mechanism. Scenarios 2 and 3 involved retrofitting a home with 
sensors and providing assistance with activities over a period of 3 
months. The average accuracy for these three scenarios was 100%, 
64.4%, and 83.3%, respectively. Future will extend and further 
evaluate this approach by implementing advanced sensor-filtering 
rules and evaluating more complex activities. 

 
Index Terms— Intention Recognition, Ambient Assisted Living, 

Smart Homes, Intelligent Agents, Goal Recognition, Activity 
Recognition 

I. INTRODUCTION 

he worldwide population is ageing and is resulting in an 
uneven demographic composition [1], [2]. This is expected 
to reach a situation where by 2050 over 20% of the 

population will be aged over 64 [1], [2]. This growth in the 
aging population is expected to produce an increase in age-
related illness which, in turn, will place additional burdens on 
healthcare provision [2]. In addition, the amount of informal 
support available will decrease due to a reduction in the global 
Potential Support Ratio (PSR). The PSR is the ratio of people 
that comprise the working age (15–64) to those older than 64 
[1]. The PSR is expected to continue on a downward trend 
reaching a low of 4:1 by 2050. The PSR was previously 12:1 in 
1950 and more recently 9:1 in 2009 [1]. 

 Ambient Assisted Living (AAL) has been widely viewed as 
a promising approach to address some of the problems 
associated with supporting the ageing population [3], [4]. 

Within the context of AAL, technology-based solutions are 
used to support independent living and subsequently alleviate a 
portion of the problems associated with ageing. Such an 
approach offers the potential of enhancing the quality of life of 
older people. The notion of Smart Homes (SH), namely 
residential environments augmented with sensor technology 
and assistive services have emerged as a dominant realization 
of the AAL approach. 

Typically, SHs operate in a ‘bottom-up’ process, as presented 
in Fig. 1. In this paradigm, sensors monitor an inhabitant’s 
activities/environment. Data from these sensors are collected 
and processed to identify Activities of Daily Living (ADL), 
such as washing or preparing a meal. By monitoring ADLs in 
this manner, it is possible to detect difficulties in task 
completion subsequently allowing assistance to be offered 
through the SH services [3]–[6]. As such, SHs allow older 
people to live longer independently, with a better quality of life, 
in their own homes. 
 

 
 

Fig. 1.  An illustration of the ‘bottom-up’ process used to realize smart homes. 
 

The bottom-up approach, although functional, has issues that 
stem from its sensor centric nature. This study incorporates a 
novel approach to realizing a SH platform that addresses the 
specific issues of privacy, reusability, scalability and 
applicability. This novel approach is achieved through a 
paradigm shift incorporating Intention Recognition (IR) in 
conjunction with an Intelligent Agent architecture.  

The remainder of this article is organized as follows. Section 
II presents related studies; Section III presents the overall 
architecture of this Intelligent Agent-based SH and details the 
novel IR approach core to realizing this study. Section IV 
describes testing and evaluation experiments, and discusses the 
performance of this approach. Section V elaborates future 
research, followed by Conclusions in Section VI. 

II. RELATED STUDIES 

The related studies for this research broadly fall into three 
categories: SHs enabling AAL, Intelligent Agent architectures, 
and IR techniques.  

From Activity Recognition to Intention 
Recognition for Assisted Living within Smart 

Homes  
J. Rafferty, IEEE Member, C. Nugent, IEEE Member, J. Liu, IEEE Member, and L. Chen, IEEE 

Member 

T 

This article was submitted for review on the 27th December 2015. This 
study was supported in part by the Northern Ireland Department of 
Education and Learning through its PhD scholarship programme.  

J. Rafferty, C. Nugent, and J. Liu are with the School of Computing 
and Mathematics, Ulster University, Jordanstown, Newtownabbey, UK, 
BT37 0QB (e-mail: j.rafferty@ulster.ac.uk, cd.nugent@ulster.ac.uk, 
j.liu@ulster.ac.uk). 

L. Chen is with the School of Computer Science and Informatics, De 
Montfort University, The Gateway, Leicester, LE1 9BH, (e-mail: 
liming.chen@dmu.ac.uk) 



THMS-15-12-0557 2 

A. Smart Homes enabling Ambient Assisted Living 

A wide range of works exist related to Smart Home-enabled 
AAL, which span many specific approaches and design goals. 
At the core of these systems is sensor-based activity recognition 
to provide assistance with, or monitoring of, Activities of Daily 
Living (ADLs).  

A.1 Activity Recognition Approaches Within Smart Homes 

Broadly speaking, there are two main approaches to activity 
recognition in current SH work, namely data driven and 
knowledge driven.  

Data driven approaches use statistical and probabilistic 
methods to learn activity models from datasets. In these 
approaches, datasets are a collection of sensor activations 
generated from a SH. These datasets are then used to train 
activity models that map the relationship between events and 
activities. The learnt activity models are then used to perform 
future recognition of the events recorded within the SH. The 
learning mechanisms are usually based on two types of data 
mining and machine learning methods, namely, generative and 
discriminative depending on the modeling strategy employed. 

Generative approaches, such as those used in [7]–[11], 
attempt to produce a description of occurrences in a dataset by 
fully mapping the relationship of sensor events and activities. 
These mappings identify the most likely activities that would 
occur given a set of observations. This classification of 
observations from a dataset is achieved using probabilistic 
classification techniques such as Hidden Markov Models or 
naïve Bayes classifiers. Generative approaches suffer from the 
requirement of having a sufficient amount of data being 
available to produce the complete set of probabilistic 
representations to provide good functionality. Discriminative 
approaches, such as those used in [12]–[16], can produce results 
using a less exhaustive dataset compared to generative 
approaches. These approaches focus on matching input states 
(sensor data) to activity labels (classification). This approach 
may use techniques such as Artificial Neural Networks. 

The general advantages of data driven approaches are that 
they allow the modeling of uncertainty and temporal 
parameters. Their disadvantages include the need to have a 
suitably large dataset to learn from. Additionally, the reusability 
of these activity models is limited to the environment and 
scenarios that have produced the dataset.  

Knowledge-driven approaches to activity recognition use 
domain knowledge and a priori heuristics as the basis to create 
activity models. Domain knowledge is an intuitive record, 
learned though human experience and does not require a large 
number of formally recorded sensor and activity records from 
which to generate activity models. Knowledge driven 
approaches are generally logical or ontological in nature.  

Logical based approaches, such as those in [17], [18], encode 
representations of ADLs into logical structures using 
knowledge representation formalisms. These logical structures 
are combined with knowledge-based inference to support 
activity recognition. Across the various logical approaches, the 
knowledge formalisms used for activity modeling and 
recognition may vary. The overall process is common and is 
described as follows. Domain knowledge is gathered to define 
activities and their performance. Approaches and formalisms 
based on knowledge modeling are subsequently used to create 

logical representations of the activities, for example, encoding 
plans into a lattice structure [18]. Reasoning mechanisms are 
applied to map changes in state with the aim of determining 
what, if any, activities are occurring. Sensor and activity 
ontologies have been used in [19]–[24] as the basis for 
knowledge-driven activity recognition and AAL applications.  

Ontological modeling [25] allows explicit representation of 
a domain concept. This is achieved by structuring elements into 
a hierarchy of concepts and classes. These classes and concepts 
can have properties, relationships, and restrictions. The 
flexibility of ontologies has been leveraged to allow greater 
reuse of activity representations [19]. This implementation 
overcomes the flexibility issues that traditional logical 
approaches have encountered from their use of rigid activity 
representations. In this approach, common activity 
representations are used to provide generic representation of 
ADLs. When modeling the performance of an activity by an 
inhabitant, a relevant common representation is used to produce 
a personalized representation of a specific ADL. 

Logic-based approaches do not require a dataset to provide 
training for the activity recognition mechanisms. This frees 
them from exclusive use with the environment and scenario that 
produced the dataset [3]–[5], [19], [26]. Additionally, these 
approaches have clear operation as the mechanisms of activity 
recognition and encodings of ADL sets are explicitly defined. 
These approaches have some negative aspects, namely, 
difficulty in representing uncertainty and the relatively rigid 
representations of ADL sets providing limited personalization. 

Ontological approaches add to the benefits of logical 
approaches through the addition of flexible models and 
allowing greater reusability inherent to ontological structures. 
Disadvantages include weakness in handling uncertainty and 
modeling, as with other current logical approaches. A plethora 
of studies relating to activity recognition and SHs currently 
exists with existing literature reviews [3]–[6], [27] providing 
further coverage of a large number of these studies. 

A.2 Problems Faced by Activity Recognition in Smart Homes 

In summary, current approaches to activity recognition in SHs 
have a number of issues, which are: 

1) inhabitant privacy is potentially violated by recording 
activities that are then used as the basis for providing 
assistive services [3]–[6].  

2) activity models may be expressed through complex 
languages, requiring specialist knowledge beyond those 
related to the activities to be modeled. 

3) to perform efficiently, SHs require a large number of 
sensors in the environment, which is not feasible for 
widespread use because of scalability issues related to 
retrofitting a large number of homes with an appropriate 
suite of sensors. This retrofitting process presents a 
substantial financial cost in addition to disturbance to 
inhabitants within their own homes. These sensor 
installations also require maintenance representing a 
potential further cost and disturbance [3]–[6].  

4) current SHs using data driven or logical driven 
approaches cannot handle variation in activity 
performance in a satisfactory manner [3]–[6].  
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5) reusability of some of these bottom-up SHs can be 
reduced as they rely on a record of events that occur only 
within their environment [3]–[6]. 
 

To address these issues, a move from a sensor centric approach 
to a ‘top-down’ goal-driven approach has been proposed [28]. 
This offers a solution that can offer additional flexibility while 
simultaneously requiring fewer sensors.  

In a goal-driven approach, an inhabitant’s goals are the focus 
of the assistive system. This is in contrast to the processing of 
dense sensor recordings. By combining a goal/IR system with 
an action planning mechanism, an assistive Intelligent Agent-
based system can be produced. This goal-driven approach will 
allow flexible and proactive assessment of an intended 
inhabitant goal, thus facilitating assistance provision. This 
assistance will be in the form of dynamically generated, video-
based instruction.  

Previous studies have been published covering the dynamic 
generation of video-based instruction for inhabitant goals [29], 
[30] and is the overall approach devised in this study [28].  

B. Intelligent Agent Architectures 

Intelligent Agents are software entities that model the 
environment within which they are situated and affect changes 
within it to achieve a state they desire [31], [32]. Intelligent 
Agents can be realized in many different ways, as dictated by 
the properties of agency that they wish to possess, such as: 

1) autonomy – operation without intervention. 
2) social capability - coexistence and collaboration with 

other Intelligent Agents and/or humans. 
3) reactivity – an Intelligent Agent can react to changes 

in its world model. 
4) proactiveness – Intelligent Agents can act toward 

achieving goals that they hold and not simply 
respond to changes in their environment. 
 

Realization of an Intelligent Agent is directly related to how 
these key properties are incorporated, knowledge is 
represented, and reasoning is performed [31], [33], [34].  

One of the most prevalent Intelligent Agent implementation 
methods is that of Beliefs, Desires and Intentions (BDI) [32]. 
BDI is based on modeling Beliefs, Desires, and Intentions from 
an abstraction of human cognition [35]. In the BDI model, 
Beliefs represent the states of the world, as an agent perceives 
it (corresponding to knowledge). Desires provide some 
motivation for an agent's action (corresponding to potential 
goals). Finally, Intentions are desires that an agent has 
committed to achieving through performance of related actions 
(corresponding to a plan). BDI is a concept that has been 
realized through many different architectural implementations, 
which vary depending on the aim of the designer of the 
Intelligent Agent [31], [34], [36]–[39]. 

Contemporary use of Intelligent Agents within a SH operate 
in an agent-centric manner, wherein an agent models and works 
toward their own goals, such as climate control. These goals 
are, in essence, a flexible form of activity model employed by 
these Intelligent Agents.  

Much like inhabitants of a SH, Intelligent Agents work 
toward their goals by perceiving their environment, reasoning, 
and then acting. Similarly, combined with how BDI is based on 
human cognition models [31], [36],  BDI Intelligent Agents 

may be used to model and represent the goals and requirements 
of inhabitants. Specifically, the operation and properties of an 
Intelligent Agent can correspond to behavioral and cognitive 
elements of a SH inhabitant.  

Beliefs are analogous to the understanding that an inhabitant 
has about their environment, such as active appliances in a 
kitchen. Desires are akin to the goals that an inhabitant would 
have, such as making a drink. Finally, Intentions are similar to 
the actions that an inhabitant would perform to achieve desires, 
such as reaching for a cup. BDI agents can provide an assistive 
function within a SH by modeling inhabitant goals in the 
context of beliefs about the smart environment and realizing 
intentions through inhabitant guidance. Such an approach 
would use Intelligent Agents in a novel manner, introducing an 
element of goal surrogacy to providing assistance with ADLs 
[3]–[5], [27], [40]–[42] and would provide the following 
advantages over current approaches: 

1) flexibly modeling inhabitant activity through 
inhabitant goal models, addressing inflexible activity 
models. 

2) providing reusable, extensible, and sharable inhabitant 
goal models by using semantic web technologies, and 
addressing some issues with scalability. 

3) performing activity recognition functions through 
intended goal recognition utilizing a reduced set of 
sensors, addressing both the need for expensive sensor 
suites and some scalability problems. 

4) providing dynamic assistance in the form of prompting 
through agent-based planning from actions in 
inhabitant goals. 

5) identifying and assisting multiple inhabitants through 
assignment of an agent per inhabitant, addressing 
multiple occupants and some scalability issues. 
 

Core to realization of such an approach would be a process of 
recognizing the intention of a SH inhabitant. An overview of 
current IR techniques is presented in Section C, with a focus 
placed on those used in AAL/SHs. 

C. Intention Recognition Techniques 

Intention Recognition involves predicting the most likely 
intended goal/action of persons, entity, or agent. This is 
achieved by observing their actions and reasoning about them. 
These observations are considered by a predictive reasoning 
system in conjunction with a library of relevant goals [43], [44]. 

Three classes of IR operation have been identified [43]–[45], 
these are intended, keyhole, and adversarial.  

Intended IR is where an observed entity is aware of this 
observation and openly provides signals to allow other entities 
to ascertain their intention. An example of intended IR is 
communicating instructions to make a phone call to a contact 
through to a personal digital assistant on a smartphone. This 
will provide full observability into actions.  

Keyhole IR is where an entity is being observed and does not 
openly or knowingly intend for their actions to be observed. An 
example of this is an inhabitant’s day to day activities, which 
are being observed by an assistive agent.  

Adversarial IR is where an entity does not wish for their 
intentions to be known, and act in a misleading or actively 
concealed manner. An example of this is a malicious actor 
engaging in criminal acts. 
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To realize IR systems, three components are typically 
combined, these are: 

1) a library of goals that may be achieved and recognized. 
2) a record of observed actions, as performed by the 

target of the IR mechanism. 
3) knowledge about goal achievement through actions, 

typically incorporating a theory of action. 
 

Currently, IR techniques are used in a number of domains, 
including anti-terrorism, cyber-security, and military planning, 
in addition to limited use in SHs and AAL [46], [47]. The small 
amount of research into IR for SHs and AAL have limited 
utility. Limitations stem from the activity models used and their 
design goals. Specifically, these studies do not model inhabitant 
goals in a manner that can provide assistance appropriately, rely 
on goal models with limited reusability, or are theoretical in 
nature [46], [48], [49], [50], [51].   

Computational State Space Models (CSSM) represent a 
promising method for IR in the context of AAL [51], [52]. 
These studies have shown promise, however, have a number of 
detractors related to scalability. Specifically, modeling 
activities are an intensive process, and the authors state it could 
take one week to model a specific task. Additionally, through 
using computational action languages, expertise outside of the 
area of domain knowledge is likely required, specifically with 
a computer science background.  

Agent-based IR within the domain of AAL would require a 
goal model incorporating both declarative and procedural 
aspects. Declarative aspects are essentially metadata about a 
goal that an inhabitant is pursing; this allows deliberation about 
the pursuit of inhabitant goals. Procedural aspects are stepwise 
instructions detailing how inhabitant goals may be achieved. 

Such a novel goal model has been produced by the authors in 
previous studies [28]. This goal model is the core of the novel 
IR approach developed for use within this agent-based system. 
Both the novel IR system and agent-based system are detailed 
in Section III, followed by an evaluation in Section IV. 

III. THE AGENT-BASED APPROACH TO INTENTION 

RECOGNITION 

In the devised agent-based system, the BDI paradigm has been 
adopted. Specifically, beliefs represent the agent’s perception 
of the world, desires are represented by a library of inhabitant 
goals, and intentions are goals an inhabitant is pursuing as 
detected through an IR system. Beliefs and desires are modeled 
through the use of ontologies, allowing greater reusability of 
these models over traditional approaches; in addition, this 
allows these concepts to be linked through the semantic web. 
Further details of this approach are presented in the following 
Sections. 

A. Desires 

In this goal-driven agent, ADLs, and constituent tasks of 
ADLs, are represented by a library of goals. These goals consist 
of atomic actions, activation conditions, and metadata. Atomic 
actions are the steps required to achieve specific goals/tasks. 
Activation conditions are states repressing specific triggers for 
particular goal conditions. Goals may be in a number of states 
which are suspended, eligible, and in need of assistance. 
Metadata assists with modeling of goals in a human-friendly 

form and enables production of goals with component subgoals. 
These goals and actions support preconditions to provide an 
indication of the order that such actions need to be completed 
in, or any dependent actions. Fig. 2 shows the ontological goal 
model to be used in this approach, which is presented as a 
hierarchy of concepts, and is detailed further in Table I. 

 

  
 

Fig. 2.  The classes, object properties and data properties of the goal ontology 
presented as a hierarchy of concepts.  
 

 
Additionally, goals can both have subgoals and be subgoals by 
use of the inheritsGoal property. As such, in contrast with 
ADLs, goals may represent small tasks that are achieved and 
contribute to a goal, which is an ADL. This allows a hierarchy 
of goals to form from a number of reusable modeled goals, 
which may contain actions, as presented in Fig. 3.   

The hierarchy presented in Fig. 3 presents the flexibility of 
this goal model. In this instance, 13 atomic actions are used to 
flexibly model 16 potential user goals. These specific goals are 
shown in Table II.  

TABLE I 
THE PROPERTIES OF THE BASE GOAL ONTOLOGY.  

Property Description 

Name 
A name for the GoalProfile, ActionPlan or 
AtomicAction 

Description 
A description of the GoalProfile, ActionPlan or 
AtomicAction  

OperationalState 
The current state of the goal. Typically, this will be 
an enumeration of 1 of 4 eligible states; {“Inactive” 
| “Active” | “Assist” | “Suspended”}. 

SuspsendCondition 
This represents conditions where a goal is 
considered to be suspended, such as 
{notIntendedGoal : true} 

AssistCondition 
This represents a condition where a goal is in need 
of assistance, such as {thresholdLastAction:500} 

Precondition 
Optional. Needed for an AtomicAction or goal to 
become optional, such as {goalCompleted : 
anotherGoal} 

PreviousEventTimestam
p 

Time stamp of a previous goal action as represented 
by Unix time, such as 511582480 

AchievementCondition 

This condition under which a goal is considered to 
be achieved. All the actions to complete the goal 
have been performed, such as 
{completeActionCount : 3} 

Effect 
Optional. An effect to be expressed when this action 
is complete.  {assertGoal: anotherGoal} 

Action status 
A Boolean flag showing if this action has been 
completed or not, True or False.  

IsKeyAction A Boolean flag to indicate if this is a key action. 
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Fig. 3.  An example of a goal hierarchy modeled through goal inheritance. Key 
atomic actions are shaded. 
 

 

 
 

B. Beliefs 

In this goal-driven agent, beliefs are a record of sensor 
activations. These sensor activations are in turn a representation 
of actions being performed by an inhabitant.  

These sensors are modeled in a belief ontology, which 
additionally models the association with the atomic actions they 
represent. The structure for this belief ontology is shown in Fig. 
4. 

 

 
 

Fig. 4.  The classes, object properties and data properties of the belief ontology. 
 

In this belief ontology, sensors are given profiles that record 
relevant metadata including those associated to atomic actions 
via the AssociatedAtomicActionName data property. These 
AssoiciatedAtomicActionName properties are linked to the 
goal ontology via SPARQL Protocol and RDF Query 
Language (SPARQL) rules.  SPARQL rules can be used to 
query linked semantic data across modeled concepts.  These 
SPARQL rules are shown in (1), below. 
 

1) 

 

Additionally, activation rules are specified to indicate when 
an atomic action has been pursued. Signals from the 
environment are processed and tested against parameters within 
activation rules. If such an activation rule is encountered, the 
ActivationTimestamp of this sensor’s profile is updated to 
reflect the current time, tn.  

When sending signals from the environment, a Belief-rule 
Override Signal (BOS) may be specified as the value for a 
sensor parameter. The BOS is a cryptographic nonce that, when 
present, causes immediate activation of rule elements. If all of 
the sensor data parameters that are involved with the activation 

TABLE II 
AN EXAMPLE OF COMBINING GOALS WITH AND WITHOUT ATOMIC ACTIONS, 

PRODUCING THE HIERARCHY SHOWN IN FIGURE 3.  

Goal name Atomic actions Inherited Goals 
SweetWhiteInstant 

CoffeeDrink 
 

AddSugarToCup 
WhiteInstantCoffeeDrink

WhiteInstantCoffeeDrink  BlackInstantCoffeeDrink
SweetBlackInstantCoffee

Drink 
 AddMilkToCup 

BlackInstantCoffeeDrink  AddSugarToCup 
SweetWhiteTeaDrink  BlackInstantCoffeeDrink

WhiteTeaDrink  MakeHotBeverage 
SweetBlackTeaDrink  PlaceInstantCoffeeInCup

BlackTeaDrink  AddSugarToCup 
MilkDrink  WhiteTeaDrink 

AddSugarToCup 
AA12 - 

ObtainSugarVessel 
BlackTeaDrink 

AddMilkToCup 
AA13 - 

AccessContentsOfSugar
Vessel 

AddMilkToCup 

MakeHotBeverage 
AA11 - 

ObtainMilkVessel 
AddSugarToCup 

PlaceInstantCoffeeInCup AA10 – PourMilk BlackTeaDrink 
PlaceTeabagInCup AA5 - PourBoiledWater MakeHotBeverage 

GetCup 
AA8 - 

ObtainCoffeeVessel 
PlaceTeabagInCup 

 
AA9 - 

AccessContentsOfCoffee
Vessel 

GetCup 

BoilWater 
AA6 - 

ObtainTeabagVessel 
 

SweetWhiteInstant 
CoffeeDrink 

AA7 – 
AccessContentsOf 

TeabagVessel 
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rule contain this BOS, then the rule will be ignored and the 
activation timestamp of the sensor will be immediately updated.  

Activation rules and the ability to associate sensors with 
atomic actions increase the variety of sensors that may be 
placed within a home and incorporated into this approach. 
These sensors would generate signals that are sent to the SH 
agent and tested against activation rules to indicate performance 
of an atomic action. The properties of this ontology are 
presented in Table III. 
  

 

C. Intentions 

In this goal-driven agent, we need to detect an inhabitant’s 
intention toward goals.  In order to model this, goal-activation 
states are considered. These activation states represent the 
inhabitant’s attitude to these goals. These activation states are: 

1) option – any goal that is present in the goal 
ontology/agent desires. This is the default state for 
inhabitant goals. 

2) active – a goal that an IR mechanism has determined is 
being pursued. There is only one active goal at one time. 

3) suspended – a previously active goal that has been 
suspended. 

4) assist – an active goal that has been encountered is assist 
condition. 
 

Goal operational states reflect an inhabitant’s attitude toward 
these goals as determined by the atomic actions that an 
inhabitant performs. As such, detection of an inhabitant’s 
performance of atomic actions is an essential element of 
recognizing an intended goal.  

The devised IR process leverages the previously described 
belief and goal ontologies, in order to assign goal activation 
states. Once assigned, these goal activation states are used as a 
basis to provide assistance and model the completion state of a 
goal.   

In this approach, goals are composed of direct atomic actions 
and, optionally, atomic actions that are inherited from subgoals. 
Thus, completion of these atomic actions and those inherited 
from subgoals can be used to indicate an inhabitant’s intended 
goal, when liveliness of the actions is considered. To help 
illustrate this, the progression of atomic actions relative to goal 
pursuit is presented in Fig. 5.  

 
 

 
 

Fig. 5.  The progression of atomic actions in relation to goals. 
 

Given the window of activities presented in Fig. 5, we can 
determine the likely intended goal for a given time point by 
considering how recently atomic actions and related actions 
from a goal have been started. For example, at tn-20, no atomic 
actions were performed; therefore, we cannot determine any 
intended goal. Nevertheless, at tn-19, pursuit of an atomic action 
has started, as determined by a rule in the sensor belief base; 
therefore, from tn-19 until tn-11, we can ascertain that the intended 
goal is PlaceTeabagInCup. At tn-10, another action is performed 
belonging to the AddSugarToCup goal. As this is the most 
recent/lively activity, we can assume that from tn-10 until tn-8 this 
will be the intended goal. Similarly, from tn-8 until tn-6, we can 
assume that PlaceTeaBagInCup is the intended goal and then 
from tn-6 onwards we can assume that the AddSugarToCup is an 
intended goal. In this window of activity, is it possible to 
determine the intended goal after atomic actions have been 
performed.  Additionally, when considering the goal hierarchy 
presented in Table II and Fig. 3, we can determine that the 
intended goals in Fig. 5 are subgoals of an overall goal; in this 
case, we can assume that an inhabitant is going to make some 
form of sweetened tea. 

There can, however, be overlap of the performance of atomic 
actions, which can produce a scenario where for a given time 
point, the intended goal is not as clear. An example of such an 
activity progression is presented in Fig. 6. 
 
 

 
 

Fig. 6.  The progression of overlapping atomic actions in relation to goals. 
 

In Fig. 6, sole consideration of tn-10 makes it unclear which 
goal an inhabitant intends to pursue as there are two atomic 
actions simultaneously being detected. When considering 
previously detected atomic actions and the number of actions 
required to complete a goal, it is, however, possible to 
determine an intended goal. For example, at point tn-10, the 
inhabitant intended to pursue the PlaceTeabagInCup goal, 
because, at tn-19, a related atomic action was performed.  

Using a combination of the time difference between tn and 
any previously started atomic actions, it is possible to judge the 
liveliness of tasks. Combining liveliness of goals with the 
current completion state of that goal in an activity window will, 
in turn, allow determination of which goal is most likely being 
pursued. To further increase the accuracy of IR, weighting can 
be applied to goals where atomic actions that have an 
IsKeyAction property set to true have been started. Finally, 
weighting can be applied to goals that have historically set a 
trend for that time of day. 

TABLE III 
THE PROPERTIES OF THE BELIEF-BASE ONTOLOGY.  

Property Description 
Sensor Properties 

SensorID A unique ID for the sensor 

SensorLabel A human-friendly label 

SensorLocation A label used to indicate the location of the sensor 

DateAdded The date that the sensor record was added 

AssociatedAtomic 
ActionName 

Used to link the sensor belief base/activation state to 
atomic actions in the goal ontology/Agent desires, 
such as GetCup. 

Parameter 
A sensor parameter that is observed, such as 
beaconRSSI  

Value The value for a specific parameter, such as -71  
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An IR method encompassing these concepts has been 
conceived, adopting the following approach. All goals that have 
been modeled are considered and ranked by calculating the 
Mean Goal Liveliness (MGL) of these goals; these rankings are 
placed in the set x. This ranking considers how recently 
associated atomic actions have been initiated, i Δ, for a given 
time point n	or the MGL value of subgoals, x, and the 
number of atomic actions and subgoals that are in each goal. 
Additionally, weighting is applied by adding 0.25 to k for 
goals that have at least one key action performed and 0.20 to 

h for goals that have historically been pursued in that time 
frame. Historical goal information was not recorded in this 
particular implementation, however, is present for future use. 
These weighting values were decided upon by iterative 
development and comparison of the performance of values 
ranging from 0.0 to 1.0, which incremented in 0.05 steps. For 
the test goal detection, this offered good detection performance 
with a low weighting value. These factors are used to calculate 
the MGL, as shown in the equation presented in (2).  

ீೣ ௫	
௞ ௛

௜ ௱
௞ ௛

௡

௜ୀଵ

௜ ௱ଵ ௜ ௱௜  

௫	
௞ ௛

௜
௞ ௛

௡

௜ୀଵ

ଵ ௜  

	

(2) 
 

 

Once the set GSx has been computed, the values within can 
be ranked with the aim of identifying an inhabitant’s intended 
goal, as indicated by the lowest MGL value within the 
restrictions set by the goal recognition rules. These rules cover 
goal adoption, performance and recognition. 

To model these goal recognition rules, Allen’s temporal 
logic, a highly developed theory of actions, was considered and 
incorporated in the devised IR approach. The relationships 
between intervals modeled in Allen’s temporal logic is shown 
in Table IV. 
 

 
 

This temporal logic is incorporated into the rules for goal 
pursuit, goal performance, subgoal relationships, performance 
of atomic actions, determination of goal activation states, and 

identification of the intended inhabitant goal. These rules are 
presented in Table V.  

 

IV. EVALUATION 

A. Experimental design 

To evaluate this approach to IR, an implementation was 
produced through an evaluation platform called INSigHt 

TABLE IV 
THE RELATIONSHIP BETWEEN INTERVALS AS MODELED IN ALLEN’S 

TEMPORAL LOGIC 

Relation Symbol/Inverse Symbol Pictorial example 
X before Y < / > xxx     yyy 

X equal Y 
= / 

 
xxx 
yyy 

X meets Y m / mi xxxyyy 

X overlaps Y o / oi xxx 
     yyy 

X during Y d / di 
xxx 

yyyyyyy 

X starts Y s / si 
xxx                 

    yyyyy 

X finishes Y f / fi 
    xxx 
yyyyy 

TABLE V 
THE RULES FOR GOAL PURSUIT, PERFORMANCE OF SUBGOALS, PERFORMANCE 

OF ATOMIC ACTIONS, DETERMINATION OF GOAL ACTIVATION STATES AND 

IDENTIFICATION OF THE INTENDED INHABITANT GOAL. 

Rule Inherited Goals 

A set of goals (Gx) that an inhabitant may pursue. 

Goals may have a range of associated properties, 
including the following. 
- Preconditions (PC) they must meet to be 

considered for pursuit. 
- Atomic Actions (A) that need to be 

performed to complete the goal tasks. 
- Mean Goal Liveliness values (MGL) as 

covered previously. 
- Assist Conditions (AC) to indicate if a goal is 

taking too long to pursue, and hence the 
inhabitant needs assistance. 

- Subgoals (SG) that are needed to complete 
the goal, 

Achievement Conditions (AchC) indicate the 
circumstance where a goal is achieved, 

x	 y

The performance of any goals/subgoals may 
overlap, meet or occur simultaneously. 

y	 x	

y	 x

y	 x	

x i	 y j

The performance of any atomic actions may 
overlap, meet or occur simultaneously. 

x i	 y j

x i	 y j

x i	 y 	j

x i	 y j	 x
Goals may be completed when all non-optional 
atomic actions are complete. 

௫

௫ ீೣ

 

Goals that have no preconditions are placed in the 
unrestricted goal set, ௫. 

௫

௫ ீೣ  

Goals, which have preconditions, which have been 
met, are placed in the preconditions–met goal set, 

௫. 
 

௫ ௫ ௫

௫     

The set containing the computed MGL values for 
goals, ௫, is reduced to restrict the candidate 
goals to those that have met their preconditions, 

௫, goals with no preconditions ௫ and 
excludes achieved goals (AchG). This forms the 
set ௫. This represents goals in the option state. 

௫

௫

஼ீௌೣ  

A suspended Goal set (SusG) consists of goals 
from the set CGS that have encountered their 
Suspend Condition (SusC). This represents a goal 
that is in the suspend state. 

஼ீௌೣ

௫  

The currently Intended Goal (IG) is one that has 
the lowest MGL in the set candidate goal set ௫ 
and is not in the SusG set. This represents the goal 
in the active state. 

ூீ  
An Assist Goal (AG) is a currently intended goal 
that has encountered its Assist Condition. 

AchG = ூீ  

An Achieved Goal is an IG, which has 
encountered its achievement condition. On 
achievement, the parameters that calculate the 
MGL values are reset to zero removing these goals 
from consideration. 
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(Intelligent ageNt Smart Home). This platform is a custom BDI 
agent architecture leveraging semantic web technologies 
through the ontological components previously outlined.   

INSigHt was implemented as a web service-based system, 
specifically using Java servlets hosted on Tomcat servers. 
These servlets hosted an implementation of the BDI agent 
architecture and IR mechanism, previously outlined. In this 
implementation, Virtuoso was used as the ontological database. 
Semantic reasoning on this ontological database was facilitated 
though JENA and Pellet. A relational database was used to log 
activity and store metadata.  

This architecture splits components into two classes, those 
based within the SH and those resigning on a server. These 
components communicate using REST and JSON.  

Beliefs about activities in the environment are generated from 
a simple set of sensors affixed to objects in a SH. These sensors 
may vary, however, in this instance, inexpensive Bluetooth 
Low Energy (BLE) beacons were used. In this particular 
instance, Estimote sticker beacons were selected. Beacons are 
affixed to objects that an inhabitant may interact with during 
performance of their goals. Beacons are monitored by an 
application running on an inhabitant smart device such as a 
smart phone or smartwatch in order to provide data about 
inhabitant-object proximity, temperature, and accelerometer 
information. The smart device relays this information to a web 
service, which in turn updates the assistive agent’s belief base 
ontology.  

Thermal and accelerometer information is broadcasted at 
10Hz. Inhabitant-object proximity information can be used to 
provide context. Context can be optionally leveraged by goal 
preconditions to reduce the search space for goals that an 
inhabitant is likely to pursue, increasing recognition accuracy.  

Additionally, a unique inhabitant ID and the push messaging 
ID for that device is sent to the belief endpoint. This device-
based push messaging addresses each user goal assistance. The 
belief ontology is a specific per inhabitant instance 
incorporating an inhabitant ID. These are extended from a 
common base belief ontology, extending goal and belief 
reusability. The push messaging ID and associated information 
is stored in a relational database alongside inhabitant IDs. This 
information is provided automatically on the first use of the 
application.  

 Finally, due to the separation of the belief base from activity 
models, other sensor types may be used to update this belief 
base by providing activation rules within the sensor ontology 
and a listener within the environment. During prototyping of 
this system, contact sensors were used in place of BLE beacons. 

Desires in this approach represent the goals that an inhabitant 
may perform. These are modeled from domain knowledge and 
are stored in goal ontology. Once goals are modeled, their 
atomic actions are linked to sensor activity by the 
AssociatedAtomicActionName property of the sensor class in 
the belief ontology. 

When desires are modeled and beliefs are observed, the IR 
rules, detailed earlier, can operate with this information to 
determine the classification of goals as achieved, assisted or 
intended. These goal-recognition rules are enacted through the 
SPARQL rules previously shown and a Java-based 
implementation of the formalism presented.  

These rules are used to process the beliefs of the agent on a 
500ms interval to classify goals and determine the need to offer 
assistance. This interval was chosen to provide a balance of 
response speed, resource consumption, and to provide greater 
scalability.  

The implementation of this platform is presented in Fig. 7. 
 
 

 
 

Fig. 7.  An illustration of the architecture of the implemented evaluation 
platform; to reduce complexity the web-based user interface components used 
to set sensor associations and goals are not shown. 
 

The recognition engine currently provides assistance by 
providing a list of steps required to achieve a goal and sending 
them to the inhabitant smart device via push messaging. Push 
messaging allows rapid updating of mobile clients in a manner 
that conserves battery on the mobile device. Once the smart 
device receives a message containing the list of steps, it alerts 
the inhabitant and presents the remaining steps required.  

B. Data collection and test procedure 

To collect data as an evaluation testbed for our approach, 
smart devices and devices and a web interface were used in 
three evaluation scenarios. These are:  

1) web-based simulation where sensor interactions were 
simulated through a Web user interface (UI). This allows 
evaluation of the IR component and agent without sensor 
errors becoming a factor. 

2) real-word simulation within a SH where a smart device 
was placed in a test user’s pocket. This allows evaluation 
of the system in the real world, with beacons being read 
from the pocket of inhabitants. The smart device was 
placed in a pocket nearest the dominant hand of the user. 

3) real-world simulation within a SH with the smart device 
affixed to the forearm of a test user. This simulates use 
of a smart watch to monitor user/environment 
interaction.  At the time of evaluation, no standalone 
smart watch could operate with the beacon sensors used 
in this evaluation and so their use was emulated. The 
mobile phone app and beacons are presented in Fig. 8. 
 
 

 
 

Fig. 8.  The mobile phone and beacons used in real-world simulation. 
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During this evaluation process, a ground truth record of 
activity performance was produced by manual annotation. This 
ground truth was primarily recorded by the inhabitant of the SH 
that was performing the activities. These manual annotations 
noted the time and date of the activity, the target activity, and 
the order of objects interacted with. 

During the evaluation process, six activities were performed. 
These were variations of making coffee and making tea. These 
activities were chosen as they share common subgoals and may 
represent variations of a task. As such, they would have the 
capability to confuse the IR mechanism and can highlight the 
scalability of this reusable model.  

A statistical power test was used to determine the number of 
samples required to produce a power of 0.90 within a margin of 
0.05, a Type I error rate of 5%, and a standard deviation of 0.10. 
This calculation showed that for results to express this statistical 
power, a minimum of 44 samples/iterations were required.  

These activities were used to evaluate performance through 
253 activity iterations. 120 iterations were performed in 
evaluation scenario 1 over two days. 85 iterations were 
performed in evaluation scenario 2 and 48 iterations were 
performed in evaluation scenario 3. The evaluation process in 
scenarios 2 and 3 involved natural activity performance within 
a test user’s real home across a period of three months.  

The Received Signal Strength Indication (RSSI) parameter 
was used to determine the distance between the sensor and the 
smart device. To facilitate a more flexible real world evaluation, 
the smart device sent the BOS in place of the RSSI sensor 
parameter, under certain circumstances. The use of the BOS 
allowed dynamic reconfiguration of the evaluation scenario by 
changing the activation profile to one relevant for each use case, 
scenario 2 or 3. If this override were not sent, the belief base 
would have to be modified frequently during testing to facilitate 
the particular scenario being evaluated.  

Specifically, the in-app activation profiles would send the 
BOS when their specific RSSI threshold was encountered. 
These threshold values used were -80 decibel-milliwatts (dBm) 
in scenario 1 and -96dBm in scenario 2. These values were 
selected through evaluation of the RSSI when objects affixed 
with beacons were being interacted with during test cases for 
these scenarios. Beacon accelerometer data is read from the 
beacons and sent to the backend, which are then processed 
against the activation rules to determine if activation occurred. 

During evaluation, activities were performed with intended 
goals being identified by the assistive agent. Intended goals 
were then abandoned at random intervals, emulating 
forgetfulness. These abandoned, intended goals where then 
eligible to reach their assist condition. Once this assist condition 
was encountered, the goal’s profile was sent to the Web UI and 
mobile device. This goal profile lists the goal name, actions that 
have been completed, and actions that need to be completed. 
This is the same goal profile format used by the assistance 
provisioning component of this project, which has been 
previously evaluated [29], [30].  

In this specific evaluation, historical records were not used, 
although accounted for within the MGL calculation. 

C. Results 

To determine if each evaluation deviated from the ground 
truth in a statistically significant manner, a chi2 test was 

performed. Chi2 values were computed for each type of 
evaluation. These are compared to the critical chi2 value 
(chi2

crit) for a p-value of 0.05. In this instance, chi2
crit is 11.07. 

If the chi2 for an evaluation is larger than chi2
crit, that evaluation 

has deviated from the ground truth in a statistically significant 
manner. The accuracy of this process is presented in Table VI 
and is followed by a discussion. 
 

 
 

In the evaluation, a high degree of accuracy was achieved in 
goal recognition across two of the evaluation scenarios. 
Specifically, 100% accuracy was achieved in scenario 1 with 
83.3% accuracy in scenario 2. In the third scenario, acceptable 
levels of accuracy were achieved, 64.4%. The results show 
statistical significance as shown through chi2 tests. 

In scenario 1, 100% accuracy was achieved. This is because 
of the removal of errors introduced by the sensor component 
and possibly because of a more focused, single-minded, and 
direct activation procedure. This simulation exclusively tested 
the IR component and showed the capability of the devised 
formalism and the implemented agent.  

Scenario 2 revealed this approach to perform most poorly. 
This was because of the low RSSI value of the testing profile. 
This low RSSI value expanded the physical consideration range 
of beacons. This caused a specific recurring issue related to 
object proximity confusion. An instance of this was coffee and 
tea making activities being confused as these vary by one sensor 
activation in the modeled goals, that is, the vessels for storing 
tea and coffee. Specifically, these vessels were placed beside 
one another in a cupboard. On movement of one vessel, others 
would be agitated and register movement within the allowed 
proximity range. This movement caused a race condition where 
the first sensor signal received was passed to the IR mechanism.  

This error could be compensated for through a number of 
methods, such as using activation rules in the belief base, 
adding a signal filter in the smart phone application, using 
additional beacons or rearranging the environment to reduce 
confusion. Activation rules could be used to specify minimum 
movement levels for activation to be considered. Alternatively, 
rules incorporating tri-axial angle ranges could be modeled.  

TABLE VI 
GOAL RECOGNITION ACCURACY IN THE DEVISED IR-BASED AGENT 

Evaluation scenario 
(Iterations) 

Inhabitant goal (Iterations) Accuracy chi2 

Web-based 
simulation (120) 

Making Black Coffee (20) 100% 

0 

Making White Coffee (20) 100% 

Making Sugary White Coffee (20) 100% 
Making Green Tea (20) 100% 
Making White Tea (20) 100% 

Making White Sugary Tea (20) 100% 

Real-word 
simulation with a 

smart device placed 
in the pocket (85) 

Making Black Coffee (15) 66.67% 

10.76 

Making White Coffee (15)  60% 
Making Sugary White Coffee (10) 60% 

Making Green Tea (20) 70% 
Making White Tea (15) 60% 

Making White Sugary Tea (10) 70% 

Real-world 
simulation with the 
smart device being 

affixed to the 
forearm (48) 

Making Black Coffee (8) 87.5% 

1.5 

Making White Coffee (8) 87.5% 
Making Sugary White Coffee (8) 75% 

Making Green Tea (8) 87.5% 
Making White Tea (8) 87.5% 

Making White Sugary Tea (8) 75% 
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Either of these rule-based approaches could be used to detect 
the intended interaction more robustly, as opposed to 
unintended agitation.  Alternatively, a context beacon could be 
used to more accurately determine a beacon that is being 
interacted with, through trilateration. This, however, would 
require a per-room belief base reducing the reusability of such 
an approach.  

A signal filter could be added to the smart phone application 
to ignore beacons generating minor movements when in 
proximity to beacons that are recording larger movements 

Finally, a simple solution is possible through moving the 
relevant confusing vessels to easily discernable locations; in 
this particular test scenario, using different shelves to store each 
vessel would have remedied this issue. 

Scenario 3 represents the most accurate use of this system in 
the real world and operated to a high degree of accuracy. 

This system was tested under the class of Intended IR as the 
observed entity was aware of this operation. Ideally, this system 
would be tested under the Keyhole class of IR operation, as 
those suffering age-related illness may not be consistently 
aware that they are being monitored by such an assistive 
system. This highlights the need to deploy and evaluate the use 
of this system in an environment occupied by those with mild 
cognitive impairment. Through such an evaluation, the 
operation of this approach could be more thoroughly tested and 
improved. 

This approach addresses some of the issues of current SHs, 
namely those related to inhabitant privacy, scalability, flexible 
activity variation and reusability.  

Privacy is preserved by virtue of this system not requiring a 
record of the previous activity performance in order to operate. 
This approach is opposite to a number of contemporary 
assistive SHs, particularly those based on machine learning.  

Improved scalability and adoption is provided using an IR 
mechanism that focuses on goal actions that are linked to 
individual sensors. This allows functionality to be realized 
through object-affixed beacon sensors that are relatively 
inexpensive and easily deployed in an environment.  

Additionally, this system is intended to be cloud hosted with 
clients by simply deploying beacons and installing an 
application to their chosen smart device.  

Finally, the implemented approach required low amounts of 
computational resources to operate. The evaluated system was 
able to reason about an inhabitant’s intended goal typically 
within 140ms and 160ms. The system was hosted on a device 
containing a 1.7GHz Intel Core i7 mobile CPU. The majority 
of this reasoning time was because of network latency from 
interacting with the relational and ontological databases.  

The low CPU usage of this approach in combination with its 
cloud-based nature leads to a technically scalable approach that 
can assist multiple residents through use of user profiles.  

Activities are modeled through inhabitant goals, which 
flexibly model activities based on ontological concepts and 
inheritance of atomic actions. These activity models are defined 
through a simple web interface, removing the requirement for 
specialist knowledge beyond that of the activity. In the specific 
example given earlier in this article, presented in Fig. 2, 16 
goals are modeled through a combination of seven goals that 
contain associated atomic actions. 

Reusability of this system is an improvement upon previous 
approaches through modeling concepts using ontological 
techniques, use of a logic driven approach with the ability to 
operate without previous activity records. 

The previously suggested improvements are being planned 
and are discussed in the further study Section. 

V. FURTHER STUDY 

Future study is separated into three tasks; further evaluation 
and improvement, integration into a complete system, and 
evaluating the possibility of making this system available to the 
research community. 

Further evaluation is required to focus on using this system 
in a Keyhole manner to ensure that the approach operates with 
users who are suffering from age-related mental impairments. 
Moreover, as the evaluated ADLs were of moderate 
complexity, a more complex range of ADLs should be modeled 
and evaluated. Additionally, evaluation would be required to 
test functionality with multiple occupants.  

Finally, modifications should be made to the evaluation 
approach to incorporate advanced sensor activation rules to 
better prevent wrongly detected activity performance. This 
system will be incorporated in a future research project; this 
project should provide opportunity for some of this extended 
evaluation.  

Once the approach and system has been evaluated and 
improved, efforts should be made to integrate the companion, 
assistance-provisioning, components produced within [29], 
[30].  

These companion components leverage the ontological 
nature of this system to reuse/share data and leverage automated 
reasoning through semantic rules such as SPARQL and SWRL. 
Specifically, these components process video files and identify 
actions depicted within. These identified actions, and their 
semantically compatible variations, are subsequently placed in 
a media annotation ontology. This media annotation ontology 
is incorporated into a planning component, which uses the goal 
ontology to match guiding video files to goals whose assistance 
condition has been encountered. 

Integration would deliver a complete solution. Currently, 
integration is loose, although manual messages pass to and from 
each component’s REST endpoint. This facilitates dynamic 
testing and iterative improvement of each component. 

To make this system widely accessible to the research 
community there are two main avenues that will be 
investigated; open sourcing the current codebase and providing 
an implementation through software as a service. 

VI. CONCLUSION 

This article presents an Intelligent Agent architecture and IR 
mechanism that may be used to form an AAL system to assist 
with ADLs within a SH. Specifically, the approach can be used 
to enable an SH environment by affixing sensors to objects 
within a home that will be interacted with during the course of 
the performance of ADLs.  

To the best of the authors’ knowledge, this is the first time 
that an IR-based Intelligent Agent platform that models 
inhabitant goals has been successfully devised for, and applied 
to, this problem domain. 
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This approach addresses some issues SHs have exhibited 
related to privacy, reusability, applicability, and scalability.  

Privacy is addressed in two ways. This approach does not 
rely on a data-driven approach to provide ADL recognition 
where a large number of sensor records are captured throughout 
the daily life of the inhabitant and learned.  

Sensors incorporated are simple object sensors whose 
interaction indicates performance of an atomic action when 
certain activation conditions are encountered. A large sensor 
suite producing sensitive data such as recorded video, recorded 
audio or occupant-tracking records is not required for this 
approach to function.  

Reusability is catered for in a number of ways, prominently 
through the use of ontologies and modeling activities as 
inheritable goals. Ontologies facilitate sharing and linking of 
data amongst many concepts and components. This approach 
functions with companion-assistive components that reuse 
modeled goals to perform analysis on video files. This video 
analysis identifies depicted tasks within video files and 
provides assistance through dynamic planning.  

This approach is applicable to a wide number of 
environments through formal separation of sensors from atomic 
actions and integration of a cloud-based backend. Separation of 
sensor modeling through the use of a BDI architecture allows 
sensors to be related to atomic actions independent of activity 
structures. This separation allows goals to be reused across a 
number of SHs where sensors are simply associated with atomic 
actions and are given a SensorLocation property per 
environment, reducing the effort needed to model data for each 
SH and increasing applicability.  

Additionally, the devised approach is cloud based, 
facilitating integration of new SHs by placing sensors and a 
listener in an internet-accessible home; with no local 
computation infrastructure. 

Scalability is addressed through use of inheritable goal 
structures and focusing on the proven scalability of object–
sensor interactions in recognizing a range of ADLs modeled as 
plan-like structures [19]. As the evaluation shows, modeled 
goals may be reused to form components of other goals. This 
facilitates scalability of modeled activities by reusing defined 
components to produce new goals, which in turn may have their 
own activation and assistance conditions. Additionally, these 
goal models are not tied to a specific environment and may be 
reused within each environment. 

As shown in the presented evaluation, this first-generation 
Intelligent Agent and IR SH system for AAL performed well, 
with minimal issues appearing in this early stage evaluation.  

Issues that were made apparent were related to object 
interaction where beacon placement in the real world caused 
object confusion and subsequent errors, that is, when objects 
were placed in extreme proximity. A number of methods to 
cater for these issues have been proposed by the authors; these 
should be integrated in future with a subsequent evaluation. In 
a web-based simulation, this approach performed without any 
such issues. 

Further study incorporating improvements with subsequent 
evaluations have been proposed. Additionally, the authors 
intend to make this system available to the research community 
and partners through open sourcing the project or providing it 
through software as a service, if possible. 
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